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1. Introduction

Let Abe a set in the complex plane Cand let 0<s< l. A complex-valued func-

tion/defined on A is a member of the class Lip,(A),the Lipschitz class in A with

exponent a, if/satisfies a uniform Hölder condition with exponent a:

lfk)-f(w)l = Mlz-wl"

for all z and w in l, where M is a positive constant.

Consider now a simply connected proper subdomain D of C and a conformal

mapping/of D onto the unit disk .B: {z:lzl=.1}. In general, it cannot be inferred

either that/belongs to Lip"(D) for some u or thatf-L belongs to Lipp(,B) for some B,

even if/is known to extend to a homeomorphism between D and B. Whether one

or both of these inferences can be drawn depends in a critical way on the geometry

of D. This principle is-certainly well understood and a search of the literature reveals

a number of geometric criteria which, when satisfied by D, are sufficient to insure

either that f or that f-r belongs to some Lipschitz class. (See, for instance, [8], [9],

[10], Ull or [14].) While these criteria are more than adequate for the purposes of
most applications, they are unsatisfying in one significant regard: they fail to actually

characterize the domains D for which / is uniformly Hölder continuous or those

domains for which/-l enjoys this property. The reason for this appears to be that

the criteria under discussion are too closely bound to the euclidean geometry of D.

The precise relationship between the euclidean geometry of D and uniform Hölder

continuity on the part of f orf-lis, to judge by available evidence, a subtle one indeed.

In a recent paper [] Becker and Pommerenke elected to abandon the euclidean

perspective and to examine Lipschitz classes from the pornt of view of hyperbolic

geometry. They demonstrated that a conformal mapping / of the unit disk .B onto

a domain D will belong to Lipp(B) if and only if, corresponding to some (each)

(*) Part of this research was done while the author was visiting The University of Texas

at Austin in 1983-84.
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point zo in D, there exists a constant

(1) h r(ro, z)

b >0 such that

1b
= pros@

for all z n D. Here h, designates the hyperbolic distance in D and d(2, DD) denotes
the euclidean distance from z to 0D.

It is natural to seek an analogue to the above proposition for mappings onto the
unit disk, that is, to attempt to characterae in terms of hyperbolic geometry the
domains D with the property that a conformal mappng f of D onto -B belongs to
Lip"(D).In the present paper we obtain such a characteÅzation. It should be empha-
sized at the very outset that the presence of f inLip"(D) is compatible with an appre-
ciably greater degree of topological irregularity n 0D than can arise in the context
of Becker's and Pommerenke's result. This added complexity partly accounts for
the fact that we formulate our charactefnation in terms of the geodesic cross-cuts
of D and not in terms of an estimate akin to (1). In fact, it is not generally true that
the obvious analogue to (l) in the current setting, an inequality ofthe form

(2) hr(ro, z) = uloS76frr,

is sufficient to place f in Lip"(D), although with appropriate restrictions on D we
are able to salvage a facsimile of the Becker-Pommerenke theorem involving (2).
The consideration of geodesic cross-cuts leads, in addition, to an alternative to (1)
as a means of characterizing the domains D such that a conformal mapping of ,B

onto D belongs to Lipp(B). Finally, we indicate several characterizatrons of the
domains which are the images of .B under conformal quasi-isometries.

2. Hyperbolic geomehy

The Poincarö density,l, is defined for any simply connected proper subdomain
D of C by the equation

Ap(z\ : .'l('!.'ll,= .r-lf(z)12'

where / is a conformal mapping of D onto .8. As is well known, this definition is
rndependent of the particular choice off Associated to thedensity ,12 is a conformally
invariant distance hpin D, defined by

hp(2, w) : int I rl"r1q1aq,
with the infimum extended over the family of rectifiable paths y joining z and w in
D. The distance å, is often referred to as the hyperbolic distance rn D, for the reason
that, when equipped with this distance, the domain D provides a model for plane
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hyperbolic non-euclidean geometry. The lines in this model are the trajectories of
the geodesics for the Poincarä metric in D, the Riemannian metric corresponding

to the fundamental form ds:)."(z)ldzl. These hyperbolic lines will henceforth be

referred to simply as the geodesics of D. Each such geodesic is an open arc, i.e., is

homeomorphic to the real line. Of course, in the case D:B one obtains the familiar

