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HARMONIC AND RELATIYE HÄRMONIC DIMENSIONS
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Consider an open Riemann surface R of Heins type, i.e., a parabolic Riemann

surface with a single ideal boundary component öÄ. Let K be a closed parametric

disk on R and nn(n-X;A(Ä-K)) the class of nonnegative harmonic functions

on .R-K with vanishing boundary values on the relative boundary å(rR-lK) of
R-K. The cardinal number of the set of nonproportional minimal functions in
HP(R-K;A(R-KD, is, by definition, the harmonic dimension dim åR of the ideal

boundary öÄ of R. It is at least I and independent of the choice of K. The notion of
harmonic dimension of the ideal boundary of a surface of what we shall call Heins

type was introduced by Heins in [4].

Let F be the union of a locally finite family of disjoint closed parametric disks

on Ä and define äP(R-F;0(R-F)) as above. The cardinal number of the set

of nonproportional minimal functions in HP(R-F;å(R-O) is known as the

relatiue harmonic dimension dimp äR of the ideal boundary äR of Ä relative to F.

Again it is at least 1, but this time it depends essentially on Funless Fis compact,

in which case dimpåÄ:dimåR. A more detailed description of these concepts

will be given in Section 1.

The first purpose of this paper is to compare dim öR and dim" åÄ. We shall

see that all three cases can occur, depending on the choice of R and F: dim" äR<
dimöÄ, dimpöÄ>dimöR, and dimpäÄ:dimäÄ. In Section 2 we shall show

that, on any Äo there exists an Fsuch that dimp öR:1; therefore, dimp äR=dim äR

if the latter exceeds l. In Section 3 an example will be given of an F in the com-

plex plane Cwith dim.åC>l; since dimöC:l, we have an.R and an ,lr with
dim, äÄ>dim åÄ. The most important task in this context is to characterize those

F for which dimp äÄ:dim äR. We shall give in Section 4 a useful sufficient con-

dition.
The second purpose of this paper is to construct an example of a Riemann sur-

face A of Heins type v/ith dim äR: a, the cardinal number of a countably infinite

set. This will be done in Section 5, our method demonstrating the applicability

of the sufficient conditions obtained in Section 4. An example of dimäÄ:a was

first given by Kuramochi [5], and quite recently by Segawa [11], who used his duality
theorem. It was Heins [4] who gave an example of a Riemann surface R of Heins

type with dim öR:n, an arbitrary positive integer. If one tries to follow the Heins
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construction for the case dimåR:c as well, he is led in a natural manner to the

concept of relative harmonic dimension. Anybody who visualizes this is convinced

of the fact that the example of Ä with dim äÄ:c already existed implicitly in the
pioneering work of Heins. This observation is a motivation of our present study of
the relative harmonic dimension.

1. Relative harmonic dimension

1.1. We denote by åÄ the ideal boundary of an open Riemann surface Ä. By
this we mean that åR is an abstract set and ÄuöR is topologized as a compact
Hausdorff space containing R as its open and dense subset. Unless otherwise
explicitly stated, we do not specify the topology of ÄuäÄ beyond this require-
ment. However, we often wriie (-öR ((en) to mean that ( converges to the
point at infinity of R with Ä u öR then understood as the Alexandroff compactifica-
tion of Ä.

We say that A has a single ideal boundary componenl öR if å-R is connected when
,Ruä-R is realized as the Kerdkjårtö-Stoilow compactification (cf., e.g., [3]). We
shall say that a Riemann surface is of Heins type if it is of the kind first systematically

studied by Heins [4]: an open surface of parabolic type with a single ideal boundary
component öR. The complex plane C and the punctured sphere e o:e - {0} are

typically of Heins type.
If R is of Heins type, then there exists an exhaustion t R,)f of R with the follow-

ing properties: i) each Ä, is a relatively compact region and åÄ, is an analytic
Jordan curve,'ii) -RncRocRo*, (n:0,1,2,...), iii) UåoRn:Ä, iv) the func-
tions 4(C(R)nä(Ä,-Rs) with wnlRo:g and 4lR-Ä":1 satisfy limn*-rrn:0,
uniformly on each compact subset of R. Conversely, if Ä has an exhaustion with
properties |-rv), then R is of Heins type. Here H(S) is the class of harmonic func-
tions on a Riemann surface S. We also denote by äP(S) the class of nonnegative
functions in I1(S). A function u in HP(S) is said to be minimal in HP(S) if u>O
and u>u>O for any u in .lclP(S) implies that ulu is constant on S.

