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HARMONIC AND RELATIVE HARMONIC DIMENSIONS

MITSURU NAKAI and LEO SARIO

Consider an open Riemann surface R of Heins type, i.e., a parabolic Riemann
surface with a single ideal boundary component dR. Let K be a closed parametric
disk on R and HP(R—K;d(R—K)) the class of nonnegative harmonic functions
on R—K with vanishing boundary values on the relative boundary d(R—K) of
R—K. The cardinal number of the set of nonproportional minimal functions in
HP(R—K; d(R—K)), is, by definition, the harmonic dimension dim 6R of the ideal
boundary R of R. It is at least 1 and independent of the choice of K. The notion of
harmonic dimension of the ideal boundary of a surface of what we shall call Heins
type was introduced by Heins in [4].

Let F be the union of a locally finite family of disjoint closed parametric disks
on R and define HP(R—F;d(R—F)) as above. The cardinal number of the set
of nonproportional minimal functions in HP(R—F;d(R—F)) is known as the
relative harmonic dimension dimy SR of the ideal boundary 6R of R relative to F.
Again it is at least 1, but this time it depends essentially on F unless F is compact,
in which case dimydR=dim éR. A more detailed description of these concepts
will be given in Section 1.

The first purpose of this paper is to compare dim 6R and dimpJdR. We shall
see that all three cases can occur, depending on the choice of R and F:dimp0R<
dim R, dimy dR>dim R, and dimydR=dim dR. In Section 2 we shall show
that, on any R, there exists an Fsuch that dimp dR=1; therefore, dimy 6R<dim 6R
if the latter exceeds 1. In Section 3 an example will be given of an F in the com-
plex plane C with dimy 6C>1; since dim 6C=1, we have an R and an F with
dimy 6R>dim 6R. The most important task in this context is to characterize those
F for which dimy; R=dim 6R. We shall give in Section 4 a useful sufficient con-
dition.

The second purpose of this paper is to construct an example of a Riemann sur-
face R of Heins type with dim R=a, the cardinal number of a countably infinite
set. This will be done in Section 5, our method demonstrating the applicability
of the sufficient conditions obtained in Section 4. An example of dim dR=a was
first given by Kuramochi [5], and quite recently by Segawa [11], who used his duality
theorem. It was Heins [4] who gave an example of a Riemann surface R of Heins
type with dim 6R=n, an arbitrary positive integer. If one tries to follow the Heins
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construction for the case dim dR=a as well, he is led in a natural manner to the
concept of relative harmonic dimension. Anybody who visualizes this is convinced
of the fact that the example of R with dim 6R=a already existed implici‘ly in the
pioneering work of Heins. This observation is a motivation of our present study of
the relative harmonic dimension.

1. Relative harmonic dimension

1.1. We denote by 6R the ideal boundary of an open Riemann surface R. By
this we mean that 6R is an abstract set and RUJR is topologized as a compact
Hausdorff space containing R as its open and dense subset. Unless otherwise
explicitly stated, we do not specify the topology of RUJR beyond this require-
ment. However, we often wri‘e {—06R ({€R) to mean that { converges to the
point at infinity of R with RUJR then understood as the Alexandroff compactifica-
tion of R.

We say that R has a single ideal boundary component 3R if SR is connected when
RUGR is realized as the Kerékjarto-Stoilow compactification (cf., e.g., [3]). We
shall say that a Riemann surface is of Heins type if it is of the kind first systematically
studied by Heins [4]: an open surface of parabolic type with a single ideal boundary
component SR. The complex plane C and the punctured sphere C,=C—{0} are
typically of Heins type. .

If R is of Heins type, then there exists an exhaustion {R,}; of R with the follow-
ing properties: 1) each R, is a relatively compact region and OR, is an analytic
Jordan curve, i) R,cR,CR,,; (n=0,1,2,..), iii) ;> ,R,=R, iv) the func-
tions w,6 C(R)nH(R,—R,) with w,|R;=0 and w,|R—R,=1 satisfy lim,_..w,=0,
uniformly on each compact subset of R. Conversely, if R has an exhaustion with
properties i)—iv), then R is of Heins type. Here H(.S) is the class of harmonic func-
tions on a Riemann surface S. We also denote by HP(S) the class of nonnegative
functions in H(S). A function u in HP(S) is said to be minimal in HP(S) if u=0
and u=v=0 for any v in HP(S) implies that v/u is constant on S.

