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INVARIANT EXTENSION OF
QUASICONFORMAL DEFORMATIONS

H. M. REIMANN

In a series of papers Ahlfors has studied the differential operator S, mapping
vectorfields in R" into tensorfields of symmetric tensors with vanishing trace. In par-
ticular, he showed that S and its adjoint S* have certain invariance properties with
respect to the group of Mébiustransformations. He then proceeded to give an explicit
solution for the boundary value problem

07""28*"Sv =0, o(x)= x| <1,

1
1—|x)2’
vly=f, 2= {x€R" |x|=1}=0B.

It should be noted that this is a boundary value problem for vectorfields, involving
a hyperbolically invariant second order differential operator. Among other results, he
proved that the solutions satisfy the equation

n(n+1)

SO =30 Da,

[, Vix;tfix) do

provided that f is a tangential vectorfield.

In Chapter 11 of his lecture notes on the geometry and topology of three-mani-
folds Thurston applied the notion of visual averages to vector- and tensorfields on
the sphere X R®. The visual averages were used for the construction of contin-
uous extensions into B of vectorfields f, which were defined on X. The extended vec-
torfields v=ext f were shown to satisfy a certain differential equation. Furthermore
a formula expressing Sv in terms of 9f was derived. It now appears that the two ap-
proaches lead to the same result (for dimension #n=3).

The present paper is structured as follows: The first section is introductory. The
following two deal with the extension of vectorfields. The reader should have no dif-
ficulties in verifying, that the definition for the extension operator given here coin-
cides with the definition given by Thurston.

In the next section, the differential operator S* on vectorfields on the sphere is
introduced and its invariance properties are studied. It is shown that for any tangen-
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tial C'-vectorfield f: X—R" the formula

n

1
sy —
fz S*f;do = (7— —— ]fz (fj+x;f) do
holds. The main result can then be expressed by the formula

n 1
S00) = ——5 o[, Sdo

which holds for v=ext f. The special case n=3 is a different version of Thurston’s
result. The proof given here should clarify the connection between the two different
approaches by Ahlfors and Thurston.

In Sections 7 and 8 the results are applied to the extension problem for quasi-
conformal mappings. The discussion concentrates on c-quasiconformal defor-
mations, i.e. vectorfields v: R"—~R" satisfying |Sv|.=c. These vectorfields have
the property that they generate flows of quasiconformal mappings.

In the lowest dimensional case n=3, the K-quasiconformal mappings ¢:
X —~X can be embedded into a flow of quasiconformal mappings ¢, generated by a
quasiconformal deformation fon X. The extended vectorfield v=ext f is then a qua-
siconformal deformation in B and the flow ¥, which it generates gives the desired
extension. If ¢ is K-quasiconformal then v is K®-quasiconformal. Still in dimension
n=3, the same ex‘ension process can be applied if the quasiconformal mapping
@: XX is invariant with respect to isomorphic discrete groups I' and A of M&bius-
transformations. It should be noted that the methods of Tukia [6] in connection with
the parametrisation of quasiconformal mappings also lead to a proof of this result.

1. The Mdbius group and its Lie-algebra

The Mobius group M(n) is the group of conformal mappings of the extended
euclidean space R"=R"uU {e}. The sutgroup of M(n) which stabilizes the unit ball
B={x€R": |x|<1} is isomorphic to M(n—1), it will also be denoted by M(n—1).
It is a transformation group of both B and X=4B.

The action of the groups M (n) and M(n—1) on the space of C=-functions g is
given by

1g(x) = g(t7'x)

and the induced action on the tangentspace can be described by the formula
w(tg) = 1(vg), TEM.

Here, v is a vectorfield on R”", B or X and vg is differentiation of g in direction of the
vectorfield v. Using euclidean coordinates (these are the only coordinates to be used)
and denoting the standard basis in R” by {ey, ..., e,}, the action can be described by
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the formulas
v(x) =1, vi(x)e;, XER",
w(x) =T x)v(r™1x), T€M(n),

where T'=(t;)), t;;(x)=(01;/0x;)(x), is the Jacobian matrix of the conformal mapping
t=(t,, ..., 7,)- Since we are mainly interested in the action of M (n—1) on B and on
, we can refrain from introducing a coordinate system in a neighbourhood of the
point oo.

An element in the Lie algebra of the M&bius group is a vectorfield generating a
1-parameter subgroup of Md&biustransformations. The Lie algebra m(n—1) of the
Mobius group M(n—1) acting on B or on X has a basis given by the vectorfields

L+ [xf? n
2 € — X j=1xjej, k=],...,n,

I (x) = xe;—x;6, 1=i<j=n.

