Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 10, 1985, 419-432

HARMONIC AND RELATIVE HARMONIC DIMENSIONS

MITSURU NAKAI and LEO SARIO

Consider an open Riemann surface R of *Heins type*, i.e., a parabolic Riemann surface with a single ideal boundary component δR . Let K be a closed parametric disk on R and $HP(R-K; \partial(R-K))$ the class of nonnegative harmonic functions on R-K with vanishing boundary values on the relative boundary $\partial(R-K)$ of R-K. The cardinal number of the set of nonproportional minimal functions in $HP(R-K; \partial(R-K))$, is, by definition, the *harmonic dimension* dim δR of the ideal boundary δR of R. It is at least 1 and independent of the choice of K. The notion of harmonic dimension of the ideal boundary of a surface of what we shall call Heins type was introduced by Heins in [4].

Let F be the union of a locally finite family of disjoint closed parametric disks on R and define $HP(R-F; \partial(R-F))$ as above. The cardinal number of the set of nonproportional minimal functions in $HP(R-F; \partial(R-F))$ is known as the *relative harmonic dimension* dim_F δR of the ideal boundary δR of R relative to F. Again it is at least 1, but this time it depends essentially on F unless F is compact, in which case dim_F δR =dim δR . A more detailed description of these concepts will be given in Section 1.

The first purpose of this paper is to compare dim δR and dim_F δR . We shall see that all three cases can occur, depending on the choice of R and $F: \dim_F \delta R < \dim \delta R$, dim_F $\delta R > \dim \delta R$, and dim_F $\delta R = \dim \delta R$. In Section 2 we shall show that, on any R, there exists an F such that dim_F $\delta R = 1$; therefore, dim_F $\delta R < \dim \delta R$ if the latter exceeds 1. In Section 3 an example will be given of an F in the complex plane C with dim_F $\delta C > 1$; since dim $\delta C = 1$, we have an R and an F with dim_F $\delta R > \dim \delta R$. The most important task in this context is to characterize those F for which dim_F $\delta R = \dim \delta R$. We shall give in Section 4 a useful sufficient condition.

The second purpose of this paper is to construct an example of a Riemann surface R of Heins type with dim $\delta R = \mathfrak{a}$, the cardinal number of a countably infinite set. This will be done in Section 5, our method demonstrating the applicability of the sufficient conditions obtained in Section 4. An example of dim $\delta R = \mathfrak{a}$ was first given by Kuramochi [5], and quite recently by Segawa [11], who used his duality theorem. It was Heins [4] who gave an example of a Riemann surface R of Heins type with dim $\delta R = n$, an arbitrary positive integer. If one tries to follow the Heins construction for the case dim $\delta R = \mathfrak{a}$ as well, he is led in a natural manner to the concept of relative harmonic dimension. Anybody who visualizes this is convinced of the fact that the example of R with dim $\delta R = \mathfrak{a}$ already existed implicitly in the pioneering work of Heins. This observation is a motivation of our present study of the relative harmonic dimension.

1. Relative harmonic dimension

1.1. We denote by δR the *ideal boundary* of an open Riemann surface R. By this we mean that δR is an abstract set and $R \cup \delta R$ is topologized as a compact Hausdorff space containing R as its open and dense subset. Unless otherwise explicitly stated, we do not specify the topology of $R \cup \delta R$ beyond this requirement. However, we often write $\zeta \rightarrow \delta R$ ($\zeta \in R$) to mean that ζ converges to the point at infinity of R with $R \cup \delta R$ then understood as the Alexandroff compactification of R.

We say that R has a single ideal boundary component δR if δR is connected when $R \cup \delta R$ is realized as the Kerékjártó-Stoïlow compactification (cf., e.g., [3]). We shall say that a Riemann surface is of *Heins type* if it is of the kind first systematically studied by Heins [4]: an open surface of parabolic type with a single ideal boundary component δR . The complex plane C and the punctured sphere $\hat{C}_0 = \hat{C} - \{0\}$ are typically of Heins type.

If R is of Heins type, then there exists an exhaustion $\{R_n\}_0^{\infty}$ of R with the following properties: i) each R_n is a relatively compact region and ∂R_n is an analytic Jordan curve, ii) $R_n \subset \overline{R_n} \subset R_{n+1}$ (n=0, 1, 2, ...), iii) $\bigcup_{n=0}^{\infty} R_n = R$, iv) the functions $w_n \in C(R) \cap H(R_n - \overline{R_0})$ with $w_n | \overline{R_0} = 0$ and $w_n | R - R_n = 1$ satisfy $\lim_{n \to \infty} w_n = 0$, uniformly on each compact subset of R. Conversely, if R has an exhaustion with properties i)—iv), then R is of Heins type. Here H(S) is the class of harmonic functions on a Riemann surface S. We also denote by HP(S) the class of nonnegative functions in H(S). A function u in HP(S) is said to be minimal in HP(S) if u > 0and $u \ge v \ge 0$ for any v in HP(S) implies that v/u is constant on S.

1.2. Let S be a subregion of an open Riemann surface R such that each point in ∂S is regular for the Dirichlet problem for the region S. We consider the *relative class*

(1)
$$HP(S; \partial S) = \{ u \in C(R) \cap HP(S); \ u | R - S = 0 \}.$$

A function u in $HP(S; \partial S)$ is, by definition, *minimal* in $HP(S; \partial S)$ if u is not identically zero and $u \ge v \ge 0$ for any v in $HP(S; \partial S)$ implies that v/u is constant on S, i.e., there exists a constant c such that v=cu on R. Clearly, if u is minimal in $HP(S; \partial S)$, then u is minimal in HP(S), but not conversely.