1.2. Let S be a subregion of an open Riemann surface R such that each point
in 0SS is regular for the Dirichlet problem for the region S. We consider the relative
class
) HP(S;0S) = {u€C(R)nHP(S); u|lR—S = 0}.

A function uin HP(S; dS) is, by definition, minimal in HP(S; 0.S) if u is not iden-
tically zero and u=v=0 for any v in HP(S; 0.S) implies that v/u is constant on S,
i.e., there exists a constant ¢ such that v=cu on R. Clearly, if u is minimal in
HP(S; 0S), then u is minimal in HP(S), but not conversely.

With class (1), we associate two mappings, A and p, defined as follows. For each
u in HP(R), let Au be the upper envelope of the family of functions v in HP(S; d.5)
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with v<u. Then A is a homogeneous, additive, and order preserving mapping of
HP(R)to HP(S; 0S). We denote by HP(S; 3S), the class of functions v in HP(S;dS)
with harmonic majorants on R. For each v in HP(S; 95),, let uv be the least harmonic
majorant of v on R. Then p is a homogeneous, additive, and order preserving mapping
of HP(S; dS), to HP(R). We will use the following properties of A and u (cf., e.g.,
Noshiro [10], pp. 102—103):

(a) Apv=v for every v in HP(S;dS), so that p is injective, and A is injective
on u(HP(S;a5S),)-

(b) If ucHP(R) satisfies u=pv for some v in HP(S;dS),, then u belongs
to u(HP(S;dS),)

(c) v€HP(S;0S),1is minimal in HP(S;9S) if and only if v is minimal in HP(R).

(d) If uis minimal in HP(R) and Au=0 on S, then Au is minimal in HP(S; d.5).

1.3. Unless otherwise explicitly stated, we consider henceforth exclusively open
Riemann surfaces R of Heins type. Take a finite or countably infinite sequence
{K,}={K,}Y (1=N=w) of nondegenerate compact continua K, in R with the
following conditions: o) K,NnK,=0 (n=m), B) {K,} is locally finite, i.e., the set
{n; K,n X0} is finite for any compact subset X of R, y) R—(J¥K, is connected.
Such a sequence {K,} will be called a S#-sequence in this paper. With a #-sequence
{K,} we associate a closed set F and a region W given by

N
) F=\K, W=R-F.
1

We also fix a reference point a in W and denote by M (W) the class of minimal func-
tions v in HP(W; 0W) with v(a)=1. We call the cardinal number # M (W) of
M (W) the relative harmonic dimension of dR with respect to F and denote it by
dimg 0R:

3 dimy 6R = # M(W).

Clearly it is independent of the choice of the reference point a.

Let {K,}Y:, (i=1,2) be two A-sequences on R and set F;=|JY: K, and
W;=R—F; (i=1, 2). Obviously F; is compact on R if and only if N;<<o. Suppose
F, and F, are compact on R. Then it is not difficult to prove that there exists a bijec-
tive, homogeneous, additive, and order preserving mapping u,;+—>u, of HP(W,; OW,;)
to HP(W;; 0W;) such that u; —u, is bounded near 6R. Hence # M (W)= # M (W)
and a fortiori dimp 6R=dimy 6R. The quantity

4 dim 6R = dimy 6R (F compact)

is thus uniquely determined, with a compact F chosen at will. This quantity, an
appropriate one attached to R, is called the harmonic dimension of 6R.