1.2.

in åS is
class

(1)

Let S be a subregion of an open Riemann surface Ä such that each point
regular for the Dirichlet problem for the region S. We consider the relatiue

HP(^S; å^S) - {u€C(R) ^HP(S); 
ulR-S: 0}.

A function un HP(S; åS) is, by definition, minimal in äP(,S; åS) if r is not iden-
tically zero and u>u>0 for any a n HP(S; åS) implies that ulu is constant on S,

i.e., there exists a constant c such that u:cu on Ä. Clearly, if r is minimal in
HP(S;åS), then z is minimal in IIP(,S), but not conversely.

Witl class (1), we associate two mappings, ,1. and p, defined as follows. For each

u n HP(R),let ).u be the upper envelope of the family of functions u in äP(S; åS)
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with u=u. Then ,t is a homogeneous, additive, and order preserving mapping of
HP(R\ to äP(S; åS). we denote by äP(S; åS), the class of functions u in äP(^S; åS)
with harmonic majorants on R. For eachu in IIP(S; åS)r,let pubethe least harmonic
majorant of u on .R. Then p is a homogeneous, additive, and order preserving mapping
of äP(S; åS), to HP(R). We will use the following properties of ,t and p, (cf., e.9.,
Noshiro [10], pp. 102-103):

(a) ).1tu:u for every o in HP(S;åS), so that trt is injective, and,t is injective
on p(ar(s; As[).

(b\ lf u€HP(Ä) satisfies u<pu for some o rn Iff(S;åS)r, therr u belongs
to p(äP(s; ås),,).

(c) u€ äP (^t ; åS), is minimal in äP (S ; åS) if and only if pu is minimal in H P (R).
(d) If a is minimal in HP(R) and ),.u>0 on ,S, then ,12 is minimal in äP(S; åS).

1.3. Unless otherwise explicitly stated, we consider henceforth exclusively open
Riemann surfaces lR of Heins type. Take a finite or countably infinite sequence

{K,\:tK,}f (l=tr[=-) of nondegenerate compact continua K, in Ä with the
following conditions: u) KonK*:0 (n*m), p) {K'} is locally finite, i.e., the set

{n;K"aX*O} is finite for any compact subset X of R, T) R-UfK, is connected.
Such a sequence {K"} will be called a ld-sequence in this paper. With a ff-seqtence

{K,} we associate a closed set F and a region lA given by

(2) F- Kn, W- R-F.

We also fix a reference point ain W and denote by M(W) the class of minimal func-
tions u in HP(W;0W),with r:(a):1. We call the cardinal number +M(W) of
M(W) the relatiue harmonic dimension of öÄ with respect to F and denote it by
dim, äÄ:

N

U
L

(3) dimpö.R: +M(W).

Clearly it is independent of the choice of the reference point a.

Let {K;"}fr, (i:1,2) be two ld-sequences on R and set 4:UNtKro and
IE:R-Fi (i:1,2). Obviously F; is compact on .R if and only if if,=-. Suppose

4 and $ are compact on Ä. Then it is not difficult to prove that there exists a bijec-
tive, homogeneous, addilive, and order preserving mapping ut-uz of HP(Ial |Wl)
to HP(W;0W wchthat ur-u2 is bounded near öR. Hence +M(W: +M(W)
and a fortiori dim",6Ä:dim., äÄ. The quantity

(4) dim öR : dimu öR (l7 compact)

is thus uniquely determined, with a compact F chosen at will. This quantity, an

appropriate one attached to R, is called the harmonic dimension of ö,R.

