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1. Introduction

Bounds for sums of powers of cusp form coefrcients were recently obtained

in tlOl. Subsequently, Moreno and Shahidi [4] have shown that, in the case of
Ramanujan's function z(n), more precise estimates can be obtained for the fourth
power. They have established that the Dirichlet series

)i=rra(n)n-"
has a double pole at s:1312 and so have deduced that

(1.1) Z"=*rt@)-Axlogx
ås r+@r where A is a positive constant and

(1.2) to(n): t(n)n-Itz.

This improves the estimates

(1.3) x<< Zn=*4@)..xlogsx

found in [10]. Presumably, asymptotic results of the form (1.1) hold also for fourth
powers of other newform coefficients not of complex multiplication type.

It is the purpose of the present paper to study an infinite family of newforms

of different weights for which precise asymptotic formulae can be found for every

sum of even powers, and which do not obey an asympiotic formula of the form (1.1)

for the fourth power sum of the coefficients. As indicated at the end of [10] these

forms are associated with Grössencharacters belonging to imaginary quadratic fields

and, for illustration, we take the simplest case, where the field is the field of Gaussian

integers K:QQ\.
For each (€K we put

(1.4) x(0 - r(€)(, xoG)- xc)ll€l.

Here e($ is a Dirichlet character modulo the ideal (4) for which e(i): -1. For
such a character we must have e(l +2i): tl and, for definiteness, we take

r(1 + 2i) : - 1.
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Then, for each r€N, fi is a Grössencharacter for the field K and is associated with
the ideal (4). Note that e, when restricted to Z, is the non-principal character modulo 4.

Put

(1.6) a,(n): I Ztel,=,t'G), a,(n): a,(n)n-'tz,

and observe that, because of the properties of e, we have a,(1):a,(l):1. Let

(1.7) g,(z) : )i=ra,(n)e2"in" (Imz > 0).

Then g, is a cusp form of weight r*l and level64, as noted in [3] (Beispiel 3).

Our object is to obtain estimates for the sums

(1.8) A(F,r; x): Zn=,1a,(n)lzo

for each B>0 and r€N as x+@. In particular, we shall prove

Theorem l. For any positbe integers N and r there exists a positiue number
C(N, r) such that

(1.9) A(N, r; x)-C(N, r)x (log x)o',

gg 16+a, where

(1.10) *: (t1, 
t)-'.

To compare this result with (1.1) take N:2 and note that öz:2.

. Definitions

For each prime p=l (mod 4\,take any fixed (o€K such that l(olz:p. Then
every ( of normp is of the form

(:Eoin or (:€o(-i)",
where v:0,1,2,3 and the bar denotes the complex conjugate. It follows that
xG\:e(to)to or its conjugate, and so

Q.D q,b):2Re{e(()(o/l(ol}': 2cosror

say, where we may assume that 0=0r<n.
Accordingly, for any prime p, we have

(2.2) a,(p) : 2 cos 0,.o,

where

rr0o if p:1(mod4),
(2'3) t,,r: l+n otherwise.
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Finally,let
(2.4') Y"(s) : [o:11moda) (l-Zp-" cos vOr+p-2)-1,

(2.5) G'(s, f) : Z]rlu,(n)lzf n-",

the product and series being absolutely convergent for o:Res>1. We denote by

D the set of Dirichlet series holomorphic and nonzero for o>1.

3. Some lemmas

Lemma 3.1. For each r(N,u, is a multiplicatiue function. Moreouer, for any

prime p ntd positfue integer v

a,(pn +t) : a,(p) q(P') - e(P) a,(P'-t).

This may be proved exactly as in [6]. It may be remarked that a,(n) is identical

with Gtaisher's function x,(n), which he defined [1] by

x,@) _ ]_ z (_ 1)("+ b- L)tz (a + ib)\, ,

the summation being taken over all rational integers a, å for which

a24b2:n, a odd, b even.

For r:4 and 8 Glaisher used these functions in his work on the representations of
a number as a sum of l0 and 18 squares, respectively, and proved their multiplicative

properties. In earlier papers he used a slightly different notation that allowed ;9,(n)

to be nonzero for everi n.

From Lemma 3.1 and earlier remarks we deduce

Lemma 3.2. The fwtction g,(z) is a newform of weight r*1, leuel 64 and

character {+r.

We note that in some ways it is more natural to consider StrQ):S,kl8)' We

can then show that gf has level 8, weight r*1, character d+1 and divisor t:1,
in the notation of [9]. Moreover, g! can be expressed in terms of derivatives of the

simple theta functions' If we write r2:9r'9r'9a, we find easily from the definition

(3.1) that, for any r:?-rn* 1 with rn >0,

(3.2) s*,*,(z):ffiztr=,('";t)t-t)'nl" e)*o-D(z),

while, for r:2rn>0,

(3.3) et^Q) : ffi zf =,('il) (- t;"s5'r (z)e$n-r't (27.

That the expressions on the right-hand sides of (3.2) and (3.3) are in fact cusp

forms of weight r* I can be deduced by the methods developed in [7]. Alternatively,
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at any rate when r is divisible by 4, we can deduce that g! is a modular form, since
in (3.1) (a-lib\ is a spherical harmonic polynomial; see Il].

Lemma 3.3. For each r€N, Yz,€D. Moreouer,for o>-1,

(3.4) G,(s,l): ((s)Y2,G)ärG)

and

(3.5) If p=t(modg(1-p-)-t: ((s)Ilr(s),

where H1 and H, belong to D.

Proof. From Lemma 3 of [10] we deduce that G,(s,1)/((s)eO and also that
(3.4) holds with

flr(s) : (1-2-")Z(s, e) fi e=t(1-p-r),
which is clearly holomorphic and nonzero for o> 1; here and later we omit (mod 4)
from under product signs, for convenience.