1.4. Let {K,} be an arbitrary H#-sequence in R and let F and W be associated
with {K,} as in (2). Denote by W™ the Martin compactification of W and by ky (z, {)
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the Martin kernel on W* with the reference point a in W (cf., e. g., [3]):

gW (Za C)
®) ly (20) = 22
for (z,¢{) in WX W, with gy(z,{) the Green’s function on W. For any q in W*—W
there exists a sequence {{,} in W such that {,—~g in W* and either {,~JR or any
subsequence of {{,} contains a subsequence converging to a point of F. We denote
by Q(W) the class of the points g in W*—W over R, i.e., those g in W*—W for
which the first alternative occurs. One can easily see that Q (W) is compact in W*.
We also denote by O, (W) the class of minimal points q over JR, i.e., those points
g in QW) for which ky(-,q)€M(W). By the Martin theory (cf., e.g., [3], pp.
134—144),

©) MW) = {ky(-,9); q€Q (W)},

and there exists a bijective correspondence u<-v between HP(W;0W) and the
class of positive Borel measures v on Q, (W) such that

(M u= [, ol ) dv(@)

As a consequence of (6) we have dimpdR=1 and dim dR=1. Needless to say,
dimp 6R and dim SR are at most ¢, the cardinal numter of a continuum.

2. The smallest relative harmonic dimension

2.1. By a closed Jordan region on a Riemann surface we mean the closure of
a Jordan region on it. One might feel that dimy dR for compact F, i.e., dim JR,
never exceeds dimy R for any noncompact F. Contrary to this intuition we have
the following

Theorem. For any open Riemann surface R of Heins type, there always exists
a A-sequence {K,}7 of closed Jordan regions K, on R such that dimpéR=1
for F={T K,.

The proof will be given in 2.2—2.4. What we need to show is that HP(W; 0W)
is generated by a single nonzero element k in HP(W;0W), ie., HP(W;0W)=
{ok; a€ RT}, where R* is the set of nonnegative numbers in the set R of real num-
bers. It will be seen from the proof that we do not use the parabolicity of R. There-
fore, what we can really assert is the following: For any open Riemann surface R
with a single ideal boundary component SR, there exists a sequence {K,};> of disjoint
closed Jordan regions K, converging to OR such that HP(W; 0W) is generated by
a single nonzero element.

2.2. Since R has a single ideal boundary component, there exists an exhaustion
{R,}o of R with properties i), ii), and iii) stated in 1.1. We may choose R, as a para-
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metric disk. For each n=0, take a regular subregion S, of R such that R,cS,C
S,cR,;, and S,—R, is an annulus. For n=1, let ¢, be a conformal mapping
of S,—R, onto the region {l<|t|<a,} such that S, and R, correspond to the
circles {|t{|=1} and {|{|=a,}, respectively, under the mapping ¢, extended to
S,—R,. For a number §, in (0, n) to be specified later, the set ‘

K,=o;{l=|t| =a,, §,=argt =21—9,} (n=1,2,..)

is a closed Jordan region on R. Clearly, K,nK,=0 (n#=m), and {K,} converges
to 6R. For convenience we include K,=R, in {K,} and set

F=UK, W=R—F
0

We shall prove that HP(W; W) is generated by a single nonzero element if {5,}
is properly chosen in (0, 7).

~ 2.3. For n=1 we consider the arc I,=¢, *{|t|=a,, —d,=argt=6,} on IR,
and fix a point ¢, in I, with ¢,({,)=a, so that {, is the midpoint of I,. We
denote by g,({, z) the Green’s function on R,nW. We use the same symbol { for
a point of R and its image in a parametric disk. The inner normal derivative
0/0n; g,(, z) of g,((, z) at { on AR, depends on the choice of the parametric disk
but, for a fixed point @ in R, nW, the ratio

(6.9 = (-8 9) (8.0 @)

for ({,z) in (AR,)X(R,nW) does not. Since h,((,z) is continuous on (IR,)X
(R,nW), the function {—#,((,z) is uniformly continuous on dR, for each z in
0S,C R, nW. Hence the function

lpn(C) = sup lhn(cs Z)_hn(Cn’ Z)I
z€0S,

is nonnegative and continuous on dR,, with ¥,(,)=0. Here ¥, depends on 9, ...,
8,_, but does not depend on §,. If we take J, sufficiently small in (0, 7), then
SUPer, Y,(0)<2~". Therefore we can and will choose &,(n=1,2, ...) successively
in (0, ) so small that