1.4. Let {&} be an arbitrary ff-sequence in Ä and let F and lZ be associated

with {f"} as in (2). Denote by W* the Martin compactificationof W andby ks,(z,o



422 Mrrsunu Narar and LBo Sanro

the Martin kernel on W* with the reference pornt a in W (cf., e. 9., [3]):

(5) kr(z,C): m
for (2, O in WxW, with gn(2, O the Green's function on W. For any q in W'" -W
there exists a sequence {(,} in IA suchthat (o-q in W* and either (,-öR or any

subsequence of {(,} contains a subsequence converging to a point of F. We denote

bV Q(VD the class of the points q in W* -W over öR, i.e., those q in IA* -W for
which the first alternative occurs. One can easily see that Q(W) is compact in W*.
We also denote by Qt"(W) the class of minimal points q over äÄ, i.e., those points
q n Q(rm for which kn(.,q)€M(W). By the Martin theory (cf., e.g., [3], pp.

t3+-144),
(6)

and there exists

class of positive

(7)

M(W) - {k*(., q); q€Qr(W)},

a bijective correspondence u<-+t) between HP(W 0W) and the

Borel measures v on Qt(W) such that

u - f .-__. kw(- , q) dv(q).J Q{W)

As a consequence of (6) we have dimuåR>l and dimäÄ>l. Needless to say,

dimp äR and dim åA are at most c, the cardinal number of a continuum.

2. T\e smallest relative harmonic dimension

2.1. By a,closed Jordan region on a Riemann surface we mean the closure of
a Jordan region on it. One might feel that dim" äÄ for compact F, i.e., dim öÄ,
never exceeds dim. öR for any noncompact F. Contrary to this intuition we have

the following

Theorem. For any open Riemann surface R of Heins type, there always exists

a i{-sequmce {X"\? of closed Jordan regions Ko on R such that dimröR:l
for F:l)i K,.

The proof will be given in 2.2---2.4. What we need to show is that HP(W;0W)
is generated by a single nonzero element k n HP(W;|rm, i.e., HP(W;|W1:
{ak; u€R+\, where R+ is the set of nonnegative numbers in the set R of real num-
bers. It wilt be seen from the proof that we do not use the parabolicity of Ä. There-

fore, what we can really assert is the following: For sny open Riemann surface R

with a single ideal boundary camponent öR, there exists a sequence {K"\i of disjoint
closed Jordan regions Ko conuerging to öR such that HP(14; öW) is generated by

a single nonzero element.

2.2. Since R has a single ideal boundary component, there exists an exhaustion
(R,)fr of R with properties i), ii), and iii) stated in 1.1. We may choose Äo as a para-
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metric disk. For each n>0, take a regular subregion ,9, of Ä such that &cS"c
&cÄo+r and S,-R, is an annulus. For n>1, let Enbe a conformal mapping

of S,-R" onto the region {l=ltl=a,} such that åS" and åR, correspond to the

circles {lll:1} ana {ltl:o,}, respectively, under the mapping rpo extended to
S,-Än. For a number ön in (0, n) to be specified later, the set

K,: rp;t{r = ltl = ao, ön< atgt <2n-ö,) (n:1,2,...)

is a closed Jordan region on R. Clearly, I{,nK^:0 (n*m), and {K,} converges

to öR. For convenience we include Ko:Ro in {&} and set

F_ Kn, W- R-F.

We shall prove that HP(W;\W) is generated by a single nonzero element if {ä,}
is properly chosen in (0, z).

2.3. For n>l we consider the arc lo:cp;1{ltl:an, -ön=atgt=ö,) on flRn

and fix a point (n in .Io with en(h):a, so that (" is the midpoint of In. We

denote by g,(C,z) the Green's function on R,nW We use the same symbol ( for
a poirrt of Ä and its image in a parametric disk. The inner normal derivative

\lDnE S,(L z) of g,((, z\ at ( on åÄn depends on the choice of the parametric disk
but, for a fixed point a in RtnW, the ratio

h,((, z) :

for ((,2) in (åÄ,)X(R,nIl) does not. Since å,((,2) is continuous on (åR,)X
(RnnW), the function (-h,((,2) is uniformly continuous on åÄ' for each z in
lSocRoaW. Hence the function

t,(O : ffi l/,"{6, z)-h,((,, z)l

is nonnegative and continuous on åtRn, with ry',(("):0. Here ry', depends orl ör, ...,
ön-1 but does not depend on än. If we take äo sufficiently small in (0,2), then

sup(e r" t,(0=2-". Therefore we can and will choose 6,(n:1,2, ...) successively

in (0, z) so small that

sup ( t.tp lh,((, z)-h,((,, z)l) = 2-n (n
(€In z( dSo

2.4. We now determine the generator k of HP(W;|W).To this end we consider

functions k,(z\:ho(Q, z\ (n:1, 2, ...) which are in fIP(R"n W; g(&aIV)- {("}),
the class of nonnegative harmonic functions on R,nW with vanishing bound-

ary values on 0(R,aW)-{("}. We recall that k,(a):1. Since {fu}i forms a
normal family, there exists a subsequence {frx"1}Lr of {h}f such that

k(r): l13 kn<,t(z)