F(x) =

The Lie bracket (Poisson bracket) is given by
[v, wlg = v(wg)—w(vg), v, wEm(n—1),

\ ow; Jv;
[v, wlj(x) = >, (Uiﬁ—wi (9)61,]

In particular
[£* ¢ =, k <n.

The group M(n—1) acts on its Lie algebra
v—~1, TEM(M—1), v€Em(n—1).

This action is usually referred to as the adjoint representation.
If 7, is the 1-parameter group generated by the vectorfield ¢”, then it follows from
the above commutator relation (by exponentiation) that

1,0* = Chst*—Shst™, k <n,
" ="

2. Extension of vectorfields

For a continuous vectorfield f on ¥ which is tangent to the sphere
x5 NE) =S/ xi(x0)=0, |x| =1,
the extension v=extf is defined by

nil —a%—-/‘z 1f(x) da(x), t€ M(n—1),

a),,=f£do' (ZcC R

(extf)(0) =
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First it is to be noted, that for 7 in the stabilizer of the origin, i.e. for 7 a rotation, the
formula does not lead to a contradiction. In fact, setting v=ext f, tx=Kx with K
an orthogonal matrix, it follows that

w(0) = Kv(0) = ¢,K [ f(x)do(x)
=6 [, @) do(0) =, [ () do ().

Therefore, if 1€ M(n—1) is a Mobiustransformation mapping y onto 0, then the
vectorfield v=extf at y is unambiguously determined by

T(y)(y) = w(0).
Furthermore it follows, that for any g€M(n—1)
o(ext f) = ext (ef).

The extension operator can be represented in the form of a Poisson-type inte-
graloperator. In the remainder of this section, the corresponding kernel is calculated
explicitly.

Since the transformations t€ M(n—1) are conformal, the scalar product

-/ (6. S ) do )

of two tangential vectorfields on the sphere satisfies
1 1
w_"/x (‘L'g (), Tf(x)) do(x) = —C;‘/.z (det T(‘C‘lx))2/"(g(—[-1x)’ f(‘r‘lx)) do (%)

= wif L (det TR)e+D (g (), () do ().

Conformality is expressed by the fact that T(y) is a multiple of an orthogonal matrix.
The transformation 7 is considered as a transformation of R". The expression
(det T(y))»=Y/" is the Poisson kernel for the hyperbolically invariant Laplace
operator. If t€M(n—1) satisfies 7(z)=0 then

_ (A=l ]
Observing that for tangential vectorfields f=(f, ..., f,)
= k
[ fedo ) = [ (" ))x)do ()

' n

one is led to the formulas (Cn=“(;1____1)‘a‘):]
T(0(2) = (0) = & Zp 4O) [, (¢4 1)) do (),

1|z

ly—2zf?

n+1
o) = 6 S5, GG [, 61 N0 (T dot).
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If 7, is the 1-parameter group generated by the Lie algebra vectorfield ¢, then

Shs
w0 =1en &
In order to calculate v at the point
\ r=re, =,
" 14+ Chs "

it is sufficient to know the action of (t;)'=1_; on the Lie algebra vectorfields /*:
1_£*(x) = Chst*(x)+Shst™(x), k<n,

T_"(x) = "(X).
A short calculation gives

1_*(2) = e, k=1,..,n,

and for y€X
(T—s/k, f) = Chsfk-l-Shs(ykf,,—y,,fk)

= it G DA ) k<n

-2 1) = Jas

where we have used that Ch s=(1+r?)/(1—r?), Shs=2r/(1—r?. If cis a unit vector
orthogonal to z, then

2 2 n+1
0o = o [, fenErenEn-@nenf (i) o

whereas for c=e,
2

n+1
no@) =g [, @D () o

It is now easy to verify that these two formulas can be expressed in matrix form by
Ahlfors’ formula ([1], p. 34):

l '2 n+1
o) = — [ 12—k (=206~ M=) o)

( -1) o,
with

‘ Q(x)u - Ix'2 :
In fact, if (c,z)=0 then
—|zf?

n+1
L le] do ()

(6 02) = S [ e Nlz—ple+2G e ) (F2

and

|Z|2 n+1
(0002 = 52 [, (G Nlz=2E=20 2= 0 M ({2Te) do
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3. Properties of the extension

Assume that f: X—~R" is a continuous vectorfield on the sphere XcR", which
is tangent :

(. f(x) =0, [x]=1.
The extension v=extf of f is defined by

w(0) =

5 tf(x)do(x), t€eM(n—1),

or equivalently by Ahlfors’ formula
2\n+1
L[ 1-20G-y) o SETE

( -1 o, ly—z

Proposition 1. The extension v=extf is a continuous extension of f:

v(z) = do ().

ll_l}} v(z) = f(x), x€Z.