(®) sup (sup |h,((, 2)=h,(Cs» 2)) <27" (n=1,2,..).
gel, z€ds,

2.4. We now determine the generator k of HP(W; dW). To this end we consider
functions k,(z)=h,(C,,2z) (n=1,2,...) which are in HP(R,nW;d(R,nW)—{(,}),
the class of nonnegative harmonic functions on R,nW with vanishing bound-
ary values on d(R,nW)—{(,}. We recall that k,(a)=1. Since {k,}; forms a
normal family, there exists a subsequence {k,,},—, of {k,};” such that

© k(@) = lim ley(2)



424 MiITsURU NAKAI and LEO SARIO

exists on W and the convergence is uniform on each compact subset of W. Clearly
ke HP(W;0W) and k(a)=1.

Choose an arbitrary element v in HP(W; 0W) with v(e)=1. The proof will
be complete if we can show that v=k. Since d(R,nW) is piecewise analytic,
*dg,(-,z) exists on d(R,NnW) except at corner points. But since v vanishes on
those components of d(R, W) which contain these corner points, the Poisson-type
formula is valid:

v(z) = —% f oo ¥ dg.(+,z) (zER,AW).
Observe that the boundary function v|@(R,nW) is nonvanishing on I,(CdR,).
Therefore we can rewrite the above formula as

@)= [, 3 (g 806 D @Il RO,

Using a positive measure y, on I, defined by

8 (D) = 5= - (86,000 4],

ng

and recalling the definition of #,(¢, z) we obtain

0(2) = [, h(C ) dp Q) (ZER,AW).

For z=a this implies that u,(I,)=1. Set Q=S,—R,. If z€Q, then (8) gives
@ =kl = [[, (i & D= vy Cuoms> ) b @)

= [, 1@ D= G D dityy () < 27

We have shown that sup,.g [v0(2) —k,u(2)|=27"®. On letting n—>co and using
(9) we see that v=k on Q and hence on W. O

2.5. Examples of Riemann surfaces R of Heins type with dim 6R=1 are not
lacking. As already mentioned in the introduction, Heins [4] constructed an R with
dim 6R=n, an arbitrary positive integer, and Kuramochi [5] exhibited an R with
dim 6R=a (=4 N, with N the set of positive integers) (see also Segawa [11]).
Constantinescu and Cornea [2] even constructed an R with dim 6R=c¢ (= % R).
We shall also construct, in Section 5, an R with dim 6R=a. From Theorem 2.1
we thus conclude that there exists an open Riemann surface R of Heins type and a
A-sequence {K,};° on R such that for F=J)7 K,,

dimp §R<dim éR.
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3. The finite complex plane

3.1. The classical Picard principle states that the harmonic dimension of the
point at infinity, «==0C, of the finite complex plane C: |z|<<o is one : dim 6C=1.
Let {K,};” be a A-sequence of radial slits K, on C and F=|J;" K,. We can always
find an F with dimpdC=m for any cardinal number m=1 of a countable set or
the cardinal number m of a continuum (cf., e.g., [6], [7], [9])- Therefore, the relation
dimz 6R=dim 6R occurs frequently. For the sake of completeness we append here
an example of extreme simplicity (both in the example itself and its proof) of a -
sequence {K,};" in C such that dimy C=2 for F=J; K,; our example was in-
spired by Ancona [1]. In particular, we have a proof of the occurrence of the relation

dimg OR = dim OR.

3.2. Consider a nondegenerate continuum K in C with the following four prop-
erties: (K.1) K is symmetric about the real axis Imz=0, (K.2) K is symmetric
about the imaginary axis Re z=0, (K.3) (K+1)nK=0, (K.4) C—K is connect-
ed. Here K+c={z+c;z€K} for any given c€C. The slit [—a, a] (0<a<1/2),
the disk {|z|=a} (0<a<1/2), and the rectangle {|Re z|=a, |Imz|=b} (0<a<1/2),
(b=>0) are examples of K. Let Z={0, £1, £2, ...} and

(10) K,=K+n (n€Z), F= K,

Theorem. Let K be a nondegenerate continuum K in C with properties
(K.1)—(K.4), and let F be given by (10). Then dimy 6C=2.

