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COMPARISON OF
HYPERBOLIC AND EXTREMAL LENGTHS
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Let S be a hyperbolic Riemann surface of finite type (that is, S: (JIG, whete

Uis the upper half-plane and G is a flnitely generated, torsionfree Fuchsian group),

and let w be a hyperbolic simple loop on S (that is, w is a simple loop on S, and w

is represented by a hyperbolic element A in G). There are two natural notions of
length for such a loop: first, there is the hyperbolic length / ofthe shortest geodesic

freely homotopic to w on S, and second, there is the extremal length m of the family

of loops freely homotopic to w on S. The purpose of this note is to give some com-

parisons between these two notions of length.

When we need to emphasize the dependence of say / on w, ot A, or ,S, we will
write /(w), or l(A), or /(w, S).

The proofs all take place in the context of a non-elementary finitely generated

Fuchsian group; the group may have torsion. All the results are easily seen to be

equally valid for elementary Fuchsian groups.

In general, we say that a set Xc U is precisely intsariant under the element

A<G if A(X):y, and ,B(X)n X:0 for all B in G which are not powers of l.
we say that the hyperbolic element A€G is strictly simple if the axis Ln of A

is precisely invariant under I in G. In particular, if I is strictly simple, then there are

no fixed points of elliptic elements of G lying on Ln.
For any hyperbolic element A of G, we define l:l(A) to be the geodesic length

of A; that is, ,4 is conjugate in PSL(2, R) to a unique element of the form z*etz,
/>0; equivalently, ltr1,l11:2cosh(tl2). If G is torsion free, this definition agrees

with that of the first paragraph.

We let w be the projection of Ln on UlG, so that w is a geodesic - Let U' be U
with all fixed points of elliptic elements of G deleted, and let S':U'lG. Then m:
m(A) is the extremal length of the family of loops freely homotopic to w on ,S'.

We normalize G so that A(z):etz, l=0. We denote the projection from U
to ,S, or from U'to S', by p: U*5.

A topological collar aboat w is a subsurface So of S', containing w, where 56

is topologically an (open) annulus.
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A topological collar about Ln is a set X, containing Ln, which is precisely in-
variant under ,4 in G. A topological collar about Z,n of the form

{nl2-fu < argz -. nl2l|z}, 0 = 0t,02 = nl2,

is a collar aboat L,a of angle width 0:0t*02.

Proposition 1. If there is a collar about LA of angle width 0, then

: I'&.m0(1)

in any cose,

(2) l=mn.

Proof. Let T be the collar about Lnof angle width 0. Then f(z):log(-iz),
f(i):O, maps Z onto a rtrip V of height 0, where Z is invariant under l7:{z*
z*lZ\. The extremal length m(w, p(T)) is the extremal length of the family of curves

connecting a point z ta zll in VIH; it is well known that the extremal length of
this family is ll0 12, p. l2l. We now obtain inequality (1) from m(w, S)=
m(w, p(r)):119.

Inequality (2) was proved in [7], but the statement there has the constant 2z
rather than n. For the convenience of the reader, we reprove it. Let ? be any topo-
logical collar about Ln. Then using the same function f(z):l6g(-iz), fQ) is a
topological strip invariant under 1L We can estimate m(w,p!)) by using the

Euclidean metric n f(n.We observe as above that the length of any curve is at
least /, and since any vertical line intersects/(7) in a set of measure at most z, the

area of f(nlH is'at most nl. Hence, m(w,p(T))>l2lnl:lln. It was shown by
Jenkins [5] that the infimum of m(w',Si), where the infimum is taken over all
topologicalcollars ,Si aboutloops w',freely homotopicto w on S', is in fact a min-
imum, and this minimum value is m(w, S').Inequality (2) now follows.

The loop w is called aboundary loop if w divides S into two subsurfaces and one
of them is topologically an annulus. It is immediate that every boundary loop has

a collar of angle width at least nl2.

Corollary l. If w is aboundary loop,then mnf2=l=mn.

Our next proposition is a version of the collar lemma; other versions appear
in Keen [6], Matelski [8], Buser [3], Randol [9], Abikoff [], and Halpern [4].

Propositio n 2. If A(z\:st 7 is strictly simple, thm Ln has a collar of angk
width 0, where srn 0f2:e-U2. Further, if B€G is also strictly simple, where

p(L)ap(L):0, then these collars about Ln and Ls are disjoint.

Proof. Let L" be a hyperbolic axis in G, where B represents a strictly simple
loop u in UlG, and either u:w, or u is disjoint from w; we are primarily interested
in the former case where B:C o A o 6-1, for some C in G. Let x and y be the end-
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points of L"; we can assume without loss of generality that 0<x<y. Let Lbe
the hyperbolic line with endpoints x and etx:A(x). Since no translate of Lrcan
cross Zs, y=e'x, and so d(Ln,L)=d(L^,L"), where d(.' .) denotes hyperbolic

distance. Let M be the ray through the origin which is tangent to I. We wite M:
{arg z:E}, and we observe that

sin E - (etx-x)l@'x+x): tanh ll2.

We note that d(Ln,L):d(Le, M), and we choose M'to'be that ray through

the origin so that d(M',L^):d(M',M). We write M':{argz:nl2-0}, and we

observe that we have chosen M'so that Ll has a collar of angle width 20r:9.
An easy computation shows that

and

d(Ln, M) - log (csc E+cot E),

d(Lo, M')- log (csc (nl2-0r,)*cot (nl2-0r)).