With class (1), we associate two mappings, λ and μ , defined as follows. For each u in HP(R), let λu be the upper envelope of the family of functions v in $HP(S; \partial S)$

with v < u. Then λ is a homogeneous, additive, and order preserving mapping of HP(R) to $HP(S; \partial S)$. We denote by $HP(S; \partial S)_{\mu}$ the class of functions v in $HP(S; \partial S)$ with harmonic majorants on R. For each v in $HP(S; \partial S)_{\mu}$, let μv be the least harmonic majorant of v on R. Then μ is a homogeneous, additive, and order preserving mapping of $HP(S; \partial S)_{\mu}$ to HP(R). We will use the following properties of λ and μ (cf., e.g., Noshiro [10], pp. 102—103):

(a) $\lambda \mu v = v$ for every v in $HP(S; \partial S)_{\mu}$ so that μ is injective, and λ is injective on $\mu(HP(S; \partial S)_{\mu})$.

(b) If $u \in HP(R)$ satisfies $u \le \mu v$ for some v in $HP(S; \partial S)_{\mu}$, then u belongs to $\mu(HP(S; \partial S)_{\mu})$.

(c) $v \in HP(S; \partial S)_{\mu}$ is minimal in $HP(S; \partial S)$ if and only if μv is minimal in HP(R).

(d) If u is minimal in HP(R) and $\lambda u > 0$ on S, then λu is minimal in $HP(S; \partial S)$.

1.3. Unless otherwise explicitly stated, we consider henceforth exclusively open Riemann surfaces R of Heins type. Take a finite or countably infinite sequence $\{K_n\} = \{K_n\}_1^N$ $(1 \le N \le \infty)$ of nondegenerate compact continua K_n in R with the following conditions: α) $K_n \cap K_m = \emptyset$ $(n \ne m)$, β) $\{K_n\}$ is locally finite, i.e., the set $\{n; K_n \cap X \ne \emptyset\}$ is finite for any compact subset X of R, γ) $R - \bigcup_1^N K_n$ is connected. Such a sequence $\{K_n\}$ will be called a \mathcal{K} -sequence in this paper. With a \mathcal{K} -sequence $\{K_n\}$ we associate a closed set F and a region W given by

(2)
$$F = \bigcup_{1}^{N} K_{n}, \quad W = R - F.$$

We also fix a reference point *a* in *W* and denote by M(W) the class of minimal functions *v* in $HP(W; \partial W)$ with v(a)=1. We call the cardinal number # M(W) of M(W) the *relative harmonic dimension* of δR with respect to *F* and denote it by dim_F δR :

(3)
$$\dim_F \delta R = \# M(W).$$

Clearly it is independent of the choice of the reference point a.

Let $\{K_{in}\}_{n=1}^{N_i}$ (i=1, 2) be two \mathscr{K} -sequences on R and set $F_i = \bigcup_{1}^{N_i} K_{in}$ and $W_i = R - F_i$ (i=1, 2). Obviously F_i is compact on R if and only if $N_i < \infty$. Suppose F_1 and F_2 are compact on R. Then it is not difficult to prove that there exists a bijective, homogeneous, additive, and order preserving mapping $u_1 \mapsto u_2$ of $HP(W_1; \partial W_1)$ to $HP(W_2; \partial W_2)$ such that $u_1 - u_2$ is bounded near δR . Hence $\# M(W_1) = \# M(W_2)$ and a fortiori $\dim_{F_1} \delta R = \dim_{F_2} \delta R$. The quantity

(4)
$$\dim \delta R = \dim_F \delta R \quad (F \text{ compact})$$

is thus uniquely determined, with a compact F chosen at will. This quantity, an appropriate one attached to R, is called the *harmonic dimension* of δR .

1.4. Let $\{K_n\}$ be an arbitrary \mathscr{K} -sequence in R and let F and W be associated with $\{K_n\}$ as in (2). Denote by W^* the Martin compactification of W and by $k_W(z, \zeta)$

the Martin kernel on W^* with the reference point a in W (cf., e. g., [3]):

(5)
$$k_W(z,\zeta) = \frac{g_W(z,\zeta)}{g_W(a,\zeta)}$$

for (z, ζ) in $W \times W$, with $g_W(z, \zeta)$ the Green's function on W. For any q in $W^* - W$ there exists a sequence $\{\zeta_n\}$ in W such that $\zeta_n \rightarrow q$ in W^* and either $\zeta_n \rightarrow \delta R$ or any subsequence of $\{\zeta_n\}$ contains a subsequence converging to a point of F. We denote by Q(W) the class of the points q in $W^* - W$ over δR , i.e., those q in $W^* - W$ for which the first alternative occurs. One can easily see that Q(W) is compact in W^* . We also denote by $Q_1(W)$ the class of *minimal points* q over δR , i.e., those points q in Q(W) for which $k_W(\cdot, q) \in M(W)$. By the Martin theory (cf., e.g., [3], pp. 134—144),

(6)
$$M(W) = \{k_{W}(\cdot, q); q \in Q_{1}(W)\},\$$

and there exists a bijective correspondence $u \leftrightarrow v$ between $HP(W; \partial W)$ and the class of positive Borel measures v on $Q_1(W)$ such that

(7)
$$u = \int_{\mathcal{Q}_1(W)} k_W(\cdot, q) \, dv(q).$$

As a consequence of (6) we have $\dim_F \delta R \ge 1$ and $\dim \delta R \ge 1$. Needless to say, $\dim_F \delta R$ and $\dim \delta R$ are at most \mathfrak{c} , the cardinal number of a continuum.

2. The smallest relative harmonic dimension

2.1. By a closed Jordan region on a Riemann surface we mean the closure of a Jordan region on it. One might feel that $\dim_F \delta R$ for compact *F*, i.e., $\dim \delta R$, never exceeds $\dim_F \delta R$ for any noncompact *F*. Contrary to this intuition we have the following

Theorem. For any open Riemann surface R of Heins type, there always exists a \mathcal{K} -sequence $\{K_n\}_1^{\infty}$ of closed Jordan regions K_n on R such that $\dim_F \delta R = 1$ for $F = \bigcup_1^{\infty} K_n$.