It can be seen that, in reality, dimydC=2 but our main interest here is in
constructing an F with dimpdR=dim 6R and also in giving a proof as simple
and elementary as possible. Hence we only establish dim;d6C=2 and omit the
proof for dimpdC=2, which requires rather elaborate reasoning.

3.3. Our proof of Theorem 3.2 is by contradiction. Suppose dimypdC=1, so
that there exists a nonzero function u in HP(W; W) with W=C—F such that
HP(W; 0W)=R*u. Since v defined by v(z)=2"1(u(z)+u(z)) for z in W is also
a function in HP(W; 0W) by (K.1), we may assume that u(Z)=u(z) for z in W.
Similarly, the function v given by v(z)=2"(u(z)+u(—Zz)) for z in W is again in
HP(W;0W) by (K.2). Hence we may and will assume that u(z)=u(Z)=u(—2)
for any z in W.

Let 7, be the line segment contained in {Im z=0}"W connecting the rightmost
point of {Imz=0}nK, to the leftmost point of {Imz=0}nK,,, (n€Z). We
maintain that

11) @ 1)(2) = (ulI1) (2(k+1)—z)

for z€l,, ie., ully and u|l,,, are symmetric about {Rez=k+1}. In fact, let
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ve HP(W; OW) be given by v(z)=u(z+(k+1)) for zin W. Then (11) for k follows
from v(z)=v(—2Z) for zin W. Since vé HP(W;0W)=R"u, there exists a constant
¢ in R* with v=cu. Therefore, u(z)=u(—Zz) implies v(z)=v(—Zz) for any z in W.

Let W*=Wn {Imz=>0}. From (11) it follows that u[0* is bounded and
a fortiori the solution HY " of the Dirichlet problem on W™ with boundary
values uldW+ on W+ (cf., e.g., [3], p. 21) is bounded on W+*. Note that H,""
is continuous on W+ with HY |[oW*+=ul0W*. Define the harmonic function #
on W by

h@={ L O

—(u@)—HY" (D) (ew—-w™).

Since u(z)=u(z), the function w defined by w=u+h belongs to HP(W; oW)
and is unbounded (bounded, respectively) on W+ (W—W+, respectively). Thus u is
not symmetric about the real axis, in violation of the fact that w is a constant mul-
tiple of u. In the above proof we took it for granted that u is unbounded on W. If
this were not the case, the parabolic character of 6C would imply ©#=0. a

4. Identity

4.1. Take a A-sequence {K,}Y on R and set F=\J} K, and W=R—F. We
now take up the most intriguing case: when is dimy R=dim 6R? If F is compact,
the identity holds by definition. This suggests that, for a noncompact F, the identity
occurs whenever {K,} is distributed on R sparsely in some sense. We shall give here
a condition to’ assure such sparseness. Let gw(z, {) be the Green’s function on W.
A curve y in R is said to converge to R, y—~0R, if lim,.; p(f)=6R, with p=p(?)
(0=t<1) a parametric representation of y. The curvewise superior limit of gy(z, ()
along 7y is, by definition,

lim sup gy (2, ) = lim sup g (p (1), {),

z€y,z->0R t—>

where we define gw(+,{)=0 on R—W=F. We say that {K,} is sparse on R if the
curvewise superior limit of gw(+,{) along any curve y in R converging to 6R is
positive. The condition is clearly independent of { in W. If Fis compact, then, since
R is parabolic, we have

liﬂ ai}zlf gw(z, ) =0

and therefore {K,} (F=YK,) is sparse on R.