Poincar6 model for plane hyperbolic geometry, in which the geodesics are the inter-

sections of I with euclidean lines through the origin or with euclidean circles orthog-

onal to å,8. We recall the formula

which has the

l,r on the unit

(3)

hu(O, z):log H,
consequence that the geodes rc y of B terminating in the points z and

circle satisfies

los 
ä=hu(o,r,) = log å

(The notation ho(2,,4) v/ill indicate the hyperbolic distance from a point z in a do-

main D to a subset A of D.)
Of special significance in this paper will be the geodesics of a domain D which

are also cross-cuts of D. We draw attention to the factthat not every geodesic of D

need have this property. On the other hand, two classical results associated with
the theory of prime ends insure that each pair of accessible boundary points of D is

the set of terminal points of at least one - and possibly more than one - geodesic

cross-cut of D. To be specific, letf map D conformally onto.B and let Ebe an end-cut

of D terminating at a point z of 0D. A theorem of Koebe states that/possesses a

limit z' at z along E, while a theorem of Lindelöf then asserts that the mapping/-l
must have z as its non-tangential limit at z'.In particular, f -t has z as its limit at

z' along any geodesic of B terminating at z'. A good reference for these and related

results is [2], especially Chapter 9.

Before proceeding we alert the reader to one notational convention observ'ed

throughout this article: the notations D and 0D are used to desigrrate the closure

and boundary of a domain D relative to C, not relative to the extended complex

plane.

3. Lipschitz classes anil geodesic cross'cuts

Letf map a plane domain D conformally onto .8. In this section we characteÅze

in terms of geodesic cross-cuts those domains D for which/belongs to Lip,(D) and

those for which/-l is a member of Lipr(.B).

Theorem l. Let f be a conformal mapptng of a domain D onto B and let

Q-:es=f. Then f belongs to Lip,(D\ if and only if, corresponding to some (each)
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point zo in D, there exists a constant a>0 such that

(4) hr(ro,y) =- alog$,
lz-wl

wheneuer z and w are distinct points on 0D and y is a geodesic cross-cut of D ter-
minating in z and w.

Proof. For the necessity, fix a point zo in D. We may assume that f(zo):Q.
We may further assume that f is defined and continuous on D and that / belongs
to Lip,(D-). Let M>O be a Lipschitz constant foryf corresponding to the exponent
a. If y is a geodesic cross-cut of D terminating in the distinct points z and w on 0D,
then in view of(3)

h,(ro, y) : hr(o, f(y)) =- bc #7@l = abeffi ,
where a:(2lM)tt'. This establishes (4).

In proving the converse assertion, we fix a point zo in D for which (4) is valid
and again assume, as we may, that f(z):O. We begin by demonstrating that f
can be extended to a continuous mapping of D.

Consider a point z of 0D and suppose that/fails to have a limit at z. Then we
can choose sequences (zo) and (we) in D such that zo*s anrd wo*z, whlle f(z)*z'
and f(wo)*1u', where z'+w'. An elementary geometric argument establishes
the existence of end-cuts Erand Foof Djoining zoand wo, respectively, to distinct
points zf and wf on 0D and satisfying dia(E)*g s16 dia(F*)*0, as k*-.
Standard extremal length considerations reveal that dia[f(E)lt0 and dia [/(4)] *0.
Furthermore, classical theorems of Koebe and Lindelöf assert that f(Eo) and f(Fe)
are end-cuts of B terminating at certain points zi and wl, respectively, on the unit
circle and that the mapping,f-t has non-tangential limits zl at zi and wf at wi.
Let y'obe the geodesic of .B with terminal points zi and wi. Then yo:f-t(y) is a
geodesic cross-cut of D terminatng in zf and w[. By virtue of (4)

hr(ro, Tn)

aS k**, since t|*t and Wt*2.

>q,logffi *-,

On the other hand,

hr(o, yi) =toc.#f * be lrh - -,
in light of (3) and the fact that z'o-2' and, wf,*p'. This contradiction to the con-
formal invariance of the hyperbolic distance shows that/must have a limit at, z, an
arbitrary point of å4. We conclude that/admits an extension to a continuous map-
ping of D. The notation/will be retained for the extended mapping.
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Let z and w be distinct accessible points on 0D. There is a geodesic cross-cut
y of D with z and ru as its terminal points. Invoking (3) and (4), we obtain

rloq, o 
=l'-*l

from which we infer that

l"fk)-f{w)l = Mlz-wlo,

w'th M:41d. Because the set of accessible boundary points of D is dense in åD,
the continuity of f on D implies the validity of this estimate for all points
z and w of 0D. Theorem I in [a] - see also [3] - insures that/belongs to Lipo(D).

