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1. fntroduction

a) We consider real analylic surfaces M (i.e. dim*M:2) in C2. Two such

surfaces M, ft are called equivalent if they can be mapped into each olher by a
mapping which is biholomorphic in the complex struc"ture of C2. Actually, we are

concerned only with local equivalence which refers to the neighbourhood of a point
pofM.

One has to distinguish points p for which the tangent space T.M:V is a
complex line (i.e. V:iV) and those for which Z is totally real (i.e. V)|V:(O)).
Points of the second type are uninteresting since any 1wo surfaces near such points

are locally equivalent. Interesting are only the so-called "exceptional points" which

were considered already by E. Bishop []. They are characlerized as points p with
a complex tangent while for every q€M in a neighborhood of p TuM is totally
real. Near such points one finds holomorphic invariants. For example, in the non-

degenerate case, whete also the quadralic approxirnalion at p has an exceptional

point, one can introduce local coordinates (z,w)€Cz so that the surface is given by

(1.1 ) w

where p corresponds to z:w:O, y=0 and where -E is a complex valued analytic
function vanishing of at least third order at the origin. Then y is the holomorphic
invariant introduced by Bishop. One speaks of the elliptic, parabolic and hyper-

bolic case according to 7€[0, ll2), y:ll2 of y>112.
The elliptic case has been studied in detail in [5] where, howevet, the case y:9

had to be excluded. We showed in particular, that for 0=7< ll2 the surface (1.1)

is locally equivalent to an algebraic surface

w - zz +]- (w) (22 +Zz) : G (2,2),

f -?*ew" with t-tl or 0.

This surface lies in the three-dimensional hyperplane Im rry:0 and forms a surface

with elliptical cross sections. It is easily seen that the local hull of holomorphy of

Mika
Typewritten text
doi:10.5186/aasfm.1985.1044



398 JUncBN Mosrn

this surface is given by the interior of this surface, i.e.

{z,w,lm }r : 0, Re w < G(z,Z)\

and therefore is an analytic three-dimensional surface with boundary.

b) In this paper we study the case y:Q which seems particularly simple since

its quadratic approximation w:zZ is given by the rotation-symmetrical paraboloid
in Im w:0. But one meets wilh unexpected difficulties and it is not yet known
whether also in this case the local hull of holomorphy is real analylic at p.

According to the work of Kenig and Webster [4] it is established that this hull
of holomorphy is smooth but its analytic character is still not known. To this ques-

tion this paper makes a contribution which we now formulate.
By formal considerations, carried out in Section 2, one sees that in the case

?:0 the surface (1.1) can be brought in the form

(1.2) w : z2*2"*2"*O"+t

where s>3 and O"*, denotesafunctionvanishingof order >s*1 attheorigin,
or into the form
(1.3) w : zElOn

for any n. In the second case we set J:-; in this case (1.1) c,anformally be trans-
formed into w:zZ where, however, the convergence of this transformation still
remains in question. We point out that s is also a holomorphic invariant and there-
fore the distinction between the cases (1.2), (1.3) has invariant meaning.

It was our goal to decide about the analytic character of the hull of holomorphy
in these cases but so far we have not been able to settle the case s< -. But since
birthdays can not be postponed we can only present our partial result for s:-
and then formulate the open question as a rather specific problem.

Theorem. Asurface M of theform(l.l)with y:g and s:* isholomorphi-
cally equiualmt to

(1.4) w : zZ.

In other words, if (1.1) can formally be transformed into the form (1.4) then
also holomorphically. As a consequence, also in this case the hull of holomorphy
is a locally real analytic three dimensional hypersurface with boundary.

Problem. Inthecase,e=-sucha statement is not known to us and is pos-

sibly false. If the hull of holomorphy is analytic we can by a transformation

(2, w) * (2, w* g(2, w))

map it into Im w:0 (see [2]) and this amounts to a solution of the functional
equation
(1.5) Im {F(2,4+s(2, F)}: g.
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As a matter of fact the question whelher the hull of holomorphy is analytic at the

origin is equivalent to the queslion whelher (1.5) possesses a solution g:g(z,w)
holomorphic at the origin, which we state as an open problem.