This is a result of Alhfors ([1], Theorem 1). For the dimension n=3 a direct
proof is given by Thurston ([5], Proposition 11.1.1).

The differential operator S mapping vectorfields into fields of symmetric ten-
sors with vanishing trace is defined by

dv; | Ov; O (90,,
5= 3 (g + o)~ B

The adjoint operator S* is then given by
a(/)..
J=1 0x;

Proposition 2 (Ahlfors [1], Theorem 1). The extension v=ext f is the unique
solution with boundary values f of the invariant differential equation

L
I—|x?”

Corollary. If f is the restriction of the Lie algebra vectorfield (€m(n—1) to
the sphere, then {=extf.

07" ES*"Sv =0, o(x)=

It suffices to observe that SZ=0.
Proposition 3.

Sv(0); = nn+1) 1

=Ty o s Cifit X do ().

This is a special case of Theorem 3 in Ahlfors [1]. It can be proved directly from
the definition of v=extf.
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4. The definition for S*

First order differential operators on the unit sphere XCR" are given by tangen-
tial vectorfields. Let us in particular consider the vectorfields ¢* from the Lie algebra
of M(n—1)

*(x) = Z}l:l(éjk—xjxk)ej’ x| = 1.
Definition. The differential operator S* mapping tangential vectorfields f

on X into functions S*f with values in the space of symmetric matrices of vanishing
trace is defined by

S*1Gy = 5 (O )t (O f, 60— “’ 2.

a1

The expression ¢'f is the derivative of the vectorfield £ in direction of ¢* (not the Lie
bracket):

£y = S g G

Let us note the following equations for the scalar products:
(&, 09 = 6;;—xix;,
S =20, (1-x) =n—1.
At x= —e, the vectorfields /' are given by
li(—e)=¢ i=1,..,n—1

"(—e,) = 0.
At thlS pomt the OperatOr SE therefore takes the form
af; f 51'] n-—-1 aﬁ . .
S*F(—ey);; = [3x +3x ) n <k=179x;’ i#n, j#n,

0 if i=n or if j=n

Theorem 1. The operator S* has the following invariance property with respect
to Mdbiustransformations t€ M(n—1):

SErf(x) = T(x 'x) S*f(zH T (7 x)
for any tangential C'-vectorfield f on X.

Let us first prove the invariance under rotations tx=Tx, where T=(t;) Is
an orthogonal matrix. A straightforward calculation shows that

O YX) = Zjom (7, )T
In particular this gives

>t (R, 9 (x) = S (T x).
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Furthemore, since (#’,/’)=6;;—x;x; one has
(/ia {k)(x) = Zj,m tim(/m’ ZJ) tkj-

Those equations clearly imply invariance under rotations.
Next let us introduce stereographic projection as the restriction to X of the
Mobiustransformation n€ M(n) given by

2x;
(nx)l |X|2—2x,.+1 ’ 1 1! » h s
_ 1P _
X = o 1 T

This transformation is often referred to as the Cayley transformation. It induces a
bijection between tangential vectorfields on the punctured sphere and tangential
vectorfields on R"~'=9R" . If P(x)=(p;;(x)) is the Jacobian matrix of =, then a
tangential vectorfield f=(fi,...,f,) on X corresponds to the vectorfield f=
(fis -oo» foz1, 0)=nf given by

fx) = P(a='x)f(n""x).

A short consideration shows that the partial derivatives at —e, and 0 respectively
satisfy
ofi

0x;

_ o o
(_en) - axj (0)9 l’] - 19 ey N — 1

Furthermore
P(—e) =31

Consider the S-operator on R"' and set for any Cl-vectorfield f=

(fia "'9f;|—1’0) a 3 5
1(ofi O
57,12 (ox T 9%)-

0 if i=n or if j=n.