The analogue to the preceding theorem for mappings from .B into the complex
plane is:

2. Let f be a conformal mapping oJ' B onto a domain D and let

f belongs to Lip p(B) if and only if, corresponding to some ( each)

there exists a constont b >0 such that

Theorem
0= f =1. Then

point zo in D,

(s)

ho(ro, T) : hu(O, f(y)) = log

ttp(zs,y) = i^t#U,
are distinct points on AD and y is a geodesic cross-cut of D ter-wheneuer z ond w

minating in z ond

Proof. To establish the necessity of condition (5), fix a point zo in D. We are

here at liberfy to assume that f(O):zr. Let M>0 be a Lipschitz constant for f
corresponding to the exponent fr. lf y is a geodesic cross-cut of D terminating in
distinct points z and w, desigaate by z* and w* the corresponding terminal points

of the geodesic /-1(y) of B. We use (3) to infer that

ho(ro,y) : h"(0, f-r!)) =tog7+1= |rcrå,
where b:4f M.

For the sufficiency, let zobe a point of D for which (5) is satisfied. As earlier,
we make the assumption that .f(0):zo. We first show that f can be extended to
a continuous mapping of B. To do so, we observe that inequality (5) implies that

lz-wl=b for each pair of accessible points z and w on 0D and, hence, that D is a
bounded domain. Fix a point z on 0B.. An often cited result of Wolff [5] permits

us to select a sequence (ap) of geodesics of.B such that ar separates z from 0 and

such that both dia(ao)*0 and dia(a)-6, as k*-. Here ai:f@*). Let De

designate the component of -B\a1 not containing the origin and write D'k:f(D).
We claim that dia(Di\*0, as k--.

Suppose this not to be the case. Passing to a subsequence, we may then assume

that dia (D;)=-3ö for some ä>0 and for all k. We may further suppose that
dia(d)=6 for all /c. It is then apparent that dia(åDi\di)>2ö for all &. Conse-
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quently, we can choose for each k a pair of points zi and wi in åDi\ai which are

accessible from Diand which satisfy lri-r'ol>ö. The classical theorems of Koebe

and Lindelöf referred to earlier imply that zi and wi are the non-tangential limits
of f at certain points zo and wo, respectively, of åD\ap. Let y1 be the geodesic

of .Bwith terminal points zoand w*. It is clear that yo lies in Do. Since dia(De)*0
by construction, it follows that

ha(O, yJ * -,

as k--. On the other hand, yi:f\o\ is a geodesic cross-cut of D with terminal
points zi and wi. Referring to (5), we conclude that

ho(ro,y'k)=ilos t';-q=
1, b

p'og ö

for all k, which contradicts the conformal invariance of the hyperbolic distance.

Thus dia(Aä-0, as asserted. This fact implies that f possesses a limit at z, an

arbitrary point of å.8. We infer thal f admits an extension to a continuous mapping
of B, which extension we continue to denote byl

Now conqider points z and w on 0B such that f(z)+f(w). If y is the geodesic

of ,B with endpoints z and w, then f(y) is a geodesic cross-cut of D terminating in

f(z) and f(w). Applying (3) and (5), we obtain

-2log 6f hs(O, Y)

which leads to the inequality

-hn(ro,f0))=+los ffi,

lf|)-f(w)l = Mlz-wla

with M=bl2p. Since this estimate holds for all z and w on 08, we can appeal to
a well known theorem of Hardy and Littlewood and conclude that f belongs to
Lipu(B).

Corollary l. Let f be a conformal mapping of a domain D onto B and let
0<u,B=1. Then f belongs to Lip,(D) and f-r belongs to Lipp(B) if andonlyif,
corresponding tb some (each) point zo in D, there exist constants a>O and b>O
such that

alog äsho@o,y) =ilos h,
wheneuer z and w are distinct points on 0D and y is a geodesic cross-cut of D
terminating in z and w.
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4. Lipschitz classes and lower bounds for hyperbolic distance

Let f map a domain D conformally onto .8, While Theorem I characterizes

those D for which/belongs to Lip"(D), it would be desirable, if for none other than

aesthetic reasons, to have a second characte{tzation that more closely mimics the

theorem of Becker and Pommerenke cited in the introduction. The presence of f in
Lin(D) does, in fact, impose a necessary condition analogous to (l) on the domain

D: corresponding to some (each) point zo in D, there exists a constant a=0 such

that

(6)