Another question is whether one can decide from a finite part of the Taylor

expansion of F about the equivalence class to which M belongs. For elliptic points

with 0=?<ll2 this is indeed the case since 7, s and e:tl areafullsetof in-

variants [5]. However, for 7:g this has not been established and may even be

false. One knows of olher problems of this type from the theory of iteration of con-

formal mappings z*f (z) near a fixed point 0:/(0). Here two mappings fr' f,
are called equivalent if there exists a conformal mapping z*u(z) with n10;:g'
u'(o)lo with frou:uofr. lf lf'(O)l+O,l then /'(0):,1 is the only invariant

and the mapping is equivalent to a linear mapping. This is also true for most val-

ues of l, on the unit circle. However, for roots of unity ,1, the equivalence class is not

determined by a finite part of the Taylor expansion [3], [6]. Is the equivalence prob-

lem for surfaces neat an elliptic point with ?:0 of this nature? These questions of
complex analysis lead to nonlinear functional equations wilh rather startling prop-

erties. For example, in the hyperbolic case one has to distinguish between cases

where the solution of the quadratic equation ).2-y-1l*l:0 is a root of unity or

not. One is led to difficult functional analytic problems. Even the proof of the stat-

ed theorem seems not quite straighl-forward and we used the rapidly convergent

iteration technique which seems well adapted to the situation. In the following

sections we carry out the detailed proof of this theorem.

2. Formal considerations and a linear problem

We consider a rcal analytic two-dimensional manifold M in Cz of the form

w - F(2,2)

a complex-valued power series in z) Z without constant or linear part.

ignore questions of convergence and subject (2.1) to a transformation

z' - z *f (2, w),

w' - l,v+ g(2, w)

also given by formal power series in z, w wilhortt constant part and whose linear

part is the identity transformation. We write these series as power series in z:

f - Z;o t'f,(w), s - Z;o zt gr@)

Proposition 2.I. There exists a unique formal transformation (2.2) satisfying

(2.r)

where F is
At first we

(2.2)

(2.3)

and show the

(2.4) "fo:-ft - 0
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which transforms (2.1) into

w' : F'(z',2'): z'2'*tpe)+q?'j.
Proof. We have to solve the equations

(2.s) F+g(2, F) : (z+f(2, r1)(z+I(z,F))+EQ* F)+QG+F)

which is done by comparison of coefrcients. Denoting the weight of a tetm znwq

by v{2p:s we write f@(z,w), g(")(2, w) for the terms of weight s in f,8', respec-

tively. Thus we have f@(tz,1zr1-yf(s)(z,w) and similarly for gt"). If we collect
terms of degtee s in z,Z in the equation (2.5) we obtain for s>3

.,1tr(s)+g(s) - zfG-D(2, z2)* zfF-L)(z, z2) jE<")(z)aqatQllGGr(2, z)

where F(s), g(s) denotes the homogeneous terms of degree s in z, Z of F, and G@ (2, Z)

is also such a homogeneous polynomial which dqrends only on g@t, f(o-Lr, E@)
for o=s. Thus we have to solve the equation

(2.6) - g(s) +z|r(s-t) + zf $-L) +E<o ()a@t (z) : f{s)(2, z)

for g, f, E if .f is given. For later purpose we consider this equation right a way for
general series g, ,f, E and I , without constant terms and not only their homogeneous
parts.

Replacing 2 by a new independent variable ( we are led to the equation

(2.7) -se, z0*U(2, zo-tzf((, z)+EQ)+Q(0: r(2,O.

We obtain again (2.6) by considering just the homogeneous terms of degree s in
this equation.

Therefore it suffices to prove that (2.7) possesses a unique solution with the
normalization (2.4). We write the series for.f

in the form

where

f (2, O : Zy,p zo (P

r - ro@0 + Z;, (zt r,(z€)+ ( r -k0)

[ - Z;=oTn+t,kwk for / = o'
f'(w)l: 

Z;=oyj,j-twi for /=0.