ö
0

(#,s,((,4/ffi,s.((,,))

(8)

(e)
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exists on W and the convergence is uniform on each compact subset of W. Clearly
k€nr' 1w; 0lT) and k(a) : 1.

Choose an arbitrary element u in HP(W;|\ry) wrtn u(a):1. The proof will
be complete if we can show that u:/r. Since 0(R"nW) is piecewise analytic,
xdgo(.,2) exists on O(R"IW) except at corner points. But since u vanishes on
those components of å(Ä,nZ) which contain these corner points, the Poisson-type
formula is valid:

u(z\ : -* I 
^*^nrrr:x 

dgn( , z) (z(R nW).

Observe that the boundary function ul|(R"nw) is nonvanishing on I,(r-lR\.
Therefore we can rewrite the above formula as

u (z)

Using a positive meas

+ (#,sn((, 4)' G) td(t Q € Rnnw)'

on In defined by

: f ,^
ute pn

d pn(o : + h(s,((,o)), 
(o ld(1,

and recalling the definition of h,((, r) we ob tain

a(z) : I r^h,{t, z) itp,(O (z€&ar/z).

For z:a this implies that pn(1,):1. Set O:,So-Ro. If zQQ, then (8) gives

lu(z)-k"6Q)l : v r"r^,(h"<o(L 
z)-h"<,t(h<nr, ) dp"616)l

= f ,,*,lh"<o(C, z)-hn<o(*u1, z)ldu,14(O = 2-n(").

We have shown that supz€o l:Q)-k"1,y@)l=2-n(nt. on letting n*- and using
(9) we see that a:k on O and hence on W. tr

2.5. Examples of Riemann surfaces A of Heins type with dim äÄ=1 are not
lacking. As already mentioned in the introduction, Heins [4] constructed an Ä with
diin ärR:n, an arbitrary positive integer, and Kuramochi [5] exhibited an R with
dimäR:a (:*N, with N the set of positive integers) (see also Segawa [11]).
Constantinescu and Cornea l2l even constructed an R with dimäR:c (: +R).
We shall also construct, in Section 5, an R with dim öR:a. From Theorem 2.1

we thus conclude that there exists an open Riemann surface R of Heins type and a
t-sequence {K"\i on R such that for F:U? &,

dim" öR<dim ö.R.
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3. The finite complex plane

3.1. The classical Picard principle states that the harmonic dimension of the
point at infinity, -:6C, of the finite complex plane C: lzl=- is one : dim äC:1.
Let {K,}f be a ,/d-sequence of radial slits Ko on C and F:Uf K". We can always
find an Fwith dimoöC:m for any cardinal number m>l of a countable set or
the cardinal number m of a continuum (cf., e.g., [6], [7], [9]). Therefore, the relation
dim" äÄ>dim ä,R occurs frequently. For the sake of completeness we append here
an example of extreme simplicity (both in the example itself and its proof) of a tr-
sequence {f"}i in Csuch that dimp C>2 for F:U|K,; our example was in-
spired by Ancona []. In particular, we have a proof of the occurrence of the relation

dimp ålR > dim åR.

3.2. Consider a nondegenerate continuum K in C with the following four prop-
erties: (K.l) Kis symmetric about the real axis Imz:O, (K.2) K is symmetrio
about the imaginary axis Rez:0, (K.3) (K+l)ntf:$, (K.4) C-Kis connect-
ed. Here K*c:{z*c;zQK\ for any given cCC. The slit l-a,al (0=a=ll2),
the disk {lzl=a} (O=a=l l2), andthe rectangle {lRe zl =a, llm zl=$} (0-.a<ll2),
(å=0) are examples of K. Let Z:{0, tl, L2,...} and

K,: K*n (n€z), F - U
-co

Kn.

