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1. Denote by S, as customary, the class of normalized univalent functions

.f(") : z I azzz a a"zs + ...

from the unit disk D into C. Denote by S, the class of odd functions fi in S. When

Littlewood and Paley [3] proved that the coefficients in

fr(z) : z * brzs *bsz5 l'.., fz€Sz,

have a universal bound B and presumed ,B to be l, Fekete and Szegö [1] were quick

to disprove this conjecture. Observing that the square root operation

f,(z) : {M : 
" 

+ f * * +(""- 
lo 

"r) 
z5 * ...

effects a mapping of S onto & and using Loewner's differential equation, they found

for las-Olqall the exact bound over S, hence lf2ae-zta:1,013"' foilthe
maximum of lå51 over sr. This method works for all functionals la"-)'a?rl, wherc

0<)"<1, and leads to the sharp inequality

lor- ),all = L+zexp h, .f(5,

where 0<1,= 1. This is known as the Fekete-Szegö theorem.

However, besides a2and asbeingreal, the method does not give any information

about functions yielding equality in (1). It is the purpose of this paper to give a full
treatment of the Fekete-Szegö theorem by variational method and thus get a pre-

cise description of the image domain under extremal functions.

2. We denote by @ the functional which is defined by @(fl:a"-).af,, 1<C'

Its range over S is a closed disk centered at 0, and to determine its radius it suffices

to find max" Re @. For functions/yielding this maximum O(f) is obviously posi-

tive. The main problem of this paper is to maximize Re @ over S, where 0<r.=1.
We assumelf to be extremal and apply a standard variational technique. Since

the Frdchet differential of @ at/is given by

(1)

L(d - bs--2arA.br, g(z) - z*bzzz+brz"*..-,
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and

it follows

(2)

L(#)
I *2ar(l - l)w

| +2ar(1 - l)w
w2

(+)'=
w2

0 along 0f@)

as a necessary condition for f to be extremal. More precisely, f(D) is dense in C and
its boundary consists of finitely many analytic arcs such that (2) holds along their
interiors.

In this condition the coeffi.cient a, of the extremal function / is an unknown
parameter. But using the method of Fekete and Szegö one easily gets ctz:
X(210-)"))e-tt<r't), and this opens the road to a full discussion of the extremal
domain f(D). Actually, starting from (2) with ,1:1/4 Schaeffer and Spencer [5]
set up Schiffer's differential equation of f and proved that the extremal function is
unique, up to a rotation through 1800, and maps D onto a domain which is bounded
by a forked slit consisting of the radial half line from - to (ll4)e-rl3 and two
arcs issuing from (ll4)e-rl8 which are symmetric to the real axis, or what one gets
by a rotation through 1800.

Though this procedure works for all ).,0<)"<.1, we will follow below a method
Garabedian and Schiffer [2] used for the coefficient ar. It allows a direct access to
condition (2) and gives a clear insight into what is going on geometrically.

3. We first show that arll for each extremal f. In fact, for ar:g condition
(2) becomes (dwlw\z=.Q and implies that the omitted set oflf must lie on lhe imag-
inary axis and hence/be of the form

(3) "f(z) - -L < P= 1'

For all these functions (one of which has ar:Q) we have O(f):I. But (l) implies
max" Re @>l for 0=1.<1 showing that a2*0 for each/maximizing Re @ over^S.

This last step apparently makes use of the Fekete-Szegö theorem. In Section 5,
however, the extremal function/appears as a solution of (ll), and this equation
may be set up directly without appealing to the extremal property of its solution.
Nevertheless, an elementary example with A(71=l for 0<1.< I would be welcome.

By the same argument as above the functions (3) are extremal for Re @ if
l.:1. One can show that for each ,t(C\{l} a function/maximizing Re@ has
its coefficient d2 non-vanishing.

Since ar(l -I)+0, we set

t,

Zrw.r+zptz-z

(4)

It will prove

(s)

dL : 2ar(A- 1) : ireio, t = 0, d€ R.

convenient to introduce a new function

E@) : dLz I a2zz * aszg + ...
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and a new variable a by setting

(6) a:atf and @-a.'w.
Thus we obtain

1. -2a2( - I)w
w2

(+), __rze_Zia.+(*),
and

(7) _"_,,,#(#),=o

along LE(D) as the necessary condition for the domain 9(D).

4. The quadratic differential
l-rt. ( d.\'
Alr)

appearing in (7) will play an important role. We call its a-trajectory the trace of a
maximal solution to the differential equation

+(#)'-ezia.df,
where t is a real parameter, and will now determine the a-trajectories that emanate

from -.
To find them we fix in the upper half plane the branch of (l-a1tlz which is

I at 0. The Schwarz-Christoffel integral

r(cn): I:Wa,(8) '

is univalent in the upper half plane and takes it onto that part of C which is above

the broken line shown in the nearby diagram.

J (ro*)

ni12

II ilI
0t

crr-plane

Roman marks correspond to sides.