The proof will be given in 2.2—2.4. What we need to show is that $HP(W; \partial W)$ is generated by a single nonzero element k in $HP(W; \partial W)$, i.e., $HP(W; \partial W) = \{\alpha k; \alpha \in \mathbb{R}^+\}$, where \mathbb{R}^+ is the set of nonnegative numbers in the set R of real numbers. It will be seen from the proof that we do not use the parabolicity of R. Therefore, what we can really assert is the following: For any open Riemann surface R with a single ideal boundary component δR , there exists a sequence $\{K_n\}_1^\infty$ of disjoint closed Jordan regions K_n converging to δR such that $HP(W; \delta W)$ is generated by a single nonzero element.

2.2. Since R has a single ideal boundary component, there exists an exhaustion $\{R_n\}_0^\infty$ of R with properties i), ii), and iii) stated in 1.1. We may choose R_0 as a para-

metric disk. For each $n \ge 0$, take a regular subregion S_n of R such that $\overline{R}_n \subset S_n \subset \overline{S}_n \subset R_{n+1}$ and $S_n - \overline{R}_n$ is an annulus. For $n \ge 1$, let φ_n be a conformal mapping of $S_n - \overline{R}_n$ onto the region $\{1 < |t| < a_n\}$ such that ∂S_n and ∂R_n correspond to the circles $\{|t|=1\}$ and $\{|t|=a_n\}$, respectively, under the mapping φ_n extended to $\overline{S}_n - R_n$. For a number δ_n in $(0, \pi)$ to be specified later, the set

$$K_n = \varphi_n^{-1} \{ 1 \le |t| \le a_n, \ \delta_n \le \arg t \le 2\pi - \delta_n \} \ (n = 1, 2, ...)$$

is a closed Jordan region on R. Clearly, $K_n \cap K_m = \emptyset$ $(n \neq m)$, and $\{K_n\}$ converges to δR . For convenience we include $K_0 = \overline{R}_0$ in $\{K_n\}$ and set

$$F = \bigcup_{0}^{\infty} K_n, \quad W = R - F.$$

We shall prove that $HP(W; \partial W)$ is generated by a single nonzero element if $\{\delta_n\}$ is properly chosen in $(0, \pi)$.

2.3. For $n \ge 1$ we consider the arc $I_n = \varphi_n^{-1}\{|t| = a_n, -\delta_n \le \arg t \le \delta_n\}$ on ∂R_n and fix a point ζ_n in I_n with $\varphi_n(\zeta_n) = a_n$ so that ζ_n is the midpoint of I_n . We denote by $g_n(\zeta, z)$ the Green's function on $R_n \cap W$. We use the same symbol ζ for a point of R and its image in a parametric disk. The inner normal derivative $\partial/\partial n_{\zeta} g_n(\zeta, z)$ of $g_n(\zeta, z)$ at ζ on ∂R_n depends on the choice of the parametric disk but, for a fixed point a in $R_1 \cap W$, the ratio

$$h_n(\zeta, z) = \left(\frac{\partial}{\partial n_{\zeta}} g_n(\zeta, z)\right) / \left(\frac{\partial}{\partial n_{\zeta}} g_n(\zeta, a)\right)$$

for (ζ, z) in $(\partial R_n) \times (R_n \cap W)$ does not. Since $h_n(\zeta, z)$ is continuous on $(\partial R_n) \times (R_n \cap W)$, the function $\zeta \to h_n(\zeta, z)$ is uniformly continuous on ∂R_n for each z in $\partial S_0 \subset R_n \cap W$. Hence the function

$$\psi_n(\zeta) = \sup_{z \in \partial S_0} |h_n(\zeta, z) - h_n(\zeta_n, z)|$$

is nonnegative and continuous on ∂R_n , with $\psi_n(\zeta_n)=0$. Here ψ_n depends on $\delta_1, ..., \delta_{n-1}$ but does not depend on δ_n . If we take δ_n sufficiently small in $(0, \pi)$, then $\sup_{\zeta \in I_n} \psi_n(\zeta) < 2^{-n}$. Therefore we can and will choose $\delta_n(n=1, 2, ...)$ successively in $(0, \pi)$ so small that

(8)
$$\sup_{\zeta \in I_n} \left(\sup_{z \in \partial S_0} |h_n(\zeta, z) - h_n(\zeta_n, z)| \right) < 2^{-n} \quad (n = 1, 2, ...).$$

2.4. We now determine the generator k of $HP(W; \partial W)$. To this end we consider functions $k_n(z) = h_n(\zeta_n, z)$ (n=1, 2, ...) which are in $HP(R_n \cap W; \partial(R_n \cap W) - \{\zeta_n\})$, the class of nonnegative harmonic functions on $R_n \cap W$ with vanishing boundary values on $\partial(R_n \cap W) - \{\zeta_n\}$. We recall that $k_n(a) = 1$. Since $\{k_n\}_1^\infty$ forms a normal family, there exists a subsequence $\{k_{\nu(n)}\}_{n=1}^\infty$ of $\{k_n\}_1^\infty$ such that

(9)
$$k(z) = \lim_{n \to \infty} k_{\nu(n)}(z)$$

exists on \overline{W} and the convergence is uniform on each compact subset of \overline{W} . Clearly $k \in HP(W; \partial W)$ and k(a)=1.

Choose an arbitrary element v in $HP(W; \partial W)$ with v(a)=1. The proof will be complete if we can show that v=k. Since $\partial(R_n \cap W)$ is piecewise analytic, $*dg_n(\cdot, z)$ exists on $\partial(R_n \cap W)$ except at corner points. But since v vanishes on those components of $\partial(R_n \cap W)$ which contain these corner points, the Poisson-type formula is valid:

$$v(z) = -\frac{1}{2\pi} \int_{\partial(R_n \cap W)} v * dg_n(\cdot, z) \quad (z \in R_n \cap W).$$

Observe that the boundary function $v|\partial(R_n \cap W)$ is nonvanishing on $I_n(\subset \partial R_n)$. Therefore we can rewrite the above formula as

$$v(z) = \int_{I_n} \frac{1}{2\pi} \left(\frac{\partial}{\partial n_{\zeta}} g_n(\zeta, z) \right) v(\zeta) |d\zeta| \quad (z \in R_n \cap W).$$