With the representation (2.3) for f,g and with

E@) - Z;r QtZt, Qt constants,

the equati on (2.7) takes the form

(2.8) - gt(,)+ wJi*l(W) *Et: f ,,
wft*l(u/)*h- f -t
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for l>2 and for l:0, I we obtain the three equations

- gr(w)+wfr+fo+Et : rr,

-go(w)*wfi*wh: fo,

fo+wJr+0t: f-r.
With the normalization .fo:ft:O the first and third equation can be incorporated

into (2.8) for l>l and the middle equation takes the form

(2.9) -go(w) : l-o(w).

This equation is uniquely solved by defining 8o: -fo. From (2'8) we obtain for
w:0

-gr(O)f Er : fr(0), h: f -10) for I >- |
which again is uniquely solvable. Setting

G1(w) : (r, 1w) -r, 1O;)1ru

it remains to solve the equations

&(0)-C,(w) -lwJi*t : wG, I
wIt+r: ,;-rl for I > r'

Hence we get

It+t: G-t,

gr(0)- C,(lY) : w (Gr- G -)
and with gr(0): -f,(0)+f-,(0) we obtain

-gr(w) : rlw)-F-lw).
This shows indeed that (2.8), (2.9) e'an be solved uniquely with the normalization

Q.4) and Proposition 2.1 is proven.

For later purposes we record the solutions f, g, Q of the equation Q.7) in a
different form:

Io@: r(o' o'
(2.10) lff|w) : Ze, (*'G-,(w),

I gQ, w) : - j-o(w) -i- * (2, w) + F - (2, w)
where

f *(z,w): )erztrr(w), f -((,w): )er(tf -r(r).
There is an arbitrariness in the transformation Q.2) which was fixed by the

normal2ation Q.4).This arbitrariness is due to the fact that the automorphism
group of w:zZ is given by

(2.rt) f"' 
: a{w)ffi' a(o) - 1'

lw' : a(w)d(w)w
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where a(w)-l,b(w) are arbitrary series without constant terms. These formulae
were given already at the end of [5], where also Proposition 2.1was stated without
proof.

This group still acts on the normal form

w : zZ*E(z)+e(Z)

provided by Proposition 2.1 and it is not easy to get a full set of invariants out of
this representation. Here we are content with the remark that the number s>3 in

EQ): c"z"t.-", c"*0,
is obviously an invariant; if cp:O we set r:-. Replacing z, w by Q.z, l1l2w),
)"+0, we can always achieve that the transformed representation is given by

w : zZ*2"*2"+{t(z)+V@)

with a power series ry' containing terms of otder >s only. Olherwise, if s:- we
can formally achieve

(2.12) w : zE.

This latter case r:@ may be considered as an exceptional case. But it is this case

which we consider now and show that if J:- the above normal form (2.12) can

not only be achieved by formal series but even by convergent ones. This is the con-

tent ofthe theorem ofthe introduction.

3. Estimates

a) Before proving the theorem of the introduction we need some estimates

concerning the solution oflhe linear problem solved in Section 2.

We write our surface .tl1 as

w:F(z,Z):zZ*E(z,Z)
where we assume lhat E(2, O is holomorphic near z:(:O and vanishing of order
>3 there. By a stretching transformalion (2,(,w\-(az,a(,a2w), E(z,O is re-
placed by a-zE(az,aO and we may therefore assume lhat E is holomorphic in the
polydisc lzl,l(l<l aird satisfies

(3.1) 
t,;tpt=, 

lE(2, Ol = q

for a given 4>0. After this preparation we will construct a biholomorphic trans-
formation to decrease this error term E to make it ultimately equal to zero.

The equations to be solved for the transformation Q.2) are

F(2, Z) + g(2, F) : v,' : (z +f (2, f\(Z +IQ, F))
or
(3.2) -sk, F)*zf(2, F)+zf(z,-F): E-lf(Z, F)l'.
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We replace these nonlinear difference equalions by the simplified linear equations

(3.3) - g(2, zz)*2f(2, 24+ zI(2, zz)+EQ)+E(Z) : E

which was already considered in the previous Section (see (2.7)). We use (3.3) to

define the transformati on f, g (with the normafization fo:ft:O). It will not achieve

that the enor E is reduced to zero but it will diminish this error. Repeating such

a procedure will lead to a convergent transformation.

b) To carry out this procedure we prove some estimates for the solutions of
(3.3). We define the domains

'D, : {(2, OQC', lzl = r,14 = r\,
/,: {(z,w)(Cz, lzl - r, lwl = r2}

and define the norms

lltlt,: suplD(z,Ol, l"fl, : s13l.f?,r)1.