0

.I-plane
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By reflection in the half line I we extend J to a univalent mapping from the

rrr-plane cut along the positive real axis onto C minus the horizontal half strip with
the corners J:tnil2; it takes - onto 0 and the two boundary elements at I onto

nil2 and, -nil2, respectively. The inverse mapping ./-1 takes the open half line

J:eio . t, t>0, for lal <nf2 onto a simple analytic arc that emanates from - and

terminates at 0. It will be denoted by 1,. For o(:0 it is the half line I in the co-plane;

for 0=c=n12 (0=u=-nl2) lt passes through the upper (lower) half plane. It has

the asymptotic half line 
o) : - s-2ia . r -rr3, z = 0,

and terminates at 0 with the tangent vector e-to.

The mapping -/-1 takes the dotted line up ftom nil2 along the imaginary axis

onto an arc I that issues from crr: I under the angle 2nl3 with the positive real axis

and terminates at 0 in vertical direction. Denote its complex conjugate by I. Then

the closure of the arcs / and I, together with the half line III, is the boundary of a
domain O which is the one to one image under "I-1 of the right half plane. Through

each point of O passes one and only one arc fo, lul-nl2; the boundary of O is
denoted by I*.

Now we make use of the trick of Garabedian and Schiffer [2]. By condition (7)

the boundary of the domain E(D) is an unbounded continuum on some f n

-nf2=u=nf2 oronl-*.Theintegral I':#.# is the conformal center of

gravity (G. Pdlya and G. Szegö [4]) of the set omitted by llE and therefore is con-

tained in its convex hull. The residue theorem and (5) yield

I rznd| I 1 dz &2 1

EJ " E@ 
: Ei J aDrEe) 

: - o? 
: l(-fi,'

indicating that the omitted set of l/E has its conformal center on the positive real

axis and so excluding lul<n12, i.e., according to (4) a, must be real (and +0). By

a rotation we may always assume that ar>0 and reserve -c. to a second solution.

By(4)itfollows ar<0 andacomparisonofcoefficientsin (6) implies 2a2()'-l):ul,
hence cr=0. Since a,r-),af, is positive in the extremal case, it follows a3>0 and

then, by a,gfa1:as, that ar>0. We conclude that all three coefficients c1, oc2, dg

arc rcal if f:Ela, is extremal.

5. To determrrre the coefficients il1, il,2 &fld ar explicitly we now use the fact

that E is a mapping from the unit disk. Transplantation of ((t -r't\la'\(dafu)z
with 9 into the unit disk yields

(e)

i.e., Schiffer's differential equation of E. By the preceding section the boundary of
E(D) lies on l-* and has at 0 a mapping radius ar. From (4) and 0=1=1 it follows
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that O-dr< 4, and the omitted continuum therefore contains (besides the half line

[, -)) some portions of the arcs / and I, one of which might be empty. The function
Ä(z) has at 0 a double pole and two double zeros at the points eiq and e'r which
correspond to the two tips on / and I or to the one tip and to e):1, respeciively.

The condition (7) implies R(z)=0 on the unit circle 7 and by the Schwarz reflec-

tion principle we infer

R(z): kI

(1-at)trz, (z-ei|)k-e-it),
wr,ljww 

- 
n-s'a- z2

X
v

z - eiv)(z - eiB

From Ä(z)>0 on Z it follows kei(P+v\>.O. Comparing the two sides of (9) at
z:0 we obtain alkezi{f +t)-l; hence y:-f and k:lla?.

Taking square roots and setting a:e(") we obtain from this

(10)

and by integration

(1 1)

where bV (8)

(r2)

and

where

(14)

(13) F(z)-t-+-2cos f .logz*c

with c a suitable constant. Using the expansion

Jr(co)

for crr*0, inserting (5) for a and eliminating urby ul:2ur(),-l), we obtain at 0
the expansion

u1 Jr(E Q)) : - 1 * n' log z * As* A1z * O (22),

: _ arl2,

:+(h-ros oto),

q8 a? I+12: or- 8 Qry'

IA'
jn,

L
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Comparison of the coefficients in (11) yields

a,L: 4 cos B'

(15) +(#-rog oro)

a" _a? I+12 _ ,
d1 8 (1-,1)'z

Thereare three or two points on Zwhich are taken onto crr:l under a:Ek).
lf z:ei6 is one of them, then by (12) and (13) the equation arJr(1):p(st) be-
cornes 

o:2isin ä-2iö cos B*c
anc[ shows that c must be imaginary. The second equation of (15) then indicates
that c is real, hence zero, and this equation reduces further to

(16) or: 4"*pJ-.).-r'
With ar:aulut and (4) the third equation of (15) gives

a"- )"al: Z-#E al : r*a?18;

hence

a"-)'al: l*2"*n]\,
A-l

which is the maximum of Re @ over S.