The last part follows, since

JJ p=t(l- p-')-' : II p=-L(l- p-'")L(s, e)z(s, e2).

Here the usual Z-function notation is used.

Lemma 3.4. Forfixed fl-O and r(N,

2zf -L lcos |l'P : cp+ Zi=rrp(r) cos 2n0 (0€ R),
where

(3.6) c6 - 
2'8:!(f + tl2) 

.-p lir$+D '

the Fourier cosine series being unifurmly conuergent on R. If P€N, then cp(n):O
for n=p and

(3.?) "r:('u;t).
Proof. The function lcos 0l2f has period z and is continuous and of bounded

variation on [0, z].

4. Proofs of main results

From (2.2), (2.3) and Lemma 3.1 we deduce that

a,(p"): 
W 

for p:1 (mod4), v€N,

and that

ar(p'n): r, ar(p'n-t) : 0 for p: -1(mod 4), v€N.
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Accordingly, for a1y B>O and o>1,

(4.1) c,(s, f) : II p,zG,(s, f , p),

where, for p:l (mod 4),

(4.2) G,(s, f,p): 1+i2cosr 0olzl p-"*)?- | 
sin (v+!)rOe 

l'u p-""tv=21 sin r0, 
I

and, for p= -l (mod 4),

(4.3) G,(s, F, p): (1-P-21-t.

We are now in a position to prove Theorem l. We take a fixed f :N€N and

apply Leinma 3.4, so that we have, omitting the suffix p,

12 cos r0 ,lqN : Zc * 2 2l=, c (n) cos 2nr0 o.

It follows, on using Lemma 2 of [0] and (4.1-3), that

G, (s, f) : If p= -t(1 - p -2"1 -t II n=, (I - n-)-'" Il=r{Y2*(s)ft"r fI, (s)

: ("(s)äa(s),

by Lemma 3.3, with H"and H4tnD. Theorem I now follows from the Delange-
Ikehara Theorem (see Lemma 4 of [10]), since

12N-lt
,: "n: [ .lr ),

by Lemma 3.4.

Theorem 2. For any positiue e and p there exist positiae numbers A,, B,
depending only on r, e and B such that, for all sfficiently large x,

A,x(logx)öt8)-e = A(F' r; x) = B'x(lo9x)ö(6r+"'

where ö(P):2u-1.

Proof. Take any positive e and B. By Lemma 3.4 we may choose a positive

integer Ndepending on e and B such that

l2zn-r lcos r0l2|-gr-=u_rcp(n)cos2nrll = e

for all real?.Take a prime p:l (mod 4). We then find that G,(s, f,p), regarded

as a power series in p-", is majorized by

GI @, f , p) : t-12{c+e+Zl=rc(n)cos2nr0o}n-"+Zlr(v+l1zn o-'"
and 'minorized' by

G,- (s, f , p) : t+2{c - e+ fl^ c(n) cos 2nr0 o} P-".

Similar arguments to those used to prove Theorem I now show that G,(s, f) is

majorized by ("*'(s)I/u(s) and minorized by ("-"(s)äu(s), where Hu and Hu

belong to D. On applying the Delange-Ikehara theorem to these last two Dirichlet
series we complete the proof of Theorem 2. It is tempting to conjecture that Theorem
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2 can be replaced by the asymptotic result

g.q A(f , r; x)-C76(lsg)c)a{F).

In this connexion it may be noted that, for non-integral B, Theorem 2 can be
replaced by the equivalent result:

(4.5) A(f , r; x) : x (log x1otO+orrr,

which is also derivable from a general theorem of Wirsing [3], by using the facto
proved by Hecke tzl,that,for p: I (mod 4),the angles 0n are uniformly distributed
in [0, z]. To remove the term o(1) from the exponent and introduce a constant
factor on the right of (4.5) would, however, require more information about the
behaviour ofthe sum

2 r=',o=' lcos r0rl2P

than is immediately deducible from this fact.

5. Concluding remarks

l. In [l0] upper (for B>1) and lower (for 0<p=1) bounds were obtained
for general newforms of any level. The corresponding logarithmic exponent was

y : y(p) : 22(0-L) -1.
Itisclear that y(f)>ö(f) for B>l and y(D=6(f) for 0<B<1. In particular,
y(2):3, 6(2):2, as already remarkedn and

't(Il2): -112, ö(Ll2): (2ln)-1.
2. The methods of [10] can be applied in conjunction with the result (1.1) of

Moreno and Shahidi to replace the upper bound given in [10] by

(5.1) Z,=*l"o(n)l2p << x (log x)c(p) (f = 2),

where

(5.2) sff) : 22P-s-L - y(f) - 22P-2-1.

For this purpose one requires the inequality

(5.3) l2cos|lzf < 2zF cosa g : 2zf -t(3*4cos20*cos40).

In the range l<B<.2, Hölder's inequality gives (5.1) with
(5.4) a$): f -r.

3. It is possible that the definitions (1.6) and (3.1) could be used to derive di-
rectly, without reference to modular form theory, the results obtained in this paper,
but my attempts to do so have been unsuccessful. However, it may be of interest to
remark that Titchmarsh's [12] two-dimensional version of van der Corput's method
can be directly used to show that

(5.5) Zn*,a*(n) = O(*+"+"7,
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where oc:27182. This is an improvement on the best known bound for cusp form

coefficients of weight I *4r, namelY

O (x" +1/3 *').(5.6)

No doubt the index a can be decreased slightly.

4. Similar methods can be applied to cusp forms associated with other imagi-

nary quadratic fields and also, for example, to the field Q(r) for the other choice

of Dirichlet character in which (1.5) is replaced by e(l *2i\:1.
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