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ON GAP SERIES AND
THE LEHTO-VIRTANEN MAXIMUM PRINCIPLE

CH. POMMERENKE*

1. Hadamard gap series

Let D denote the unit disk. We consider first functions

(1.1) f(2) =37 yaxz (z€D)

with Hadamard gaps, i.e.,

(1.2) %il—zﬂ>1 for k=1,2,....
k

We assume that the coefficients are unbounded. Then the maximal term satisfies
(1.3) ulr) = max |ag| e > as r—>1-0.

T. Murai [6] has shown that f has the asymptotic value < at every point of
dD. This problem had been raised and partially answered by G. R. MacLane [5, p.

46]; compare also [2]. A quantitative version of Murai’s result was recently proved
by D. Gnuschke and the author:

Theorem 1 [3]. Let f have Hadamard gaps and unbounded coefficients. Then,
for every (€D, there is a Jordan arc C ending at { such that

1.4 M>a for zeC

r(lz))

where o is a positive constant depending only on A.

The proof uses the Lehto-Virtanen maximum principle [4]. We shall prove
a variant of this principle and deduce a partial converse of Theorem 1:

Theorem 2. Let f have Hadamard gaps and let

(1.5) u(ly—]éMlu(r) [-;—ér<1), u(r) > (r—>1-0).
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Then there is a constant M, such that, for almost all {€0D,

(1.6) inf YO _

for every Jordan arc C ending at (.

It follows that Theorem 1 is best possible for every Hadamard function f satis-
fying (1.5). Note that this refers only to the approach along an arc. The average
size of | f(2)|/u(r) on |z|=r is much larger if

f(re®) la | r

1 2n
Ef o | u@) u(r)

The central limit theorem for Hadamard gap series [8, p. 264] gives more precise
information about the average size.

We use the assumption of lacunarity only in connection with the following
lemma, a variant of a standard result [1, Lemma 2.1].

2 2
d0=2’,:’;0[ ]—>+°o as r—>1-0.

Lemma 1. If f has Hadamard gaps and if

a.7) ,u(]-;r]éMlu(r) for -;—§r<1

for some constant M, then there exists M such that
(1.3 (1-1zPIf (2] = Mu(lz]) for zeD.
Proof. Let |z|=r=1/2. Then, by (1.3) and (1.7),
la|rmd2 = p(Vr) = Map(r) (k=0,1,..).
Hence we see from (1.1) that
(2] = Sewo tila|r™e = Myp(r) 302 o ni ™2

Using the fact that n/n;=A=U~" for k=j, we deduce that

—rll_]:_l(/zr—l,- = Mup() 22, (aném nk) rm/2
- M_ﬂtiﬂl(—r)zkzo(m-i-l)rm/? = _M)—

G—-1)A-yry’
and this implies (1.8).
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2. A Bloch-type condition

We drop now the assumption that f has Hadamard gaps and write
@.1) f() = 37002 u(r) = max|a,|r"
We consider the condition

(22) (1=[z1f" (2] = Mu(|z]) (z€D)

where M is a constant. It holds for all Bloch functions and also for all Hadamard
series satisfying (1.7) as Lemma 1 states.

Lemma 2. If(2.2) holds, then
(2.3) A=)’y =Mu(r) O=r<1)
where 1’ denotes the right-hand derivative.

Proof. There exists v such that p(x)=|a,|x" in some interval to the right of r.
Hence (2.2) shows that

; , Mu(r
KO = via |t = maxl @) = 520

Remarks. 1. It follows from Lemma 2 that, conversely, condition (1.7) is a

consequence of (1.8).
2. It is not difficult to show that

2.4 w(r) = %max A=zl ()] O =r=<1).
Hence the constant in (2.2) satisfies M=2e1.

The next result is a variant of a result of O. Lehto and K. I. Virtanen [4, Theo-
rem 7]. For {€0D, we consider the Stolz angle

) 4,0 ={arg-21 <%, l:=ti<o} @=0

of opening 7/2 (which could be replaced by any number <m).