Theorem. If {K,} is sparse on R, then the relative harmonic dimension of
SR relative to F= UK, coincides with the harmonic dimension of OR,

dimp R = dim JR.
The proof will be given in 4.2—4.4.
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4.2. For W;=R—K,, we have dimoR=# M(W,). Denote by 90X (0,7%,
respectively) the relative boundary of the subset X (Y, respectively) of R (W, re-
spectively) relative to R (W, respectively). Since WCW,C R, we can consider both
OW and 0,W, with 9, WL OW and, in fact, OW=(0,W) U (0K =(0 W) (0W;). We
consider the mapping A, of HP(W,) to HP(W;0,W) and the mapping p, of
HP(W; 0, W), to HPW) introduced in 1.2. Here A, defines a mapping
A=1|HP(W,; OW,) of HP(W;; dW}) to HP(W;0W) and similarly y, defines a
mapping p=u,|[HP(W; 0W), of HP(W; OW), to HP (W;; 0W,), where HP (W; 0W),=
HPW; OW)nHP(W; 31W)u1- The properties corresponding to (a), (b), (c), and
(d) in 1.2 are readily verified to hold for the present A and u. We shall refer to
these properties again as (a), (b), (c), and (d).

4.3. Let u be minimal in HP(W;; 0W,). We normalize u by pu(a)=1, i.e.,
puc M(W;). Then ﬁu:kwl(o, p) for some p in Q, (). The Brelot theorem (cf.,
e.g., [3], p. 139) states that any minimal point p in W*—W, is accessible from W,
in the topology of W*, so that for p€Q, (W) there exists a curve y in W, converging
to R, and to p in W}*. Since {K,} is sparse on R, there exists a sequence {{,}Cy such
that {,—~0R and also {,—~p in W* and lim, . gw({,,z)=v(z)=0 for every z€W,.
We can assume, moreover, that lim, .. gw({,, z) exists for z in R. Since gWI(C,,, 2)=
gw(ln, 2), a=lim, .. g (¢, @)=0, and

ﬁM(Z) = le(Za p) = Jirg (gW1(€n> Z)/gW1(Cn, a))
= —lim gy (0, 2) = - 0(2) = 0.

We conclude that Auz=(«f)~'v=0 because v€ HP(W;0W), and, by (d), Au is
minimal in HP(W;0W). Since Au=u for u€HP(W.;0W,), we have Au€
HP(W; 0W), and pAu=u. There exists a positive constant ¢ with ulu=cu, because
u is minimal in HP(W,; 0W,). Thus clu=A(cu)=A(plu)=0Ap)(Au)=2u by (a).
Since Au is minimal and, in particular, Au=0 on W, we have c=1. A fortiori
piu=u for minimal u in HP(W,;0W,). Suppose u, and u, are minimal in
HP(W,; 0W,), and Au;=2Au,. Then u,=plu,=plu,=u,. Therefore, we can define
an injective mapping of M (W) to M (W) and infer that dim §R=dim JR.

4.4. Conversely, let v be minimal in HP(W; 0W). We again normalize v by
Pv(a)=1 for a reference point a in W. Then Pv=ky(.,q) for some gcQ,(W).
Again by the Brelot theorem there exists a curve y in W converging to dR such that
¢, in y converges to SR and also to g in W*, and lim,. . gw((,, z2)=w(z)=0 for
every z in R; this is possible since {K,} is sparse on R. Hence

y — . 1z gW(Cn’ .) = W
ﬂl = kW( ’ q) - }Ll’l; gw(Cna (1) w(a)
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and w=pBw(a)v is also minimal in HP(W;0W). We may assume, moreover, that
lim, e gw, (ns 2)=u(2) exists for every z€W; by choosing a subsequence if necessary.
Since gW(C,,,z)éng(C,,,z), we obtain w=u on passing to the limit. Thus w¢
HP(W;0W),. The function pw is minimal in HP(W,;0W;) by (c). Since u is
injective, we can define an injective mapping of M (W) to M (W), and obtain dimz 6R
=dim 6R. In view of the result in 4.3, we have shown that dimy dR=dim éR. [J

5. Countably infinite harmonic dimension

5.1. As an application of the identity theorem established in 4.1 we shall give
a new proof of the following theorem originally obtained by Kuramochi [5] (see
also Segawa [11]):

Theorem. There exists an open Riemann surface R of Heins type such that
dim 6R=a, the cardinal number of a countably infinite set.