Using a positive measure μ_n on I_n defined by

$$d\mu_n(\zeta) = \frac{1}{2\pi} \frac{\partial}{\partial n_{\zeta}} (g_n(\zeta, a)) v(\zeta) |d\zeta|,$$

and recalling the definition of $h_n(\zeta, z)$ we obtain

$$v(z) = \int_{I_n} h_n(\zeta, z) \, d\mu_n(\zeta) \quad (z \in R_n \cap W).$$

For z=a this implies that $\mu_n(I_n)=1$. Set $\Omega=S_0-\overline{R}_0$. If $z\in\Omega$, then (8) gives

$$\begin{aligned} |v(z) - k_{v(n)}(z)| &= \left| \int_{I_{v(n)}} \left(h_{v(n)}(\zeta, z) - h_{v(n)}(\zeta_{v(n)}, z) \right) d\mu_{v(n)}(\zeta) \right| \\ &\leq \int_{I_{v(n)}} |h_{v(n)}(\zeta, z) - h_{v(n)}(\zeta_{v(n)}, z)| \, d\mu_{v(n)}(\zeta) < 2^{-v(n)}. \end{aligned}$$

We have shown that $\sup_{z \in \overline{\Omega}} |v(z) - k_{v(n)}(z)| \leq 2^{-v(n)}$. On letting $n \to \infty$ and using (9) we see that v = k on Ω and hence on W.

2.5. Examples of Riemann surfaces R of Heins type with dim $\delta R > 1$ are not lacking. As already mentioned in the introduction, Heins [4] constructed an R with dim $\delta R = n$, an arbitrary positive integer, and Kuramochi [5] exhibited an R with dim $\delta R = \mathfrak{a}$ (= # N, with N the set of positive integers) (see also Segawa [11]). Constantinescu and Cornea [2] even constructed an R with dim $\delta R = \mathfrak{c}$ (= # R). We shall also construct, in Section 5, an R with dim $\delta R = \mathfrak{a}$. From Theorem 2.1 we thus conclude that there exists an open Riemann surface R of Heins type and a \mathscr{K} -sequence $\{K_n\}_1^{\infty}$ on R such that for $F = \bigcup_1^{\infty} K_n$,

$$\dim_F \delta R < \dim \delta R.$$

3. The finite complex plane

3.1. The classical Picard principle states that the harmonic dimension of the point at infinity, $\infty = \delta C$, of the finite complex plane $C: |z| < \infty$ is one : dim $\delta C = 1$. Let $\{K_n\}_1^\infty$ be a \mathscr{K} -sequence of radial slits K_n on C and $F = \bigcup_1^\infty K_n$. We can always find an F with dim_F $\delta C = m$ for any cardinal number $m \ge 1$ of a countable set or the cardinal number m of a continuum (cf., e.g., [6], [7], [9]). Therefore, the relation dim_F $\delta R \ge \dim \delta R$ occurs frequently. For the sake of completeness we append here an example of extreme simplicity (both in the example itself and its proof) of a \mathscr{K} -sequence $\{K_n\}_1^\infty$ in C such that dim_F $C \ge 2$ for $F = \bigcup_1^\infty K_n$; our example was inspired by Ancona [1]. In particular, we have a proof of the occurrence of the relation

$\dim_F \partial R > \dim \partial R.$

3.2. Consider a nondegenerate continuum K in C with the following four properties: (K.1) K is symmetric about the real axis Im z=0, (K.2) K is symmetric about the imaginary axis Re z=0, (K.3) $(K+1) \cap K=\emptyset$, (K.4) C-K is connected. Here $K+c=\{z+c; z\in K\}$ for any given $c\in C$. The slit [-a, a] (0 < a < 1/2), the disk $\{|z| \le a\}$ (0 < a < 1/2), and the rectangle $\{|\text{Re } z| \le a, |\text{Im } z| \le b\}$ (0 < a < 1/2), (b>0) are examples of K. Let $\mathbf{Z} = \{0, \pm 1, \pm 2, ...\}$ and

(10)
$$K_n = K + n \quad (n \in \mathbb{Z}), \quad F = \bigcup_{-\infty}^{\infty} K_n.$$

Theorem. Let K be a nondegenerate continuum K in C with properties (K.1)—(K.4), and let F be given by (10). Then $\dim_F \delta C \ge 2$.

It can be seen that, in reality, $\dim_F \delta C = 2$ but our main interest here is in constructing an F with $\dim_F \delta R > \dim \delta R$ and also in giving a proof as simple and elementary as possible. Hence we only establish $\dim_F \delta C \ge 2$ and omit the proof for $\dim_F \delta C \le 2$, which requires rather elaborate reasoning.

3.3. Our proof of Theorem 3.2 is by contradiction. Suppose $\dim_F \delta C = 1$, so that there exists a nonzero function u in $HP(W; \partial W)$ with W = C - F such that $HP(W; \partial W) = \mathbf{R}^+ u$. Since v defined by $v(z) = 2^{-1}(u(z) + u(\bar{z}))$ for z in W is also a function in $HP(W; \partial W)$ by (K.1), we may assume that $u(\bar{z}) = u(z)$ for z in W. Similarly, the function v given by $v(z) = 2^{-1}(u(z) + u(-\bar{z}))$ for z in W is again in $HP(W; \partial W)$ by (K.2). Hence we may and will assume that $u(z) = u(\bar{z}) = u(-\bar{z})$ for any z in W.

Let I_n be the line segment contained in $\{\operatorname{Im} z=0\} \cap \overline{W}$ connecting the rightmost point of $\{\operatorname{Im} z=0\} \cap K_n$ to the leftmost point of $\{\operatorname{Im} z=0\} \cap K_{n+1}$ $(n \in \mathbb{Z})$. We maintain that

(11)
$$(u|I_k)(z) = (u|I_{k+1})(2(k+1)-z)$$

for $z \in I_k$, i.e., $u|I_k$ and $u|I_{k+1}$ are symmetric about {Re z=k+1}. In fact, let

 $v \in HP(W; \partial W)$ be given by v(z) = u(z + (k+1)) for z in W. Then (11) for k follows from $v(z) = v(-\overline{z})$ for z in W. Since $v \in HP(W; \partial W) = \mathbb{R}^+ u$, there exists a constant c in \mathbb{R}^+ with v = cu. Therefore, $u(z) = u(-\overline{z})$ implies $v(z) = v(-\overline{z})$ for any z in W.