K be a nondegenerate continuum K in C with properties
F be giuen by (10). Then dim" öC>2.

It can be seen that, in reality, dimtöC:2 but our main interest here is in
constructing an Fwith dim.äA>dimåR and also in givlng a proof as simple
and elementary as possible. Hence we only establish dimFöC>2 and omit the
proof for dimröC=2, which requires rather elaborate reasoning.

3.3. Our proof of Theorem 3.2 is by contradiction. Suppose dimyöC:l, so

that there exists a nonzero function u n HP(W;|W) wrtn W:C-F such that
HP(W;|W):p+r. Since u defined by a(z):)-t(u(z)+u(z)) for z in IZ is also
a function n HP(W|W) by (K.1), we may assume that u(Z\:y(z) for z n W.

Similarly, the function u given by u(z):)-L(u(z)*u(-Z)) fot z in W is again in
HP(W;|IV) by (K.2). Hence we may and will assume that u(z):u(l):u(-z)
for any z in W.

(10)

Theorem. Let
(K.l)-(K.4), and let

Let Inbe the line segment contained in
point of tI* z -0lr A Kn to the leftmost
maintain that

(ull)(') - (rlloi(2(k+r)- r)

tI- z -0) ^W connecting the rightmost
point of {I* z-D\AKn+t (n(Z). We

(1 1)

for z(Io, i.e., ulle and ullo*, are symmetric about {Re z:k*l}. In fact, let
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a€HP(W; 0W) be given by u(z):y(t41p+ 1)) for z tn W. Then (11) for k follows

from a(z):u(-Z) for z in }/. Since u(HP(W;0W1:p+r, there exists a constant

c in .R+ with u:cu. Therefore, u(z):v1-21 implies u(z):1,7-27 for any z in W'

Let W+:Wn{Imz=0}. From (11) it follows that ul|W+ is bounded and

a fortiori the solution H(' of the Dirichlet problem on W+ with boundary

values ul\LY+ on 0W+ (cf., e.g., [3], p. 21) is bounded on W+. Note that I/fl*
is continuous on Wi with n(.10W+:ul0W+. Define the harmonic function å
on Wby

h (z\ : 
{ -(l?"J;i !?o [:lT,:h,

Since r(z):u(Z), the function rry defined by w:u*h belongs to HP(W;|W)
and is unbounded (bounded, respectively) onW-+ (W-W, respectively). Thuszis
not symmetric about the real axis, in violation of the fact that w is a constant mul-

tiple of u.ln the above proof we took it for granted that z is unbounded on W. If
this were not the case, the parabolic character of åC would imply z=0. tr

4. Identity

4.1. Take aff-sequence tK,)i on Ä and set f:Uf K, and W:R-F.We
now take up the most intriguing case: when is dimpäR:dim öÄ? If F is compact,

the identity holds by definition. This suggests that, for a noncompact F,the identity

occurs whenever {K"} is distributed on R sparsely in some sense. We shall give here

a condition to'assure such sparseness. Let gw(2,() be the Green's function on W.

A curve ? in R is said to converge to ä.R, ?*öÄ, if limr-1p(/):äR, with p:p(t)
(0=r=t; a parametric representation of 7. The curvewise superior limit of gw@,o

along y is, by definition,

l:t"rg gw@, O: lim-sup sr(p(t), (),

where we define go,(., 0:0 on R-W: F. We say that {K"} is sparse on R if the

curvewise superior limit of Bw(,Q along any curve 7 in Ä converging to öR is
positive. The condition is clearly independent of ( in W lf F is compact, then, since

R is parabolic' we have 
fiminf gn(2,() = 0

and therefore {K,}f (F: Ui{ KJ is sparse on A.

Theorem. If {K"I is sparse on R, then the relatirte harmonic dimension of
öR relatiue to F:wKn coincides with the harmonic dimension of öR,

dimpåR: dimåR.