Proposition 3.1. If E:E(z,O holomorphic in D,, E(0,0):0 and ll2<
g<r=l thm the equation (3.3) has a unique normalized solution f,g,E holo-

morphic in /, and satisfying lhe inequalilies

t lf l* lsl, = c, (r - p)-' llEll,,(3'4) Iv"lr*lf*ln+lg,ln+lg.ln= cr(r-s)-'llEll,,

(3.5) 
;;n letz)l = llrll,

where c, is an absolute constant (which we do not determine)' Moreouer, .f,g,Q
uanish for z:1ry:0.

Proof . The solution of the equations (3.3) was already given in (2.10) where .l-

must be replaced by E(2, O. From these equations it is evident that if Eis holomorph
in D, then f(z,w), gQ,w) are holomorphic in

{(2, w)llzl - r, lwl - lzlr\

since w:z( and l(l<r. By Hartog's theorem the hull of holomorphy of this do-

main is Ä, and so f, g are holomorph in /, and q(z) in lzl=r.
Evidently the estimate (3.5) follows from EG):E(O, O. If we write again

E(2, O : EoQO* Z,=r(r'8,1261+( E-{20)
we have

zt E,1zgy : * I:" E(eis z, ,-isg!"-;ts ds for / = 0,

('E,(zO : * I:" E(ei$ z, 
"-is 61r-ils ds for I =- o
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and hence by Schwarz'lemma

lE,(w)l - r-vtllEl|, for lwl = r,.
Also from Schwarz'lemma we conclude for

G{w): (41w1-r,10)w-r
the estirnate

lc,(r)l < 2r-xt-2llDll, for lw! = re.

Inserting this into (2.10) we obtain

1v1, = lz;, (f,)'Itl, = -?-w;,,

d,=-(r+22;, (+)')lp tt, = ftn"n,.
The estimates for the derivatives are easily derived from these with the help of
Cauchy estimate: Set r:(r*Q)/2 and trse

| 11- = 
J-p11,

tJ lt: f -X
and by Cauchy's estimate

lf,l^= 1 
1s1-= , 21V)1" - 8llEll'= 

'to: t-e tr tt : G-Q)(r-r) - (r-e)' '

This proves the inequalities (3.4), and Proposition 3.1.

c) For any formal power series ,E we define ord.E as the lowest order of the
nonvanishing terms. We set ord.E:- if E:0.

Proposition 3.2. If w:zZ*E(z,Z) satisfies s:@ and

ordE>d
then the transformed surface w'--z'Z'+E' obtained by the trmsformation (2.2),
giuen by (3.3), satisfies

ord E' > 2d-2.

Proof . If we solve (3.3) we obtain solutionsl, g for which the weight is >d-|,d,
respectively. The error term E'as a function of z,Z consists ofthe differences be-
tween the terms in (3.2) and (3.3), e.g.

g(2, F)-g(2, zZ)

of order =(d-2)+d:2d-2. Similarly

ord((fQ, r)-u@, 
"0) = t+(d-3)+d :2d-2

and
ord lflz > z(d-r).
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From this one concludes that

ord (E'-E(z')-E(Z')) > 2d-2

and since J:- also ordE>M-2 which lelds the statement. In other words
the transformation constructed by solving (3.3) has the effect of almost doubling
the order of vanishing on ,8.

d) With the so-constructed transformation (2.2): t:(r',w')-(z,w) we write
the transformed surface M' - rlr-, M - {(z' , w)lt! (z' , w')e M\ in the form

w' : F'(z',2'): z'z'+E'(z'rZ')

and estimate E'in D,.. To obtain a formula for E' we return to (3.2) but include
the term E' and replace Z by ( to get E'(z',C')-g(z,F)*(f(z,I)+zI(lF):
E(2, O-f(2, F)IG, F]. Subtracting the equation (3.3) which served to define f, g, E
we obtain
(3.6) E'(z', (') : QG, C)

where

(3.7) QQ,0 : (s(r, F)-g(2, tA)-C(fQ, F)-f(2, 
"0)

- " 
(I (L F) -I G, zO) -"f(2, F)f (C, F) + E Q\ + e (O.