Let $W^+ = W \cap \{ \text{Im } z > 0 \}$. From (11) it follows that $u | \partial W^+$ is bounded and a fortiori the solution $H_u^{W^+}$ of the Dirichlet problem on W^+ with boundary values $u | \partial W^+$ on ∂W^+ (cf., e.g., [3], p. 21) is bounded on W^+ . Note that $H_u^{W^+}$ is continuous on $\overline{W^+}$ with $H_u^{W^+} | \partial W^+ = u | \partial W^+$. Define the harmonic function hon W by

$$h(z) = \begin{cases} u(z) - H_u^{W^+}(z) & (z \in W^+), \\ -(u(\bar{z}) - H_u^{W^+}(\bar{z})) & (z \in W - \overline{W^+}). \end{cases}$$

Since $u(z)=u(\bar{z})$, the function w defined by w=u+h belongs to $HP(W; \partial W)$ and is unbounded (bounded, respectively) on $\overline{W+}$ ($W-\overline{W+}$, respectively). Thus u is not symmetric about the real axis, in violation of the fact that w is a constant multiple of u. In the above proof we took it for granted that u is unbounded on W. If this were not the case, the parabolic character of δC would imply $u\equiv 0$. \Box

4. Identity

4.1. Take a \mathscr{K} -sequence $\{K_n\}_1^N$ on R and set $F = \bigcup_1^N K_n$ and W = R - F. We now take up the most intriguing case: when is $\dim_F \delta R = \dim \delta R$? If F is compact, the identity holds by definition. This suggests that, for a noncompact F, the identity occurs whenever $\{K_n\}$ is distributed on R sparsely in some sense. We shall give here a condition to assure such sparseness. Let $g_W(z, \zeta)$ be the Green's function on W. A curve γ in R is said to converge to δR , $\gamma \to \delta R$, if $\lim_{t\to 1} p(t) = \delta R$, with p = p(t) $(0 \le t < 1)$ a parametric representation of γ . The curvewise superior limit of $g_W(z, \zeta)$ along γ is, by definition,

$$\limsup_{z \in \gamma, z \to \delta R} g_W(z, \zeta) = \limsup_{t \to 1} g_W(p(t), \zeta),$$

where we define $g_W(\cdot, \zeta) = 0$ on R - W = F. We say that $\{K_n\}$ is *sparse* on R if the curvewise superior limit of $g_W(\cdot, \zeta)$ along any curve γ in R converging to δR is positive. The condition is clearly independent of ζ in W. If F is compact, then, since R is parabolic, we have

$$\liminf_{z\to\delta R}g_W(z,\zeta)>0$$

and therefore $\{K_n\}_1^N$ $(F = \bigcup_1^N K_n)$ is sparse on R.

Theorem. If $\{K_n\}$ is sparse on R, then the relative harmonic dimension of δR relative to $F = \bigcup K_n$ coincides with the harmonic dimension of δR ,

$$\dim_F \partial R = \dim \partial R.$$

The proof will be given in 4.2—4.4.

4.2. For $W_1 = R - K_1$, we have dim $\delta R = \# M(W_1)$. Denote by ∂X ($\partial_1 Y$, respectively) the relative boundary of the subset X (Y, respectively) of R (W_1 , respectively) relative to R (W_1 , respectively). Since $W \subset W_1 \subset R$, we can consider both ∂W and $\partial_1 W$, with $\partial_1 W \subseteq \partial W$ and, in fact, $\partial W = (\partial_1 W) \cup (\partial K_1) = (\partial_1 W) \cup (\partial W_1)$. We consider the mapping λ_1 of $HP(W_1)$ to $HP(W; \partial_1 W)$ and the mapping μ_1 of $HP(W; \partial_1 W)_{\mu_1}$ to $HP(W_1; \partial W_1)$ to $HP(W; \partial_1 W)$ and the mapping μ_1 of $HP(W_1; \partial W_1)$ of $HP(W_1; \partial W_1)$ to $HP(W_1; \partial W)$ and similarly μ_1 defines a mapping $\lambda = \lambda_1 |HP(W_1; \partial W_1)$ of $HP(W_1; \partial W_1)$ to $HP(W_1; \partial W_1)$, where $HP(W; \partial W)_{\mu} = HP(W; \partial W) \cap HP(W; \partial_1 W)_{\mu_1}$. The properties corresponding to (a), (b), (c), and (d) in 1.2 are readily verified to hold for the present λ and μ . We shall refer to these properties again as (a), (b), (c), and (d).

4.3. Let u be minimal in $HP(W_1; \partial W_1)$. We normalize u by $\beta u(a) = 1$, i.e., $\beta u \in M(W_1)$. Then $\beta u = k_{W_1}(\cdot, p)$ for some p in $Q_1(W_1)$. The Brelot theorem (cf., e.g., [3], p. 139) states that any minimal point p in $W_1^* - W_1$ is accessible from W_1 in the topology of W_1^* , so that for $p \in Q_1(W_1)$ there exists a curve γ in W_1 converging to δR , and to p in W_1^* . Since $\{K_n\}$ is sparse on R, there exists a sequence $\{\zeta_n\} \subset \gamma$ such that $\zeta_n \to \delta R$ and also $\zeta_n \to p$ in W_1^* and $\lim_{n\to\infty} g_W(\zeta_n, z) = v(z) > 0$ for every $z \in W_1$. We can assume, moreover, that $\lim_{n\to\infty} g_W(\zeta_n, z)$ exists for z in R. Since $g_{W_1}(\zeta_n, z) \ge g_W(\zeta_n, z)$, $\alpha = \lim_{n\to\infty} g_W(\zeta_n, a) > 0$, and

$$\beta u(z) = k_{W_1}(z, p) = \lim_{n \to \infty} \left(g_{W_1}(\zeta_n, z) / g_{W_1}(\zeta_n, a) \right)$$
$$\geq \frac{1}{\alpha} \lim_{n \to \infty} g_W(\zeta_n, z) = \frac{1}{\alpha} v(z) > 0.$$