2] n Ik . .
n—le:laxk’ i#n, j#n,

If a€M(n) is a conformal mapping, which maps the upper halfspace R", onto
itself, then its Jacobian matrix A=(q;;)) at x€R""'=0QR", satisfies

ain:ani:()a i'___l,...,n—l,
a,, = (det A",

since A is a multiple of an orthogonal matrix leaving invariant the hyperplane (x, e,)
=0. The known invariance properties of the S-operator (see Ahlfors [1], equation
1.7) admit the conclusion that

Sof(x) = A 1x)SF (@ 1x)A (e~ 1x), xER" L

The proof of the theorem can now be completed as follows: Because S< is
invariant under rotations it suffices to prove the theorem under the special assump-
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tion that x=tx= —e,. From the above equations it then follows that

§(0) = P(—e,) S*f(—e) P} (—ey).
If 7 is conjugate to the transformation «,

-1

T =mn"toaon,

then
S*1f(—e,) = P71 (—e,)Sn1af(0) P(—e,)
= P_l (_ en)A (O)P(_ en) SEf(_ en)P_l (_ en)A (0) _lP(— en)
=T(—e)S*f(—e) T (—c,).
Corollary. Under stereographic projection m the operator S* corresponds to

the operator S

Sf(x) = P(n'x)S%f(n " x) P~ (n 1 x).

5. Partial integration on *

Lemma 1.
1 i
J;80xido) =— [ g do(x)
for any C'-function g on ZX.

The proof is based on explicit calculations using polar coordinates

x; =sin6;...sin 0,_,,

X, 1 = sin 0, cos 0,,
x, = cos 0y,

f: gx,do, = ot do,_, f: g cos 0, (sin 0,)"~2 d6,

. 3g 1 1 1 0g

= — fx,.-l do, s P —— (sin6) de, = 90, sin 0, do,,
0, 9 . 0 g .
39gl = 3g1 cos0,sinf,...sin0,_,+...+ 3x:,g_1 cos 0, cos 02—3—i sin 0,,

0g 0g

. _ dg 08 oo . g
sm(?la—‘gl—ax1 xlx,,+...+a—%:x,,_1x,, -3—x—n—(1 b S i (W xkx")Z‘x—k

Lemma 2.

fz (£if. ) do = fz (n=Df;x;+ x;f;) do
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for any tangential C'-vectorfield on X.

Proof. We have
H(x;x) = X (05— X; %)+ (Oap — X:. %),

0 = /i (2’?=1 xekﬁ) = Z)?:l xjxk{l_f;("'Z::lf];/l(x‘lxk): Z:=1 xlxk[’ﬁc‘l‘xjﬁ,
The proof of Lemma 2 is hereby reduced to the statement of Lemma 1.

Lemma 3.

[, 8%f;do = 2%(233’_;;1_)/2 (x.f5+x,f) do

for any tangential C'-vectorfield f on X.

There remains the calculation of the integrals over the expressions
(¢4 Y Sr_ (5 f, &%) = (Sij—x:x)) D Chit X010
First note that
[, 2@ do = [ S0 M ido = (n=1) [ 30, xifudo = 0.
Furthermore
[, xx; Zi fido = [ S0 104 ixi f) =G —xx) =X Ou—Xix,)] do
= [, fixi~fix)) do

which shows that
[, G S, (@, do = [ (afy+x,17) do.
Ftom Lemma 2 it then follows that

n

fs S*f;do = (7_ nil]fz (x.f;+x;f) do.

6. The main result

In the previous section it was shown that for tangential C-vectorfields on Z
the formula

fx S*f,jdo = i%?—g;—l)fx (e fi+x;f) do

holds. Since this formula is based on partial integration, it still holds if the tangential
vectorfield f only has distributional derivatives (in the direction of the vectorfields
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/i, i=1, ...,n) which are integrable. In connection with Ahlfors’ formula

__nEn—I—;; (: f (x;fi+x;f)do

this result means that we have proved the following theorem

Sv(0);; =

Theorem 2. Assume that the continuous vectorfield f: X—R", n=3, is
tangent to X and has integrable distributional derivatives. Then the extension v=extf
satisfies

Sv(0) = L S3f ) do.

For the case n=3 this theorem (in a different form) is due to Thurston ([5],
Proposition 11.1.5).

Corollary 1. If 1€ M(n—1) is a Mébiustransformation, mapping the unit ball
onto itself and the point z into the origin, then

k1

105500 () 0o

Sv(z)=T(z)?!

(T(x) is the Jacobian matrix o f T at x).

If the theorem is applied to tf, the corollary follows from the invariance relations
for S and S°.