6. By the preceding relations it is easy to see that the solution 9 (with ar=O)
is unique and all its coefficients are real. In fact, 2 determines c1 by (16) and the
equation (1 1) has a unique solution for a:E(z). Moreover, since ,/r and F are real
for 0<ar=1 and z-0, E(z) has all coefficients real and the domain E(D) is
symmetric with respect to the real axis.

As already mentioned the boundary of q(D) is made up of the half line a:llt,
t>0, and of two portions on the arcs / and I which we know now to be symmetric.
Let the finite tip with positive imaginary part be denoted by or*. It is given by crr*:
g(etp) since doldz vanishes at e+if . By (ll) we have

al1(a*) : F(eiP) : 2i(sin fr - P cos B),

and by (15) and (12),

./(a,*): !*|<ttr,-B1,,
where cos fr:url4:exp(Ll?-l)). This determines "I(ar*) explicitly and we con-
clude thattheboundary of E(D) is in the preimage under.f of the straight segment
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from ,I(ar*) to J(a*). (See diagram.) Thus, the domain q(D) and the function E
are fully described. The relations (6) finally give the extremal function/in ,s which
for ar=O is unique, and the corresponding extremal domain, i.e., f(z):(llar)q(r\,
a;nd f(D) is obtained from q(D) by the similarity transformation a*w-afch.
Note that 0<ur=4.

There is a second solution to (10), say e_, the unique one which corresponds
to dr: - lcrl and is given by cp _(z):E(-z). Hence f _(z): -f(-z) is the second
function in S that maximizes Re {a"-),af,}.

For 1:0 we have the problem of maximizing Re ds ov€r S. In this case
0E@) is made up only by the radial half line from I to -, nd \f(D\ by the half
line from ll4to - as one knows, of course. For l.<0 we have at:4(l+1,11). So
0E@) is the halfline c,r:(l+l),|)+t, />0, and renormalizing we again obtain
for f a Koebe function. For ,1, > l, however, according to Section 4, the conformal
center of gravity of the set omitted by I lE is on the negative real axis ; hence c : 0,
a, imaginary, \E(D) on l"o from l-). to - åDd/the Koebe function -ik(iz) or
ik(-iz).

Remark that it is the same quadratic differential which in all these problems
plays the key role in finding the extremal domains.

So far the extremal problem is completely solved for ,2' real. For a non-real ,[
one might start in the same way. Since aris agarn non-zero for an extremal function
one gets the same condition (7) for the extremal domain q(D). But the difrcufty
with the unknown parameter a, is now quite serious. We have only a very partial
result showing that not all extremal domains have their boundary forked. Note
that we call \E(D) forked if it contains the radial half line from - to 1 and portions
on / and I which need not to be symmetric and one of which might be empty. Let
f manmize Re E for some l, non-real. Define E and a as in (6). We will give a necessary
condition for.l such that \E(D) is forked at o):1, i.e., a:lnil2 and 0=a1=4.
InthesamewayasinSection5itfollowsthatcin(15)mustbeimaginary,say c:2ir,
and one easily gets bounds for r. If z:ei0 moves along the unit circle, then g(e,o)
passes three times through ar:I, or twice (if 0E@) has only one finite tip), i.e.,
according to (11), the equation

F(ei\ : 2i(sin0-0.cosB+r) : o, 4 cos B : ar,

must have three (or two) solutions for 0. But the function å(0):sin 0-0cos fl
reaches on the interval l-n, nf its maximum at 0: - F arrd its minimum at 0: F.
This gives for c the condition l"l=sin B-P cos B. From (15) we infer that

(17)

hence setting 4r f at: o

(1 8)

), - dr 4ir
H - logi+ 

aL;

we obtain

1
* - log cos f +io, l"l = tg p- p
A- L
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as a necessary condition for l. such that the corresponding domain E(D) has its

boundary forked. Let Fdenote the set of the,t which satisfy (18). Then for ,t€C\F
the boundary of the corresponding extremal domain consists of a single ana-

lytic slit.
On the other hand, if for some .l the extremal domain has a forked boundary,

then,lisin Fand (17) implies cr:4lexp (UQ-l))l; hence, as in Section 5,

a"-).al: r+21*rål
for the extremal functionf It should be expected that for all ). of Fthe corresponding

extremal domain has a forked boundary.
There is a final remark. Let Vs denote the coefficient body {(ar,a"\:fQS},

which is extensively discussed in Chapter XIII of [6]. Besides some limiting cases,

the boundary points of Z, consist of two big classes. The ones, sa! T\; are yielded

by "single arc functions", the other ones, say nz, by "forked slit functions". In plates

I and II of [6] the class a, is shown in yellow, the class z, in blue.

Clearly, functions maximizing las-)'af,l over S, for some )'€C, yield bound-

ary points of Vs. For i real these points are made up by the real pairs (a2, ag)

and lie in z2 (except for l.:l). It should be of some interest to see which part of
the boundary of V" comes from the functions which maximize lat-).af;1 over S.

Added in proof. J. A. Jenkins [7] treated the same problem by his general

coefficient theorem.
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