Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 10, 1985, 445-446

ON PARABOLICITY OF A RIEMANN SURFACE

MAKOTO OHTSUKA

In connection with [2] Professor Grunsky asked the author personally the following question at the Colloquium held at Joensuu in August, 1978.

Let a_1, a_2, \ldots be a sequence of positive numbers decreasing to zero, and denote the points $-1+ia_k$ and $1+ia_k$ in the w-plane by α_k and β_k respectively. Let s_k be the segment $\alpha_k \beta_k$. Let $\alpha = -1$ and $\beta = 1$, and s the segment $\alpha\beta$. Consider an extended plane P slit along s, s_1, s_2, \ldots , and an extended plane P_k slit only along s_k for $k=1, 2, \ldots$ Connect P_k crosswise with P through s_k . Let Q_1, Q_2, \ldots be extended planes slit along s, and identify the upper shore of Q_1 with the lower shore of P, the upper shore of Q_2 with the lower shore of Q_1 , and so on. Denote by R the resulting simply connected Riemann surface $P \cup P_1 \cup P_2 \cup \ldots \cup Q_1 \cup Q_2 \cup \ldots$. The question is as to whether R is of parabolic type.

In this paper we shall prove

Theorem. The surface R is of parabolic type.

Proof. In view of Corollaire 2 of [4, p. 201], it will be sufficient to show that the family Γ of curves starting from a closed disk Δ in P and tending to the ideal boundary of R has infinite extremal length. We may assume that Δ lies above s_1 . Denote by P^+ (respectively P^-) the upper (respectively lower) half of P; let P^- include $(-\infty, -1) \cup (1, \infty)$.

Divide Γ into four families. The first family Γ_1 consists of curves c of Γ such that some terminal part of c is contained in $P^- \cup Q_1 \cup Q_2 \cup \ldots$. The second (respectively third) family Γ_2 (respectively Γ_3) consists of curves of Γ each of which contains a sequence of points of P^+ converging to α (respectively β). The fourth family Γ_4 consists of curves of $\Gamma - \Gamma_2 - \Gamma_3$ each of which contains a sequence of points of P^+ converging to a point of $s - \{\alpha\} - \{\beta\}$. Then $\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4$.

Since $Q_1 \cup Q_2 \cup ...$ forms a "half" of the Riemann surface defined by the logarithmic function, the extremal length $\lambda(\Gamma_1) = \infty$. To prove $\lambda(\Gamma_2) = \infty$, map the part R' of R lying above the left half plane Re w < 0 conformally onto the left half plane Re z < 0, and denote by g the mapping function. Let w = f(z) be the composition of g^{-1} and the projection of R' into the w-plane. Take any $c \in \Gamma_2$ and let $\{w_n\}$ be a sequence of points of $c \cap P^+$ which converges to α and whose image by g converges to z_0 on the imaginary axis. For any $c' \in \Gamma_2$ we can find a sequence $\{\gamma_n\}$ of arcs in P^+ such that γ_n connects w_n and c' for each n and its length tends to

0 as $n \to \infty$. Suppose $f^{-1}(\gamma_n)$ does not tend to z_0 as $n \to \infty$. Then there exist a subsequence $\{f^{-1}(\gamma_{n_k})\}$ and a sequence $\{c_k\}$ of arcs in Re z < 0 such that c_k is a subarc of $f^{-1}(\gamma_{n_k})$ for each k, one end of c_k converges to z_0 and the other end of c_k converges to a point $z'_0 \neq z_0$ on the imaginary z-axis. By applying Koebe's theorem (cf. Hilfssatz on p. 19 of [1]) we conclude that f is constantly equal to α . This is impossible. Thus the image by g of $c' \cap R'$ contains a sequence of points tending to z_0 . By symmetry R is mapped conformally outside a point or a segment on the imaginary axis. The image by g of c' and hence the image of every curve of Γ_2 contains a sequence of points tending to z_0 . Therefore it converges to z_0 or is not rectifiable. It follows that $\lambda(\Gamma_2) = \infty$; see pp. 134—135 of [3] for a proof, for instance. Similarly $\lambda(\Gamma_3) = \infty$.

Finally let Λ_n $(n \ge 2)$ be the subfamily of Γ_4 such that the cluster set of the part in P of each curve of Λ_n is contained in $(-1+1/n, 1-1/n) \subset s$. Evidently $\Gamma_4 = U_n \Lambda_n$. To prove $\lambda(\Lambda_n) = \infty$, denote by $\alpha_k^{(n)}$ and $\beta_k^{(n)}$ the points $-1+1/n+ia_k$ and $1-1/n+ia_k$ respectively, and map P_k conformally onto a rectangle D_k of height one so that the end segments $\alpha_k \alpha_k^{(n)}$ and $\beta_k^{(n)} \beta_k$ correspond to the sides of length one; observe that D_1, D_2, \ldots have the same shape. Given a curve of Λ_n , its image in D_k connects opposite sides if k is large. Define a density ϱ_k in P_k by means of the constant density 1/k in D_k , and let ϱ be the density on R equal to ϱ_k in P_k for $k = 1, 2, \ldots$ and to 0 elsewhere. Then $\int_c \varrho ds = \infty$ for every $c \in \Lambda_n$ and $\iint \varrho^2 dx dy < \infty$. Hence $\lambda(\Lambda_n) = \infty$ for every n so that $\lambda(\Gamma_4) = \infty$. Thus $\lambda(\Gamma) = \infty$.

Remark. The proof was presented at the Colloquium held at Kyoto on the occasion of Professor Lehto's visit to Japan; see [5].

References

- [1] BIEBERBACH, L.: Lehrbuch der Funktionentheorie. Bd. II. 2. Aufl. B. G. Teubner, Leipzig, 1931.
- [2] GRUNSKY, H.: Analytische Fortsetzung über offene Randkomponenten einer berandeten Riemannschen Fläche. - Topics in analysis. Lecture Notes in Mathematics 419. Springer-Verlag, Berlin—Heidelberg—New York, 1974, 143—155.
- [3] LEHTO, O., and K. I. VIRTANEN: Quasiconformal mappings in the plane. Die Grundlehren der mathematischen Wissenschaften 126. Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- [4] OHTSUKA, M.: Sur un théorème étoilé de Gross. Nagoya Math. J. 9, 1955, 191-207.
- [5] OHTSUKA, M.: On parabolicity of a Riemann surface. Sûrikaisekikenkyûsho Kôkyûroku 364, 1979, 1—4.

Gakushuin University Faculty of Science Department of Mathematics 171 Tokyo Japan

Received 11 June 1984