7. Quasiconformal deformations

A continuous vectorfield v: R"—~R" is a c-quasiconformal deformation, if it
has locally integrable distributional derivatives and if

|Sv]l.. = supess |[Sv(x)] = ¢ <-oo.
x€ER"

In the present context, the norm of an n X »n matrix A is defined by

|4] = sup |4y|.
[y|=1

Observe that if T is a multiple of an orthogonal matrix, then
|TAT | = |4|.
For dimensions n=3 the only conformal deformations (i.e. the 0-quasicon-
formal deformations) are the vectorfields in the Lie algebra of M (n). Furthermore

any quasiconformal deformation in R"” decomposes as the sum of a conformal defor-
mation and a quasiconformal deformation satisfying

v(x) = O(|x|log |x]), |x] —e
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(Sarvas [4]). This last statement is also true for n=2. In this case the conformal
deformations are given by the analytic functions. The condition
15l =c
can be written in complex notation f=f;+if; as
Ref, Imf;
il = | )
Imf, —Ref,

and the equation f,=g with |g|.=c admits a continuous solution f with f(z)=
O(|z| log |z)).

In view of the corollary to Theorem 1, the c-quasiconformal deformations on the
sphere YCR", n=3, can now be defined as the continuous tangential vectorfields
f with integrable distributional derivatives satisfying

[S%f] . = supess|SEf(x)| = ¢ <.
xX€X

<c,

oo

If fis such a vectorfield, then under stereographic projection it is mapped onto a
vectorfield

f: (le’ "':.f:x—‘l)
1571l = 1S/ -

Conversely, if fis a c-quasiconformal deformation on R"™! which satisfies
f(x)=0(|x| log |x|), then it is the image under stereographic projection of a quasi-
conformal deformation f on X. The only difficulty arising is the singularity at e,.
However, by the results of Sarvas [4] this is a removable singularity.

Needless to say, the Lie algebra vectorfields are mapped isomorphically under
stereographic projection.

satisfying

Corollary 2. If f: Z—R" is a c-quasiconformal deformation, then v=extf:
B—R" is a (nc/(n—2))-quasiconformal deformation (n=3).

Let 1€ M(n—1) be a Mobiustransformation such that 7z=0. Then

n

|Sv(2)| = |T(2)Sv(2)T(2)7Y = |St0(0)] = — wilfz S%zf(x) da(x)l

= niz w_lfx TGS ()T (7 x)|do(x) = %w—lf; ¢ do.

We will need the following theorem [3]:

Suppose that v(x, t) is a c-quasiconformal deformation in the sense that

a) v(x, t) is continuous on R"X[0, 1] and has locally integrable distributional
derivatives,

b) v(x, ) = O(|x|log x[), |x| <=,
) I1Sv(-, )] = c.
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Denote the solutions of the differential equation

d

—_— = t

rX=vx% 0

with initial condition x(0)=z by ¢(z, t). Then for fixed t, ¢(z, t) is a e*'-quasicon-
formal mapping.

For the special case n=2 this theorem has a converse, known as the parametric
representation of quasiconformal mappings (see e.g. [2]):

If ¢: C~C is a K-quasiconformal mapping, then there exists a ((log K)/2)-
quasiconformal deformation v(x, ¢) such that the flow ¢(z, ¢) as defined above satis-

fies ¢(z, D=0(2).

Corollary 3. A K-quasiconformal mapping of XCR® onto itself extends to
a K3-quasiconformal mapping of the unit ball BC R®.

If ¢: ¥—~Z is a K-quasiconformal mapping, which we assume to be normalized
by ¢(e,)=e,, then there exists a ((log K)/2)-quasiconformal deformation f(x, ¢):
R%X[0, 1]-R?* whose flow @(x,t) satisfies

@ (x,1) = nogon~1(x).

The transformed vectorfield n~1f=f is then a ((log K)/2)-quasiconformal deforma-
tion on X (with a parameter ¢) and can therefore be extended to a ((3 log K)/2)-
quasiconformal deformation v=extf on B. If as above Y/ (z, t) is the solution of the
differential equation (d/dt)x=wv(x,t) with initial condition ¥ (z, 0)=z€B, then

(Y1), z€B,
‘”(Z’z{qmz), €3,

is a K3-quasiconformal extension of ¢.

8. Group invariant extensions of quasiconformal mappings

Theorem 3. Assume that 0: I'~A is an isomorphism between groups of Mi-
biustransformations I', ACM(2), acting on the unit ball B=BUZX in R3. Further-
more, assume that ¢: X—~2 is a K-quasiconformal mapping satisfying

@oy = 0(y)op for all vyer.
Then ¢ extends to a K3-quasiconformal mapping : B—~B such that
Yoy =0(y)oy for all y€r.