Theorem 3. Let f be analytic in D and let (2.2) be statisfied. Let ,.C be a
Jordan arc ending at (€0D. If

(2.6) ' If(2) = Myu(|z]) for zeC
where M, is a constant depending only on M, then
2.7 1D = u(lz]) for z€4,(0)

if o is sufficiently small.
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Proof of Theorem 2. Let E be the set of all (€D such that (2.6) holds for
some curve C ending at . It follows from (1.5) and Lemma 1 that (2.2) is satisfied.
Hence Theorem 3 shows that (2.7) holds for (€E, ¢=9({)=0.

Since p(r)—e as r—-1-—0, we deduce from (2.7) that f(z)—~< as z—{ in
a Stolz angle at (€E. Hence it follows from Plessner’s theorem (e.g. [7, p. 324])
that mes E=0. This proves Theorem 2 because (1.6) holds for every (€OD\E.

In order to prove Theorem 3 we introduce

_ #(z)
(2.8) V(z) = 7o) (zeD).
The function (see (2.1))
2.9 log ¥/ (2) = max (log |a,|+n log |z])—log | f(2)|

is subharmonic in D except for logarithmic poles at the zeros of f.
Furthermore, we see that, with z=re",

ﬂ, _® i0 ﬂlf’|
A7 Re[ 7=

%% - Wi lRels 'ef” ﬂ;f

where p’ denotes the right-hand derivative. Hence

lgrady| _ wifl+2el/7l _ W 21
L+y2 = @+l T 2 o

and it follows from (2.2) and (2.3) that

|grad Y (2)| _ M
(2.10) 1Ty GF 7 ~TF for zeD.

Lemma 3. Let 0<y(z)=+ = (z€D), let logy be subharmonic in D except
for logarithmic poles and let (2.10) be satisfied. Let G be a domain in D bounded
by an arc of 0D and a circular arc A forming an angle 4n/S with oD. If

2.11) Y(2) =e K (260G0\4), K= 27zM/sin-75£

then Yy (2)=1 for z€G.

This lemma is closely related to the Lehto-Virtanen maximum principle
[4, Theorem 7] [7, Theorem 9.1]. We have specialized the parameters for an easier
statement. Note that i/ need not be the modulus of a meromorphic function.
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Proof (compare [7, pp. 264/265]). Suppose Y/(z2)=1 (z€G) does not hold. Then
there exists a circular arc B with the same endpoints as A forming an angle f<4n/5
with D such that Y (z)=1 in the part H of G\ B with JHCdG U B and further-
more Y(zy)=1 for some z,¢B. If y is a Mobius transformation of D onto D then
Yoy satisfies the same assumptions. Hence we may assume that 4 (and thus B)
ends at =1 and that zy=iy,.

The subharmonic function
(2.12) u(z) = logt//(z)—[-—ﬁ— arg-l—_;——z—] (z€H)
is bounded by —K both on BnJH (because Y (z)=1) and on dG\B (because of
(2.11)). Hence the maximum principle shows that u(z)=—K for z€eH.

We conclude that

K[ 14z =

K+%[2 arc tan y—%) =—logy(z) (iy€H).

Since both sides vanish for y=y, we see that

2K 0 SM
—= Wy=y = ,
,B(l _I_yg) 3_]/ Ogl//(ly)].v Yo 1_y%

by (2.10) and because Y (iy,)=1. By (2.11), this is equivalent to sin f/f=
(5/4n) sin (4n/5), and this contradicts f<4n/5.

Proof of Theorem 3. We have seen that the function y defined by (2.8) satisfies
the assumptions of Lemma 3. Let C’CD be the subarc of C obtained by deleting
a small part near dD. Let 4 be the circular arc through the endpoints of C’ that
forms the angle 4n/5 with D and let G’ be the domain between C” and 4; if G is
not connected, we apply the argument to the components.

We choose M,=exp [—2nM/sin (n/5)]. If (2.6) holds, then Y (z)=1/M, for
z€C. Hence (2.11) is satisfied and we conclude that Y (z)=1 for z€G’. Letting
C’—~C we see that Y(z)=1 in the corresponding domain G. We apply the same
argument to the arc 4* with the angle 4n/5 in the opposite direction and obtain
Y(z)=1 for z€G*. This proves (2.7) because 4,())cGuG* if ¢ is sufficiently
small.

I want to thank Professor W. K. Hayman for our discussions about this problem.
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