(8)

hr(ro, z)> q,log ffi
for all z in D. Indeed, if we fix zo in D, if we assume that f(zl:Q and if we choose

a Lipschitz constant M>0 for f corresponding to c, we obtain for z in D

hp(zo, z): ho(o,fk\) =bt6å@ = be#: abzffi,

wherc a:M-r1". lf, however, one looks to condition (6) as a possible sufficient

condition for f to be in Lip,(D), one is destined to be disappointed, for reasons

which will now be indicated.
In the first place, the fundamental inequality

1,(z)=_dM,

valid rn an arbitrary simpty connected proper subdomain D of C, has as a conse-

quence that

(7) ho(zo,a=-irctffi

for all points zo and z in such a domain. (See Lemma 2.1 in t6l.) This means that one

could hope to derive information about the Hölder continuity of the mapping /
solely on the basis of an estimate such as (6) only when lf2<u< l. However' even

this restriction on a does not render the situation more promising. A simple

example serves to illustrate this point.

Example l. The domain p- {e"': z€B} has the property that, corresponding

to each point zo in D, there exist constants a>0 and å>0 such that

-A\rb
log ffi)- E ho(ro, z) =- log denD)

for all z rn D. The function f(z):n-'Log z maps D conformally onto '8, but does

not belong to Lip,(D) for anY a>0.
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The veriflcation of (8) is a straightforward application of the Koebe distortion
theorem, once it is observed that e-"fn<-lf'k)l=e"ln for all z in D. Since /fails
to admit a continuous extension to D, it is evident that f cannot be uniformly Hölder
continuous in D.

The upshot of the foregoing discussion is that something above and beyond

estimate (6) must be known about a domain D if it is to be asserted that a conformal
mapping of D onto B belongs to the class Lip"(D), even in the non-trivial case u>112.
The following theorem imposes on D an additional constraint, which enables us to
make'such an assertion.

Theorem 3. Suppose D has the property that for some constant c>O

(e) ?åf d(C' aD = sl'-*l'

hr(ro, z) > a,log ffi

wheneuer z and w are distinct points on 0D and y is a geodesic cross-cut of D
terminating in z and w. Let f be a conformal mapptng of D onto B and let ll2<
u=1. Then f belongs to Lip,(D) if and only if, corresponding to some (each) point
zo in D, there exists a constant a>O such that

(10)

for all z in D.

Proof. The necessity of the estimate (10) for f to be in the class Lip,(D) was

observed earlier. For the sufficiency, fix a point zo in D for which (10) is valid. Let
y be a geodesic cross-cut of D with distinct terminal points z and w and let (s be the
point on y at minimal hyperbolic distance from zo. Then by (10) and (9)

ho(rr,r) : hp(2o,6) =- arotZåAD = orcSfii,

wherc a*:alc. Theorem 1 implies that/belongs to Lip"(D).
In view of (7), Theorem 3 has as an immediate consequence:

Corollary 2. Let f be a conformal mqpp@ of a domain D with property
(9) onto B. Then f belongs to Lip"(D) for u:112.

It is not difficult to exhibit domains D for which (9) and (10) are valid, with
u>1f2, but which are not Jordan domains - an infini:e strip, for example - or
which even have non-accessible boundary points. Domains satisfying (9) include
a class of domains studied in [l 1], the domains which are å-arcwise connected for
some å>1. A simply connected proper subdomain D of C is said tobeb-arcwise
connectedif each pair of poipts z and w of D can be joined in D by an arc y* satisfying

dia(y*)=61"-wl. If D is å-arcwise connected, then each pair of points z and w on

0D are the terminal points of a cross-cut y* of D for which dia(y*)=2blz-wl.
A theorem of Gehring and Haymap [3] implies that the unique geodesic cross-cut
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y of D terminating in z and w satisfies

max d((, 0o1 = dia (y) = k dia (r*) = 2kblz-wl,(€t

where ft is an absolute constant. Therefore (9) holds with c:2kb. Consequently,
Theorem 3 yields:

Corollary 3. Let f be a conformal mapp@ of a b-arcwise connected domain
D onto B and let ll2=u<1. Then f belongs to Lip"(D) if and only if condition
(10) holds.

One special case of Corollary 3 merits singling out. Among the domains which
are å-arcwise connecied for some å is the class of quasidisks [5]. A domain D in C
is a quasidisk if D is the image of .B under a quasiconformal self-mapping of the
extended complex plane. We have:

Corollary 4. Let f beaconformalmapptngofaquasidisk D onto B andlet
lf2<q,<1. Then f belongs to Lip"(D) if andonlyif condition(lO)holds.

We conclude this section by illustrating how Corollary 3 can be used to extract
information on the Hölder continuity of a conformal mapping from concrete eu-

clidean geometric data. We consider a domain along the boundary of which it is
possible to "roll" a disk offixed radius.