We conclude that $\lambda u \ge (\alpha\beta)^{-1}v > 0$ because $v \in HP(W; \partial W)$, and, by (d), λu is minimal in $HP(W; \partial W)$. Since $\lambda u \le u$ for $u \in HP(W_1; \partial W_1)$, we have $\lambda u \in HP(W; \partial W)_{\mu}$ and $\mu\lambda u \le u$. There exists a positive constant c with $\mu\lambda u = cu$, because u is minimal in $HP(W_1; \partial W_1)$. Thus $c\lambda u = \lambda(cu) = \lambda(\mu\lambda u) = (\lambda\mu)(\lambda u) = \lambda u$ by (a). Since λu is minimal and, in particular, $\lambda u > 0$ on W, we have c = 1. A fortiori $\mu\lambda u = u$ for minimal u in $HP(W_1; \partial W_1)$. Suppose u_1 and u_2 are minimal in $HP(W_1; \partial W_1)$, and $\lambda u_1 = \lambda u_2$. Then $u_1 = \mu\lambda u_1 = \mu\lambda u_2 = u_2$. Therefore, we can define an injective mapping of $M(W_1)$ to M(W) and infer that dim $\delta R \le \dim_F \delta R$.

4.4. Conversely, let v be minimal in $HP(W; \partial W)$. We again normalize v by $\beta v(a) = 1$ for a reference point a in W. Then $\beta v = k_W(\cdot, q)$ for some $q \in Q_1(W)$. Again by the Brelot theorem there exists a curve γ in W converging to δR such that ζ_n in γ converges to δR and also to q in W^* , and $\lim_{n\to\infty} g_W(\zeta_n, z) = w(z) > 0$ for every z in R; this is possible since $\{K_n\}$ is sparse on R. Hence

$$\beta v = k_W(\cdot, q) = \lim_{n \to \infty} \frac{g_W(\zeta_n, \cdot)}{g_W(\zeta_n, a)} = \frac{w}{w(a)}$$

and $w = \beta w(a)v$ is also minimal in $HP(W; \partial W)$. We may assume, moreover, that $\lim_{n\to\infty} g_{W_1}(\zeta_n, z) = u(z)$ exists for every $z \in W_1$ by choosing a subsequence if necessary. Since $g_W(\zeta_n, z) \le g_{W_1}(\zeta_n, z)$, we obtain $w \le u$ on passing to the limit. Thus $w \in HP(W; \partial W)_{\mu}$. The function μw is minimal in $HP(W_1; \partial W_1)$ by (c). Since μ is injective, we can define an injective mapping of M(W) to $M(W_1)$, and obtain $\dim_F \delta R \le \dim \delta R$. In view of the result in 4.3, we have shown that $\dim_F \delta R = \dim \delta R$. \Box

5. Countably infinite harmonic dimension

5.1. As an application of the identity theorem established in 4.1 we shall give a new proof of the following theorem originally obtained by Kuramochi [5] (see also Segawa [11]):

Theorem. There exists an open Riemann surface R of Heins type such that $\dim \delta R = \mathfrak{a}$, the cardinal number of a countably infinite set.

The surface R we are going to construct will be an infinitely sheeted unlimited covering surface of the punctured sphere $\hat{C}_0: 0 < |z| \le \infty$ whose projections of branch points are all in the punctured disk $\Delta_0: 0 < |z| < 1$. From each sheet of Rwe remove a disk $1 \le |z| \le \infty$ and obtain $F = \bigcup_1^{\infty} K_n$, where the K_n are duplicates of $1 \le |z| \le \infty$ lying in each sheet of R. By a judicious choice of the branch points of R we can see to it that $\{K_n\}$ is sparse on R, and $\dim_F \delta R = \mathfrak{a}$. Then we apply Theorem 4.1 to conclude that $\dim \delta R = \dim_F \delta R = \mathfrak{a}$. This is a rough sketch of the construction and reasoning we are going to develop in 5.2—5.7.

5.2. Let $\{a_n\}_1^\infty$ be a strictly decreasing zero sequence in (0,1), and $\{\theta_m\}_1^\infty$ a strictly increasing sequence in $(-\pi/2, \pi/2)$. We then choose a decreasing zero sequence $\{d_n\}$ of positive numbers d_n as follows. Let $D_{nm} = \{|z - a_n e^{i\theta_m}| \le d_n\}$. We make $\{d_n\}$ converge to zero so rapidly that any two closed disks in the family $\bigcup_{m=1}^\infty \{D_{nm}; n \ge m\}$ are disjoint. We set

$$\begin{cases} D(m) = \bigcup_{n \ge m} D_{nm} \quad (m = 1, 2, ...), \\ D(0) = \bigcup_{m=1}^{\infty} D(m) = \bigcup_{m=1}^{\infty} (\bigcup_{n \ge m} D_{nm}). \end{cases}$$

We fix sequences $\{a_n\}$, $\{\theta_m\}$, and an auxiliary sequence $\{d_n\}$ once and for all. We then choose a strictly decreasing zero sequence $\{b_n\}_1^{\infty}$ in (0, 1) such that $a_{n+1} < b_n < a_n$ (n=1, 2, ...). Let $I_{nm} = \{b_n \le |z| \le a_n$, $\arg z = \theta_m\}$, a radial line segment. First of all we require that each I_{nm} is contained in the interior of $D_{nm}(n \ge m)$. Set

$$\begin{cases} I(m) = \bigcup_{\substack{n \ge m \\ m \ge m}} I_{nm} \quad (m = 1, 2, ...), \\ I(0) = \bigcup_{\substack{m=1 \\ m = 1}}^{\infty} I(m) = \bigcup_{\substack{m=1 \\ m \ge m}}^{\infty} (\bigcup_{\substack{n \ge m \\ n \ge m}} I_{nm}). \end{cases}$$

Actually we will choose each b_n so close to a_n that it satisfies not only the above requirement but also the conditions (A) and (B) to be specified later.