The proof will be given in 4.2-4.4.
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4.2.For Wt:R-*r, we have dimäR:+M(W). Denote by 0X (\tY,
respectively) the relative boundary of the subset X (Y, respectively) of R (Wr, re-
spectively) relative to R (fi, respectively). Since WcWrcR, we can consider both
0W and \rW, with 0LWC0\4/ and, in fact, 0W:(011V)v(0K'):(0rW)v(0Wr). We
consider the mapping )1 of HP(W') to HP(W;\yW) and the mappin9 h of
HP(W;|rW)r, to HP(W,) introduced in 1.2. Here .[t defines a mapping
)":ltlHP(W;0W)of HP(W;|W) to HP(W;|W) and similarly p. defines a
mapping p : prlH P (w; 0W), of H P (w; |rv) o to H P (wt; 0w), whete H P (w; 014/) p:
HP(W;0W)IHP(W;|'W)r,. The properties corresponding to (a), (b), (c), and
(d) in 1.2 are readily verified to hold for the present ). and p. We shall refer to
these properties again as (a), (b), (c), and (d).

4.3. Let a be minimal rn HP(W;AW).We normalize u by fu(a):1, i.".,
Bu€M(Wr). Then Pu:kw,(,p) forsome pin Qt(W). The Brelottheorem (cf.,
e.g., [3], p. 139) states that any minimal point p in Wr*-W is accessible fromW,
in the topology of lV1*, so that for p(Qr(Wr) there exists a curve y in W1 converg1ng

to äR, and to p 
^ rI1*.Since {1("} is sparse on Ä, there exists a sequence {(,}c7 such

that (,*511 and also (,-p in I4(* and limn-- Bw(Co, z):u(z)=O for every z(Wr.
We can assume, moreover, that limn-- Ew(i,,2) exists for z in Ä. Since Bwr(h, z)=
gw(h, z), a:lim,-- gn,((o, a)>0, and

f u(r) : kw,Q, p): JtT (gr,(Q, z)lgw,(Q, o))

11
= ;Jit sw((,, ") 

: io(z) > o.

We conclude that ).u>(a|)-ru=0 because I€HP(A;|W), and, by (d), ,12 is

minimal in HP(W;|W\. Since lu<u for u(HP(Wr;|fi), we have hu(
HP(W;0W), and plu=u. There exists a positive constant c with pLu:cu, because

n is minimal in HP(141; åZJ. Thus c)'u:).(cu):)"(fi,u\:()'p)().u):7u by (a).

Since 2a is minimal and, in particular, )uu>O on l\we have c:1. A fortiori
plu:u for minimal u n HP(W;|W). Suppose u1 and uz are minimal in
HP(W,;|W), and ).ur:Lur. Then ut:1tÄur:p),u2:u2. Therefore, we can define
an injective mapping of M(Wr) to M(W) and infer that dim äÄ<dim" ä-R.

4.4. Conversely, let u be minimal In HP(W; 0W). We again normalize u by

Bo(a):l for a reference point a inW Then Pu:ks'(.,q\ for some Q€Qr(l.V).
Again by the Brelot theorem there exists a curve y in I4' converging to öR such that
(, in y converges to äA and also to qinW*, and limn-- gw(h,z\:w(z)=0 for
every z in R; this is possible since {K"} is sparse on R. Hence

Fo - kr(. , qt) : lim 
gw\?' '), : Y .

n+@ g*((r, a) w (a)
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and w:fw(a)a is also minimalin HP(W;|lV). We may assume, moreover, that
limn-- Eyyr((n, z):u(z) exists for every z(W1 by choosing a subsequence if necessary.

Since gy,((, , z)sgr,((n, z), we obtain w=u on passing to the limit. Thus w€

HP(W|W)p. The function pw is minimal in HP(fi;|W) by (c). Since p is

injective, we can define an injective mapping of M(W) to M(fi), and obtain dim" ä-R

=dim äR. In view of the result tn 4.3, we have shown that dim" öR:dim öÄ. n

5. Countably infinite harmonic dimension

5.1. As an application of the identity theorem established in 4.1 we shall give

a new proof of the following theorem originally obtained by Kuramochi [5] (see

also Segawa [11]):

Theorem. There exists an open Riemann surface R of Heins type such that
dim öÄ:4, the cardinal number of a countably infinite set.