The relation between (2, O and. (/, (') is given by

(3.8) tz' 
: z*f(z' F(z'O)

l( : *I((,F((, t)).

In order to restrict the variables to appropriate domains we introduce in addition
to r', r in

*-r'=.r<l
the intermediate points o, q€(r',r) by setting

l)g: r-i(r-'r'), o: r-iQ-r')
so that

(3.9) r-e: Q-o : o-r' : *rr-rr.
Proposition 3.3. There exists an absolute constant ö>0 such that for

(3.10) ,llEll!.= = ä(r - r')'
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the abooe defined mapping t:(z',w')*(z,w) takes Åo*Ån and takes M into

t-L M: M' such that E' (z' , (') is holomorphic in z' , C'<D,, and satisfies

(3.11) llE'11,,= c,1E1,Hgh. (L)'''l
prouided that ord E>d.

Proof. To verify the first statement we have to determine the inverse mapping

V:Y-L of
Y: (z,w) * (z' : z*f(z,w), w' : w*g(z,w)).

By (3.a) we obtain for the Jacobian dY the estimate

ldY -Ile = ct(r- Q)-'llEll, = *
if we require ttrat ö<(18cJ-t in (3.10). By the standard iteration procedure for the
inverse mapping we obtain for (z,w):Y-L(z',w') lhe estimate

lz- z'l*lw-r'l =2(lfe', w')l+lgk', w'l)

-.2cr(r- q)-t llEll, = r- e : Q-o
if (z,w)(/.. Hence l"'l=o, lw'l=o' implies

lzl = o-t(q-o) : Q, lwl = o2*(A-o) = o2*(p2-o) : pz,

i.e. tlr:r?t-t maps /ointo /n as claimed.
In just the same way we can solve the equations (3.8) for (z,O<D" if (z',(')

is given'fr D,, Indeed, for (2, ()(D" wehave

lF(",01=oz+llEll,=ez
if llEll,< q' -o2 which follows again from (3.10). Therefore we obtain for f(2, F(2,0),
f(C,F((, z)), (2, O(.o" the same bounds as in the first line of (3.4). Using Cauchy's
estimate we find for the first derivatives of these functions a bound

crllEll,(r-r')-'= c"6

in Do. We conclude that for sufficiently small ä and for (z',(')€D,, the equations
(3.8) possess a solution (z,O in Do. Therefore from (3.6) we find

llE'11,, = ltQll,.

To estimate lloll" we consider the various terms of Q in (3.7). For the first
parenthesis we find for (2, OeO"

lsk, F')- s(2, zOl =slp lc.lllEll" = cr(r- p)-zllElll

where we used (3.4). The terms of the second and third parenthesis in (3.7) can be
appraised similarly, and the next term gives

l.fQ, F)I(LF)I = c?(r- d-,llDlll.
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For the last term we use q(z)-E(2,0) so that

IEQ)I = ll^Ell, for I'l r.

Since ord E>-d also q vanishes of order>d and Schwarulemma yields

tE@)l = (+)'Ittt, ror l,l < o

so that

llQll " =rn t" - p) -' 
I I zll? +(fJ' f l tf f J 

.

To obtain the claimed inequality (3.11) we replace t-p by (r-r')13 and use

E)'=i
which follows from (3.9). Indeed with 0:r'lr we have

E)' li : (t*2l)zleo =- L tor ! = e = t.

This completes the proof of Proposition 3.3.