Before giving a proof of this theorem let us first recall some well known facts
about quasiconformal mappings ¢: C—~C and their parametric representations.
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Assume that ¢ is normalized by ¢@(0)=0, ¢(1)=1, @()=<- and denote its
dilatation by p. If lop=¢oy for some Mdbiustransformations 4, y, then

u@y) = %(rly)u(y-ly)

as can be seen immediately by differentiating the conjugation relation.
Conversely, if the complex dilatation u of the normalized quasiconformal map-
ping ¢ satisfies

n(y) = %(v*ly)u(v‘ly)

where y is a Mdbiustransformation, then the mapping A defined by

Aog = @oy
is a Mobiustransformation.
The parametric representation ¢(z, t) for the normalized quasiconformal map-

ping ¢ is constructed as follows: Define p(z, t) by the equations

1+ |p(z, 1) =[1+lu(2)l)' 0
1—[u(z, 0 1—|u(| )’
arg u(z, ) = arg u(2).

Then ¢(z, t) is the unique normalized solution of the Beltrami equation

[IA
lIA

=1,

: = u(z, 0No..
If now lo@=qoy, then not only pu(z) but also u(z, ¢) will satisfy the equation

p(v, 0 = —;-)7(?_13/)#()’_1)’, 0.

Hence there exist Mobiustransformations A, such that ¢,(z)=¢(z, t) satisfies
O P; = @;07.
The quasiconformal deformation associated to the parametric representation is
the vectorfield defined by
d
f((D(Z, t), t) = E?(o(z’ t)'

If J,0p,=@,0y, then it satisfies

. d d d , d
f(9i07) = —= 4107 = — 0@, = 0@+ M@ s

£, ) =P (42091, ).

Observe now that the mappings A, are Mdbiustransformations. Hence the vector-
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field g defined by
_di
g(h (), 1) = S ()

is in the Lie algebra of the Mobiusgroup (acting on €). Using the notation A f for
the vectorfield f transformed by the M&biustransformation A,, we find that

A fw, ) = A x)f e 1) (W= A4(x)),
Jfw, 5) = g(w, t)+j'tf(w’ )

For the proof of Theorem 3 it can be assumed that the K-quasiconformal map-
ping ¢: X¥—X is normalized by the requirement that e;, e; and —e; are fixed points.
Consider then the conjugate K-quasiconformal mapping ¢=nogpon~': C—~C and
the conjugate groups I'=nolon~), A=noAdon~! and construct the associated
parametric representation and vectorfields f(x, ), g(x, t). These vectorfields can be
mapped onto tangential vectorfields on the sphere such that one arrives at the follow-
ing situation: There exists a ((log K)/2)-quasiconformal deformation f,(x)=f(x, )
and a 1-parameter family of quasiconformal mappings ¢,(z)=¢(z, t) of the sphere
such that

d
E(p(z’ t) :f((p (Zs Z): t)a
?(z,1) = 0(2).
Furthermore there exist groups I', and Lie algebra vectorfields g,(x)=g(x, ) such
that
Jo=g&t+Afi, t€[0,1]
(4y=T, A;=A and g, depends on 7).
The extended vectorfields
v, = ext f;,
u, = ext g,
then satisfy
v, = U+ A0,
where A,v, is the vectorfield v, transformed by the Mobiustransformation 1, acting
on B. Furthermore, u, is a Lie algebra vectorfield (conformal deformation) and one
must have

dA
d—;(z) = ut()“t (2), t)s ZEB,
since this equation holds on X.

By Corollary 2, v is a ((3 log K)/2)-quasiconformal deformation. The K-
quasiconformal mappings ,: B—B, which are solutions to the equation

4y, = o)
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with initial condition ,(z)=z are extensions of ¢,. It must be shown that
Aoy, = Y,oy.
The mappings y,=A.0¥, satisfy the differential equation

41 = L 11, 1), x = (2,

as can be seen by differentiating with respect to ¢ and applying the chain rule. Since

% () = u(4(x), 1)

and
v(w, ) = u(w, )+ Av(w, 1)

it follows that y, satisfies the differential equation

< 1@ = o), 1)

and the initial condition
X0(2) = Agoo(2) = 7(2).

However, the function y,0y(z) satisfies the same differential equation with the same
initial condition. Since the solutions are unique, it follows that

Y0y = Aoy,.
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