The surface R we are going to construct will be an infinitely sheeted unlimited
covering surface of the punctured sphere ie:O=lzl=* whose projections of
branch points are all in the punctured disk /o: 0<lzl<.1. From each sheet of R
we remove a disk I=lzl=- ånd obtain F:UiKn, where the K, are duplicates

of 1<lzl=- lying in each sheet of R. By a judicious choice of the branch points
of Å we can see to it that tK,) is sparse on -tR, and dimp öR:c. Then we apply
Theorem 4.1 to conclude that dimä.R:dimpäR:o. This is a rough sketch of the

construction and reasoning we are going to develop n 5.2-5.7,

5.2. Let {a,}i be a strictly decreasing zero sequence in (0,1), and {0.}i a

strictly increasing sequence in (-nl2,rl2). We then choose a decreasing zero se-

quence {d,\ of positive numbers d, as follows.Let Do*:{lz-a,ei0^1=d,}. We make

{d"} converge to zero so rapidly that any two closed djsks in the family

Ui=r{D, ;n=tnl are disjoint. We set

: u Dn* (m : 1,2, ...),
n>m

oo oo_ U D(m)- U (t-l D,).
m:l m:L n>m

We fix sequences {o,\, {0^}, and an auxiliary sequence {d,} once and for all. We
then choose a strictly decreasing zero sequence {å,}i in (0, l) such that a,*1<bo<.sn
(n:1,2,...). Let lo^:{bn=lzl=a,, argz:O^}, a radial line segment. First of
all we require that each.I,. is contained in the interior of D,-(n>m). Set

lo'*'
t'rol

["*
Itrol

)- U
n>m

oo

TJ
M:L

f r* (m - I, 2, ...),

oo

I(m)- u (U I,*).
m:L n>m
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Actually we will choose eact' bn so close to an that it satisfies not only the above

requirement but also the conditions (A) and (B) to be specified later.

5.3. Using a countably infinite number of duplicates of the punctured sphere

io:0= ltl=*, and the slits 1(0) and I(m), we form the disjoint sheets

R^: e o- I(m) (m : o,l, "')'
Then we join each R^(m:1,2, ...) to Äo crosswise along the slits I(m) and denote

the resulting surface by R. It is a covering surface of io with the natural projection

mapping z. It is not difficult to see that R is an open Riemann surface of Heins type.

In each R* (m:0,1,...), take the closed disk K-:{1<lzl=-}. Clearly

tK.);" is a ff-sequence on -tR. We set

r:QK^, w:R-F,
and

W^: R^-K^ (m:0, l, ...).
Then W is also obtained by joining W- to l/o crosswise along the slits 1(z)
(m:1,2,...). Thus it is a covering surface of the punctured disk /e:0<lzl=l
with the natural projection z.

5.4. Fix a number c in (a1ld1, 1). The arcle C^:{ltl:tl is contained in

W.and so is the annulus {c=lzl=l} (m:0,1, ...). Let w be the harmonic function

on {0<lzl-fi-f($ with boundary values I on lzl:c and 0 on 1(0). We now

choose each b, so close to aothat the following condition is satisfied:

(A) ql: inf {w(z); z( {0 = lzl = c}-a(o)} = 0.

As a consequence of this choice of {å,}i, the {'sequence {K^\f, in R is sparse on R.

To prove this we set

G. : {0 < lzl < c}- I(m)cI4t-cR^ (m : 0,l, ...)'

Then w can be considered subharmonic on each G- (m:0,1, ...) by defining

w:0 on 1(0). Let y be an arbitrary curve in R tending to öR, and denote by sn(,0
the Green's function on W with pole ( in I4r and extended as zero to R-ll' We are

to show that

l:t'X gnQ,o>o

for one and hence for every ( in W. Observe that n (7) is a curve in Co tending to the

origin 0.