4. Convergence Proof

a) We construct the desired transformations of M ihto the form w:zZ by

repeatedly upplytng Proposition 3.3. This will be done by the rapidly convergent

iteration technique which we now describe. For this purpose we consider a sequence

of such surfaces
Mn:w:F,(2,2):22*En

wherc Mo agrees with the given surface M, i,e. F:Fo. Moteover, all surfaces are

supposed to be equivalenti M"*r:t"tM" where ry'n is a biholomorphic mapping

taking Åon*/'", Here on=q" is a sequence of numbers which will be chosen so

as to make Proposition 3.3 applicable: We pick a sequence r, such that

(4.1) *="n*r<r"<ro:1
and set

(4.2) Qn: rn-f {r"-r"*r); o": ,'-?(rv-rn+r)

so that r,r',Q,o in Proposition 3.3 correspond to /",F"11, Qn,on. Our goal will
be to select the sequence so that

(4.3) llE"ll'"*0 for Y+@
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and that
Y" : rltoorttto...o{"-i Åon_, * Åoo

converges in Ar,, to a biholomorphic map Y*. Then it follows from (4.3) that
Y;tM:M* agrees wilh w:22.

b) To define the above sequence 4,{tn, rr we set, for exarnple,

(4.4) ," : +(t.#), V : o, 1, ...

so that (4.1) holds and

(4.5)
[ (r"- rv+ J -1 - 2(v * 1) (v +2) ,
I

I rv+t , I
t r" -r- O+2y'

The point is that rv-rt+! does not grow too fast. We set 4:F and define ry'o, fi
by applying Proposilion 3.3 to M:w:Fo oblaining Mr:rlroMs,w:F1 and more
generally Mn+t:*"Mn, w:Fy-zZ+Er. By Proposition 3.2 and since .r:@
we find that
(4.6) ord En > dn : 2'a2 for y > 0.

To justify the procedure we have to verify that the assumption (3.10) holds
for all v=0. For this purpose we set

(4.7) eu: (rn-rn+J-'l!Ell,"
and rewrite (3.11) in the form

€v*1 = (#fr;)' ",'" [u" 
+ (t'-J"') .

This implies
(4.8) €v+r s ce"(e,*).)

wilh c:32c, andwhere,by (4.6),

,": (, _ 
,*Jry)'r'

tends to zero.
From (4.8) one can show that en tends to zero faster than any exponential

e-on(a>O), if e" is sufrciently small. For our pu{pose it suffices that

(4.g) En = Eocs2-n for 0 < eo = "u-t.
To verify this inequality we may assume c>l in (a.8). We choose N so large

that ).n<(4c)-t for y>N and take eo so small lhat

e, =. (4c)-tQc)-N.

Then one has for v=N, using )'n,en<l,

en < (2c)'eo = (2c)N eo < I
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and for v=N one finds, using 7n, tn-( c)-L,

6v < 2-v*"u" 
=2-n(4c)Neo

The last two inequalities imply (4.9) with cu:(4c)N, ca:4c(2c)N.
The assumption (3.10) of the Proposition 3.3 follows now from (4.9) if eo<

min(öc;l, ctt): ä* which, in turn, follows from our original assumption (3.1)
if t7:$*116, since ro-rr:l/4. Also(4.3)followsreadilyfrom @.7)and{1.9). Finally,
the convergence of Yn:rlroorltro...otn-t in /1,2 follows from the convergence of
the product of the Jacobians

IIT' ldt"lo n" = IIZ'(1 + clen).

This finishes the proof of the theorem.

c) The mapping Y:lim"-- Yn defines a biholomorphic mapping and its
inverse {:Y-t

-' - -'f(z,w)
vt ,' :ri+rtr,rl

takes r}1 into the desired fotm w' : z' Z'. Of course, ry' need not satisfy the normaliza-
tion condilion and we want to show that also the normalized series converges. For
this purpose we replace rl, by fi:V.uory' where ry'ou denotes the mapping (2.11) of
the automorphism group of w:zZ. One can always determine holomorphic func-
tions a(w), b(w) with a(0): l, b(w):Q so that rf is normalized. We first set a: l,
and determine b(w) so that, 

Io@) : l(0, w) : 0.
This equation becomes

.f(0, w) : Wb(W) where W : w* g(0, w).

Solving the second equations for w:w(W):W*... we obtain b(Z), which is
holomorph and vanishes at the origin since ord/>2. Now assuming ,6:0 we set
å=0 and determine a:a(w) so that

Because of

this amounts to
a(W): (t+;10, w)-'

where w:w(W), a(W) arc again holomorphic and a(0):1.
This shows that normalized series / g which were determined in Section 2 are

convergent if s: -. It is conceivable that the convergence can be established more
directly.

1
<_

4c
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