The surface R we are going to construct will be an infinitely sheeted unlimited
covering surface of the punctured sphere Cy:0<|z|=c whose projections of
branch points are all in the punctured disk 4,: 0<|z|<1. From each sheet of R
we remove a disk 1=|z|=o and obtain F=J; K,, where the K, are duplicates
of 1=|z|= lying in each sheet of R. By a judicious choice of the branch points
of R we can see to it that {K,} is sparse on R, and dimp dR=a. Then we apply
Theorem 4.1 to conclude that dim §R=dim;R=a. This is a rough sketch of the
construction and reasoning we are going to develop in 5.2—S5.7.

5.2. Let {a,); be a strictly decreasing zero sequence in (0,1), and {6,}; a
strictly increasing sequence in (—m/2, #/2). We then choose a decreasing zero se-
quence {d,} of positive numbers d, as follows. Let D,, = {|z—a,e~|=d,}. We make
{d,} converge to zero so rapidly that any two closed disks in the family
Up—1{Dum; n=m} are disjoint. We set

Dm)= U D,, (m=1,2,..),

n=m

D(0) = le(m)= Ql(g Dy).

We fix sequences {a,}, {0,}, and an auxiliary sequence {d,} once and for all. We
then choose a strictly decreasing zero sequence {b,};" in (0, 1) such that a,,,<b,<a,
(n=1,2,..). Let I,,={b,=|z|=a,, argz=0,}, a radial line segment. First of
all we require that each I, is contained in the interior of D, (n=m). Set

Im=U Ly, (m=12,..),

n=m

10)= U 16m) = U (U L),

m=1 n=m
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Actually we will choose each b, so close to g, that it satisfies not only the above
requirement but also the conditions (A) and (B) to be specified later.

5.3. Using a countably infinite number of duplicates of the punctured sphere
Cy: 0<|z| =<, and the slits 7(0) and I(m), we form the disjoint sheets

R,=Cy—I(m) (m=0,1,..).

Then we join each R,, (m=1, 2, ...) to R, crosswise along the slits /(m) and denote
the resulting surface by R. It is a covering surface of C, with the natural projection
mapping . It is not difficult to see that R is an open Riemann surface of Heins type.

In each R, (m=0,1,...), take the closed disk K,={l1=l|z|=}. Clearly
{K,)s is a A-sequence on R. We set

F=UK,, W=R-F,
0

and
W,=R,—K, (m=0,1,..).

Then W is also obtained by joining W, to W, crosswise along the slits 1(m)
(m=1,2,...). Thus it is a covering surface of the punctured disk 4,:0<|z|<1
with the natural projection 7.

5.4. Fix a number ¢ in (a,+d;, 1). The circle C,={|z|=c} is contained in
W,, and so is the annulus {c<|z|]<1} (m=0, 1, ...). Let w be the harmonic function
on {0<|z]<c}—1(0) with boundary values 1 on |z|=c and 0 on I(0). We now
choose each b, so close to a, that the following condition is satisfied:

(A) Ny = inf{w(z); ze{0 < |z| < c}—D(O)} = 0.

As a consequence of this choice of {b,};", the #-sequence {K,}s in R is sparse on R.
To prove this we set

G, ={0<|z| < }—I(m)cW,cR, (m=0,1,..).

Then w can be considered subharmonic on each G, (m=0,1,...) by defining
w=0 on I(0). Let y be an arbitrary curve in R tending to 6R, and denote by gu(-,{)
the Green’s function on W with pole { in W and extended as zero to R—W. We are
to show that

lim sup gy (z,0) =0

z€y,z>0R
for one and hence for every { in W. Observe that (y) is a curve in C, tending to the
origin 0.

First we consider the case in which there exists a single G, such that yCG,,.
Choose a sequence {z,}in yn (G, —D(m)) suchthat z,—~dR. Let a=inf. gy(-,{)
=0. Then clearly gw(:,{)=aw on G,. In view of (A) we have "

limsup gu(z, {) = limsup gy (z,, {) = alimsup w(z,) = an, = 0.