First we consider the case in which there exists a single G. such that ycG*.
Chooseasequence {2,}in yn(G^-D(*)) suchthat zn*öR. Let a:inf c^sw(,o
>0. Then cleady gw(,O=aw on G.. In view of (A) we have

limsup gw(2,A > tmsup Bw(z,, O = qlimsupw(zn) > d4t >O.
zQ'y' z*6R r+€ n+@
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Next we consider the case in which the above alternative does not occur, so that
thereexists a sequence {r"\ n yn(G^r4-D(*(")) such that zn*öR and m(n)*
m(n') (n+n'\. Lety,bethat part of y which starts fromznand ends at z,*r.In view
of the construction of .rR, yn must pass through Gr-D(0) and, therefore, we can
choose a point wn in y,n(Go-r(0)). Then wn*fR, and in the same fashion as
above we conclude that

,tf,tg Bw(z,O =o- !
5.5. It is readily seen that there exists on 0<lzl=l a unique smallest function

/ in the family of continuous functions u on 0<lzl=l which are harmonic on

{0=lzl<l}-1(0) and satisfy u(z):g on lzl:1, and u(z\:1st(2llzl) on I(O).
We now impose upon the closeness of bolo a,the additional condition

(B)

The function I may
(m -0, 1, ...).

Denote by L^the segment (-1,0) inW*(m:O, 1, ...). Fix an m for the time
being and choose a sequence {-t"\icL* such that -t,*0 and gyy(2, -rJ is
convergentforeach zinW On setting a:infc_ gw(2,.), we see that ga,(2, -to)=_
aw (- t,) > aq, >0. Therefore,

u^(z): ]lysr@, -tJ = 0

for z(W, and u^€HP(l4r;0W).
We now study the growth of u^. Let

heQ)-roslXl ,, zt,t(t =1)

We can lift h.(.) to WxW from Aoxlo by

The discussion in

(r2)

hs(z) - hnG)@Q)) ((', y)(wxw).
what follows will be based on the inequality

on W for any ( in W: If
Sw(.,O=he (:hnt1gon)

z(I(m') (*':0, l, ...), then Re z=0 and

sw(Z, -t,)=_ h-,,(z) -loslffil=los ä: t@).

By the maximum principle,

gw(2, - tn) = I(z) (z€W^,, m' * m).

Observe that h_rn@)-l(z)=0 on I(m). Therefore,

Un : sup {l(t); z€( - 1, 0)} < f oo.

be viewed as being defined and superharmonic on each W^

gw(2, -tn) = h-,,(z)-l(r) (z€W^),
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since the same is true of the boundary values on 0W^. On passing to the limit we

conclude that
u^(z) = l(z) (z(W^,, m' + m\,

u^(z) = hr(z) - l(z) (z(14'^).

Hete hr(z):log(Illzl). Therefore, by (B), we have

supun<*- (m'+m),
Lrn,

r# u*: f oo.

associate a um as above. By using the Martin representation

in {u^)?, we can easily see from (13) that + M(W)=o, i.e.,

(13)

With each m we

(7) for each function
dim"äR>c.

5.6. Take an arbitrary u in M(W), so that u:kw(' , q) for some q(Qr(W\
By the Brelot theorem there exists a curve y in w tending to äÄ and to qrnw*.
Since {K,} is sparse on Ä, there exists a sequence {("} in 7 tending to äR such that

lim"-- 1w(Q, z) exists and is positive for any zCIV. ln view of

Yn#}: "li1 
kwQ;h): k(z' q):u(z)'

we set

f : 
"lS 

gw(h, a) > o,

and obtain limn-- gw(2,(,):fu(z) for any zQW. By (12), fiu4hs on W' Set

fu : suP {B; Bu = hs on w}'

We have obtained a mapping v-Puu:u from M(W) onto M'(W): {Fuu; u(M(W)\,
which is bijective. Thus # M(W): + M'(rm.

Set

M{(W): I, 2, " ')'

Take different elements ar,...,u, in Mi(W). By the Kjellberg lemma (cf., e. g.,

[3], p. 18), the relations ai=ho (i:1,..-,n) imply that ar*"'*un=-ho' Consid'

ering this at a we see that

t or@) = u'(a)* ... tu,(a) = ho(a\,

or nlk<\. Therefore, n<k and +M;(W)=k Since M'(W):U7:rM|(W),
we obtain + M'(14/)=a, i.e.; dim"äR=o.

5.7. From 5.5 and 5.6 it follows that dimpöR:o. Since {K"} is sparse on

Theorem 4.1 implies that dim6R:dimröÄ:c. The proof of Theorem 5.1

complete.

{r, M(w); u(a) = +h,@)l (k:

R,
is
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