5.3. Using a countably infinite number of duplicates of the punctured sphere $\hat{C}_0: 0 < |z| \le \infty$, and the slits I(0) and I(m), we form the disjoint sheets

$$R_m = \hat{C}_0 - I(m) \quad (m = 0, 1, ...)$$

Then we join each R_m (m=1, 2, ...) to R_0 crosswise along the slits I(m) and denote the resulting surface by R. It is a covering surface of \hat{C}_0 with the natural projection mapping π . It is not difficult to see that R is an open Riemann surface of Heins type.

In each R_m (m=0, 1, ...), take the closed disk $K_m = \{1 \le |z| \le \infty\}$. Clearly $\{K_m\}_0^\infty$ is a \mathscr{K} -sequence on R. We set

$$F=\bigcup_{0}^{\infty}K_{m}, \quad W=R-F,$$

and

$$W_m = R_m - K_m \quad (m = 0, 1, ...).$$

Then W is also obtained by joining W_m to W_0 crosswise along the slits I(m) (m=1, 2, ...). Thus it is a covering surface of the punctured disk $\Delta_0: 0 < |z| < 1$ with the natural projection π .

5.4. Fix a number c in $(a_1+d_1, 1)$. The circle $C_m = \{|z|=c\}$ is contained in W_m and so is the annulus $\{c < |z| < 1\}$ (m=0, 1, ...). Let w be the harmonic function on $\{0 < |z| < c\} - I(0)$ with boundary values 1 on |z| = c and 0 on I(0). We now choose each b_n so close to a_n that the following condition is satisfied:

(A)
$$\eta'_A = \inf \{ w(z); z \in \{ 0 < |z| < c \} - D(0) \} > 0.$$

As a consequence of this choice of $\{b_n\}_1^{\infty}$, the *X*-sequence $\{K_m\}_0^{\infty}$ in R is sparse on R.

To prove this we set

$$G_m = \{0 < |z| < c\} - I(m) \subset W_m \subset R_m \quad (m = 0, 1, ...).$$

Then w can be considered subharmonic on each G_m (m=0, 1, ...) by defining w=0 on I(0). Let γ be an arbitrary curve in R tending to δR , and denote by $g_W(\cdot, \zeta)$ the Green's function on W with pole ζ in W and extended as zero to R-W. We are to show that

$$\lim_{z \in \gamma, z \to \delta R} \sup_{W} g_W(z, \zeta) > 0$$

for one and hence for every ζ in W. Observe that $\pi(\gamma)$ is a curve in \hat{C}_0 tending to the origin 0.

First we consider the case in which there exists a single G_m such that $\gamma \subset G_m$. Choose a sequence $\{z_n\}$ in $\gamma \cap (G_m - D(m))$ such that $z_n \to \delta R$. Let $\alpha = \inf_{C_m} g_W(\cdot, \zeta) > 0$. Then clearly $g_W(\cdot, \zeta) \ge \alpha w$ on G_m . In view of (A) we have

$$\limsup_{z \in \gamma, z \to \delta R} g_W(z, \zeta) \ge \limsup_{n \to \infty} g_W(z_n, \zeta) \ge \alpha \limsup_{n \to \infty} w(z_n) \ge \alpha \eta_A > 0.$$

Next we consider the case in which the above alternative does not occur, so that there exists a sequence $\{z_n\}$ in $\gamma \cap (G_{m(n)} - D(m(n))$ such that $z_n \rightarrow \delta R$ and $m(n) \neq m(n')$ $(n \neq n')$. Let γ_n be that part of γ which starts from z_n and ends at z_{n+1} . In view of the construction of R, γ_n must pass through $G_0 - D(0)$ and, therefore, we can choose a point w_n in $\gamma_n \cap (G_0 - D(0))$. Then $w_n \rightarrow \delta R$, and in the same fashion as above we conclude that

$$\limsup_{z \in \gamma, \ z \to \delta R} g_W(z, \zeta) > 0. \quad \Box$$

5.5. It is readily seen that there exists on $0 < |z| \le 1$ a unique smallest function l in the family of continuous functions v on $0 < |z| \le 1$ which are harmonic on $\{0 < |z| < 1\} - I(0)$ and satisfy v(z) = 0 on |z| = 1, and $v(z) = \log (2/|z|)$ on I(0). We now impose upon the closeness of b_n to a_n the additional condition

(B)
$$\eta_B = \sup \{l(z); z \in (-1, 0)\} < +\infty.$$

The function l may be viewed as being defined and superharmonic on each W_m (m=0, 1, ...).

Denote by L_m the segment (-1, 0) in W_m (m=0, 1, ...). Fix an *m* for the time being and choose a sequence $\{-t_n\}_1^{\infty} \subset L_m$ such that $-t_n \to 0$ and $g_W(z, -t_n)$ is convergent for each z in W. On setting $\alpha = \inf_{C_m} g_W(z, \cdot)$, we see that $g_W(z, -t_n) \ge \alpha W(-t_n) \ge \alpha \eta_A > 0$. Therefore,

$$u_m(z) = \lim_{m \to \infty} g_W(z, -t_n) > 0$$

for $z \in W$, and $u_m \in HP(W; \partial W)$.