Hence
(1+sin gr)/cos 0t: ((t +cos q)lsin E)'t'.(4)

We set the right hand side of (4) equal to Q; note that sin 01>0, and solve

(4) for sin 0r. We obtain
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(3)

(6)

(5)

We combine (3), (4), and

sin 0, - - e-uz
1*coshUz*sinh ll2

Once we have chosen A in G,we can of course consider I and m as functions on

the Teichmuller space f(@. The remainder of our note takes place in this setting.

Corollary 2. The lengths I and m go to zerc together, and limr*olfm:n.

Corollary 3. m=(ll2)lett2.

Proof. We know from Proposition 2 that Lahas a collar of angle width 0, where

sin0f2:e-t12. Thus 012>sinlf2:s-ttz' hence by Proposition l,2me-tl2=1, ot

7n = (Uz)leUz

sing,:#++.

(5) to obtain

1+coshU2-sinh Il2

We conclude this note with an example showing that the estimate (6) is not very

far from being sharp.

For each a,O=a<nf\ we write down the Fuchsian group Gn, generated by

t secd itanal
[-, tana secdJ'

lcsc a cot al
[cot o csc o( J '

Ao: Bo:
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observe that Anhas its fixed points at tl, while.B, has its fixed points at xi.
A fundamental domain Dnfor Gncarr be obtained by drawing the four hyper-

bolic lines with endpoints etn and -e-io, -e-in and -€tu, -€tu a;rid, e-in, and, e-,"
and ein; see Figure l. We see at once that G has signature (1, l; -).

Figure I

The reflection j(z):V commutes with A:An, ild conjugates B:Bo into
.B-1. Hence the elliptic modulus of the torus UIG with the generators A and B is
pure imaginary. Since the sides of Doare fixed point sets of reflections in the group
generated by Gn, j, and the reflection z* -2, the covering map e, from U onto the
plane punctured at the lattice points, maps Do onto a rectangle, and conjugates ,4 and

- 
g-io

- e'o e-u
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B into translations in the plane. We conclude that the extremal length of the family of
paths joining a point z on the boundary of Doto A(z) (or z to B(z)), is equal to the

extremal length of the family of paths joining opposite sides of the rectangle, E@).
In particular m(A):l lm(B).

Let 0" be the angle width of the largest collar about Zr. Then,

m(A) : llm(B) > |ull(B) : 2l(B)-t arc sin (e-'@tz) 
= 2l(B)-te-'@)/2.

An easy computation shows that l(B\:2log (sec a*tan a), and so

m(A) = l/(sec a*tan a) log (sec a*tan a)

= U(sec a*tan a)(sec a*tan a- 1).

We rewrite the right hand side of the above as

Ä : cosz a/(1+sin oc)(1+sin c-cos c).

We note that l(A)-2log (csc a*cot a), and we observe that

|{g Re-a,rrrz : lim,Ri(csc a*cot a) : ll2.

We conclude that for every e>0, we can find an a so that

m (A) =- R > (l I 2 - e) et(A) /2.

Remark l. Therequirementthat G befinitely generated was used only in Jen-

kins' theorem. Proposition 2 is valid for an arbitrary Fuchsian group. Proposition
I is also vatd in this more general context, provided one understands z as the infi-
mum of m(w', Ss'), where w'is freely homotopic to w, and So'is any annulus con-
taining w', and containbd in So.

Remark 2. If La has elliptic fixed points on it, but is otherwise simple, the

results are slightly diferent. We outline these below.

Let Abe a hyperbolic element of the finitely generated Fuchsian group G, where

for every 3€G, either B(L):La, or B(L)aLo:0. Assume that there is an ele-

ment E(G, where .E is not a power of A, and E(L):1n. Then E is necessarily

elliptic of order 2, and p(L) is a path from one ramification point of otd,er 2 to an-

other. Call these ramification points x and x', and let w be a simple loop which sepa-

rates S' into two subsurfaces, where one of these is a disc with the two punctures, x
and x'. We have already defined lQnl:11r7, and we set m(A):m(w).

We normalize G so that A(z):et z, and so that .E has fixed points at t i; then

AoE has its fixed points at tieUz.
If {nl2-|r-.argz<nl2*02} is a collar about Lo(i.e., it is precisely invariant

under the stability subgroup of Lan G), then either 0t:6, or 02:0; we assume

without loss of generality that 9r:Q.
Inequality (1) still holds, and inequality Q) can be replaced with

(z',) I=mn12.
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The proof is the same, except that to prove (2'), observe that/conjugates E into
the transformation z* -z; hence if /r is the measure of the intersection of/(Z) with
the vertical line Re (t):a, a=112, and k' is the measure of the intersection of f(n
with the line Re (z):-a, then kik'=n.

If w is a boundary loop, then G is elementary, and l:mnl2, as can be verified
directly.

The proof of Proposition 2 is essentially unchanged, but the statement is dif-
ferent.

Proposition 2'. If A represents a simple loop w, and Ln has elliptic fixed
points on it, then Ln has a collar of angle width 0, where sin 0- e-tlz.

Corollary 2'. If Ais as in Proposition2', thenl andm go to zero together and
l,\llm:r12.

Corollary 3'. If A is as in Proposition 2', then m=letlz.

The group Go has a 22 extension H, obtained by adjoining the transformation
j(z): -2. Then l(An, Ho7:7(A* G), l(Bo, H"):l(B,, G), and m(An, H):
:2m(Ao, G), m(Bo, H"):2m(Bo, G,). The first two equalities are trivial, and the
second two follow from the fact that the map rp commutes with 7, and q maps the
axes of A and.B onto Euclidean lines which are parallel to the sides and bisect the
rectangle E@).

In this case we obtain that for a sufficiently small, m(A,ID=(l -e)st(t'8")tz.
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