Corollary 5. Let D be a bounded Jordan domain. Suppose there existts an

r-0 for which thefollowing is true: corresponding to each point z on 0D, there exists
a closed disk of radius r rz C\D containing z. Then any conformal mapping of
D onto B belongs to Lip"(D) for a:1.

Proof. We first observe that the "disk rolling condition" has the following
essentially obvious consequence for the exterior D* of D in the extended complex
plane Ö: there exists a constant c >0 such that each point w of åD is the terminal
point of 'an end-cut E of D* from - satisfying

dia(E) = cd(2,0D)

for all points z on E, where E.denotes the subarc of E with z and w as its endpoints.
Theorem I in ll2] then guarantees the existence of a constant M>0 such that

dia (C (r, *)) = M dia (y*),(1 1)

whenever z and w are distinct points of 0D and y* is a cross-cut of D* terminating
rn z and ry. Here C(2, w) indicates the arc of smaller diameter on 0D with endpoints
z and w. (The result in t12l just cited is actually stated only for a bounded domain.
The situation at hand is easily reduced to that case, however, by means of an in-
version.) Next, an elementary argument involving (11) shows that any pair of points
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z and w in D can be joined by an arc 7 in D with

dia (7) = Mlz-wl.

This, in turn, insures that D is å-arc\Mise connected for any blarger than M.
In order to apply Corollary 3, we must verify (10) with a:1. Fix apoint zo

in D. We may assume that r=d(zo,lD). Let z be any point of D. We show that

hr(zo, z)=loS7ffi,
with a:2r13.

Select a point ( on 0D with the property that d(2,0D):l(-zl and a closed

disk K of radius r in c\D which contains (' set Do:Ö\K' we have heretofote

confined our discussion of the hyperbolic metric to finite domains, but the definition

carries over to any simply connected subdomain of C with nondegenerate com-

plement. In particular, D6 has a hyperbolic metric. If wo denotes the center of K' it
is easily verified that

hoo(-,w;:1o, !w-wol+t
lw-w6l-r

for any w in Dr. Owing to the choice of (, it follows without difrculty that

h,o(*,,):t*4##=rceffi.
Furthermore, because r<d(zr,lD), it is clear that lzo-wol=-2r, which leads to
the estimate

hro(*, z) =log3.
Finally, the fact that Ds contains D permits us to conclude from an elementary

property of hyperbolic metrics that

hp(29, z) >- hpo(zso z) = hou(*, z)-hoo(*o zo) = bsffi
fot a:2r13, as asserted.

5. Quasi'isometries

A complex-valued function f on a set A in C is called a quasi-isometry if there

is a constant Z>0 such that

lo-r.tl

T=lf(z)-f(w\l= Llz-wl

for all z and w in l. We conclude this paper by recording several characterizations

of the plane domains D with the property that conformal mappings between D and
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,B are quasi-isometries. The first such characterization is merely a special case of
Corollary 1.

Theorem 4. Let f be a conformal mapp@ of a domain D onto B. Then

f is a quasi-isometry if and only if, corresponding to some (each) point zo in D there

exist constants a>0 and b=0 such that

rcråil=ho(zo,r1=rcefi,
wheneuer z and w are distinct points on 0D and y is a geodesic cross-cut of D
terminating in z and w.

Since the quasi-isometric image of ,B obviously satisfies condition (9) in Theo-
rem 3, we can combine Theorem 3 with the Becker-Pommerenke result quoted

in the introduction to obtain:

Theorem 5. Let f be a conformal mapping of a domain D onto B. Then

J' is a quasi-isometry if and only if D satisfies the following two conditions.

(i) There exists a constant c>A such that

maxd((,0D) = clz-wl,

wheneuer z and w are distinct points of 0D and y is a geodesic cross-cut of D
terminating in z and w.

(ii) Corresponding to some (each) point z, in D there exist constants a>O
and b=0 such that

^udAO 
€hp(zo, z) =rcsffi

for all z in D.

Example 1 shows that condition (ii) is not by itself sufficient to insure that/is
a quasi-isometry. In fact Theorem 3 in [7] implies the existence of a Jordan domain
D for which (ii) holds, but for which / is not a quasi-isometry. Finally, since the
quasi-isometric image of .B is always a quasidisk, Theorem 3 yields:

Theorem 6. Let f be a conformal mapping of a domain D onto B. Then

f is a quasi-isometry if and only if D is a quasidisk satisfying condition (ii) in Theorem 5.
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