We now study the growth of u_m . Let

$$h_{\zeta}(z) = \log \left| \frac{1 - \overline{\zeta} z}{z - \zeta} \right| \quad (|z|, |\zeta| < 1).$$

We can lift $h_{\bullet}(\cdot)$ to $W \times W$ from $\Delta_0 \times \Delta_0$ by

$$h_{\zeta}(z) = h_{\pi(\zeta)}(\pi(z)) \quad ((z, \gamma) \in W \times W).$$

The discussion in what follows will be based on the inequality

(12)
$$g_W(\cdot,\zeta) \leq h_{\zeta} \quad (=h_{\pi(\zeta)} \circ \pi)$$

on W for any ζ in W. If $z \in I(m')$ (m'=0, 1, ...), then Re z > 0 and

$$g_{W}(z, -t_n) \leq h_{-t_n}(z) = \log \left| \frac{1+t_n z}{z+t_n} \right| \leq \log \frac{2}{|z|} = l(z).$$

By the maximum principle,

$$g_W(z, -t_n) \leq l(z) \quad (z \in W_{m'}, m' \neq m).$$

Observe that $h_{-t_n}(z) - l(z) \leq 0$ on I(m). Therefore,

$$g_W(z, -t_n) \ge h_{-t_n}(z) - l(z) \quad (z \in W_m),$$

since the same is true of the boundary values on ∂W_m . On passing to the limit we conclude that

$$u_m(z) \leq l(z) \quad (z \in W_{m'}, m' \neq m),$$
$$u_m(z) \geq h_0(z) - l(z) \quad (z \in W_m).$$

Here $h_0(z) = \log (1/|z|)$. Therefore, by (B), we have

(13)
$$\sup_{L_{m'}} u_m < +\infty \quad (m' \neq m),$$
$$\sup_{L_{m'}} u_m = +\infty.$$

With each *m* we associate a u_m as above. By using the Martin representation (7) for each function in $\{u_m\}_1^\infty$, we can easily see from (13) that $\# M(W) \ge \mathfrak{a}$, i.e., $\dim_F \delta R \ge \mathfrak{a}$.

5.6. Take an arbitrary u in M(W), so that $u = k_W(\cdot, q)$ for some $q \in Q_1(W)$. By the Brelot theorem there exists a curve γ in W tending to δR and to q in W^* . Since $\{K_n\}$ is sparse on R, there exists a sequence $\{\zeta_n\}$ in γ tending to δR such that $\lim_{n\to\infty} g_W(\zeta_n, z)$ exists and is positive for any $z \in W$. In view of

$$\lim_{n\to\infty}\frac{g_W(\zeta_n,z)}{g_W(\zeta_n,a)}=\lim_{n\to\infty}k_W(z,\zeta_n)=k(z,q)=u(z),$$

we set

$$\beta = \lim_{n \to \infty} g_W(\zeta_n, a) > 0,$$

and obtain $\lim_{n\to\infty} g_W(z,\zeta_n) = \beta u(z)$ for any $z \in W$. By (12), $\beta u \leq h_0$ on W. Set $\beta_u = \sup \{\beta; \beta u \leq h_0 \text{ on } W\}.$

We have obtained a mapping $u \rightarrow \beta_u u = v$ from M(W) onto $M'(W) = \{\beta_u u; u \in M(W)\}$, which is bijective. Thus # M(W) = # M'(W).

Set

$$M'_{k}(W) = \left\{ v \in M(W); \ v(a) \ge \frac{1}{k} h_{0}(a) \right\} \quad (k = 1, 2, ...).$$

Take different elements $v_1, ..., v_n$ in $M'_k(W)$. By the Kjellberg lemma (cf., e. g., [3], p. 18), the relations $v_j \leq h_0$ (j=1, ..., n) imply that $v_1 + ... + v_n \leq h_0$. Considering this at a we see that

$$\frac{n}{k}h_0(a) \leq v_1(a) + \ldots + v_n(a) \leq h_0(a),$$

or $n/k \le 1$. Therefore, $n \le k$ and $\# M'_k(W) \le k$. Since $M'(W) = \bigcup_{k=1}^{\infty} M'_k(W)$, we obtain $\# M'(W) \le \mathfrak{a}$, i.e., $\dim_F \delta R \le \mathfrak{a}$.

5.7. From 5.5 and 5.6 it follows that $\dim_F \delta R = \mathfrak{a}$. Since $\{K_n\}$ is sparse on R, Theorem 4.1 implies that $\dim \delta R = \dim_F \delta R = \mathfrak{a}$. The proof of Theorem 5.1 is complete.

References

- [1] ANCONA, A.: Une propriété de la compactification de Martin d'un domaine Euclidien. Ann. Inst. Fourier (Grenoble), 29, 1979, 71-90.
- [2] CONSTANTINESCU, C., and A. CORNEA: Über einige Probleme von M. Heins. Rev. Roumaine Math. Pures Appl. 4, 1959, 277–281.
- [3] CONSTANTINESCU, C., and A. CORNEA: Ideale Ränder Riemannscher Flächen. Ergebnisse der Mathematik und ihrer Grenzgebiete 32. Springer-Verlag, Berlin—Göttingen—Heidelberg, 1963.
- [4] HEINS, M.: Riemann surfaces of infinite genus. Ann. of Math. 55, 1952, 296-317.
- [5] KURAMOCHI, Z.: An example of a null-boundary Riemann surface. Osaka J. Math. 6, 1954, 83—91.
- [6] NAKAI, M.: Relative harmonic dimensions. Seminar Note at Research Inst. for Math. Sci. 366, Kyoto University, Kyoto, 1979, 137–149 (Japanese).
- [7] NAKAI, M.: The range of Picard dimensions. Proc. Japan Acad. Ser. A. Math. Sci. 55, 1979, 379–383.
- [8] NAKAI, M., and L. SARIO: The range of relative harmonic dimensions. Topology Calculus of variations and their applications (Euler volume), Dekker (to appear).
- [9] NAKAI, M., and T. TADA: The distribution of Picard dimensions. Kodai Math. J. 7, 1984, 1–15.
- [10] NOSHIRO, K.: Cluster sets. Ergebnisse der Mathematik und ihrer Grenzgebiete 28. Springer-Verlag, Berlin—Göttingen—Heidelberg, 1960.
- [11] SEGAWA, S.: A duality relation for harmonic dimensions and its applications. Kodai Math. J.
 4, 1981, 508-514.

Nagoya Institute of Technology Department of Mathematics Gokiso, Showa, Nagoya 466 Japan

University of California Department of Mathematics Los Angeles, California 90024 USA

Received 4 January 1984