z€y,z—>0R n—oco n—>oco
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Next we consider the case in which the above alternative does not occur, so that
there exists a sequence {z,} in y \(G,—D(m(n)) such that z,~6R and m(n)=
m(n’) (n#n’). Lety, be that part of y which starts from z, and ends at z,_,. In view
of the construction of R, y, must pass through G,—D(0) and, therefore, we can
choose a point w, in 9,Mn(G,—D(0)). Then w,—~6R, and in the same fashion as
above we conclude that

limsup gw(z, ) =0. O

z€7y,z->d6R

5.5. It is readily seen that there exists on O<|z|=1 a unique smallest function
! in the family of continuous functions v on O<|z|=1 which are harmonic on
{0<|z|<1}—1(0) and satisfy v(z)=0 on |z|]=1, and v(z)=log (2/|z]) on I(0).
We now impose upon the closeness of b, to a, the additional condition

(B) ng = sup {I(2); z€(—1,0)} <+ <.
The function / may be viewed as being defined and superharmonic on each W,
(m=0,1,..)).

Denote by L,, the segment (—1,0) in W, (m=0, 1, ...). Fix an m for the time
being and choose a sequence {—t,}; L, such that —t,~0 and gy(z, —t,) is
convergent for each z in . On setting a=infe_gy(z, +), we see that gy(z, —1,)=
ow(—t,)=an,>0. Therefore,

U,(z) = lim gy (z, —t,) = 0

for ze W, and u,c HP(W; 0W).
We now study the growth of u,,. Let

1-¢z
z—(
We can lift A.(-) to WXW from A4,X4, by

h(2) = o (n(2)) ((z, YEWXW).
The discussion in what follows will be based on the inequality
(12) gw(+, O =hy (= hagyomn)
on W for any { in W. If z€I(m’) (m’=0, 1, ...), then Rez=0 and

hy(z) = log (Izl, 1€l < D.

1+1¢,z

2
e b log— = I(2).

|2

gw(z, —t,) = h_. (2) = log
By the maximum principle,

gw(s 1) = 1) (ZEWp, m' = m).

Observe that 4_, (z)—1(z)=0 on I(m). Therefore,
gw(z, —t) =h_, (2)—1(2) (z€W,),
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since the same is true of the boundary values on dW,,. On passing to the limit we
conclude that
U, (2) =1(z) (z€W,,, m’ # m),
Un(2) = ho(2) = 1(2) (ZEW,).
Here hy(z)=log (1/|z]). Therefore, by (B), we have

SUp Uy, < + oo (m' # m),
13 Lt
13) Sup u,, = + o°.
With each m we associate a u,, as above. By using the Martin representation
(7) for each function in {u,};", we can easily see from (13) that #M(W)=a, 1e.,

dimp R=a.

5.6. Take an arbitrary u in M (W), so that u=kyw(-,q) for some g€Q,(W).
By the Brelot theorem there exists a curve y in W tending to 6R and to g in W™,
Since {K,} is sparse on R, there exists a sequence {{,} in y tending to R such that
lim, e gw(C,, ) exists and is positive for any z€W. In view of

: Cn, Z) H
Jim £ B tim ky (2, £) = k(2 )= (@),
we set

B = lim gy ((,, a) > 0,
and obtain lim,_. gw(z,(,)=PBu(z) for any z€W. By (12), Bu=h, on W. Set

B,=sup {B; Bu=h, on W}

We have obtained a mapping u—p,u=v from M(W)onto M’(W)={B,u; uc M(W)},
which is bijective. Thus # M (W)= % M’ (W).
Set

1
M 00) = foc MOV); 0@ = Tho(@] (k=12 ).
Take different elements v,, ..., v, in M;(W). By the Kjellberg lemma (cf., e. g.,

[3], p. 18), the relations v;=h, (j=1,...,n) imply that v+ ... +v,=hy. Consid-
ering this at a we see that

n

?ho(a) = v (a)+... +v,(a) = hy(a),
or n/k=1. Therefore, n=k and #M,(W)=k. Since M’ (W)=U;_, M,(W),
we obtain #* M’(W)=a, i.e., dimyp dR=a.

5.7. From 5.5 and 5.6 it follows that dimy JR=a. Since {K,} is sparse on R,
Theorem 4.1 implies that dim §R=dimy dR=a. The proof of Theorem 5.1 is
complete.
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