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In a series of papers Ahlfors has studied the differential operator S, mapping
vectorfields in ,P into tensorfields of symmetric tensors with vanishin g lrace. In par-

ticular, he showed that S and its adjoint S* have certain invariance properties with
respect to the group of Möbiustransformations. He then proceeded to give an explicit
solution for the boundary value problem

Q-n-2,S*QnSu - 0, q(x) : #, l"l = I,

ulz:f, ): {x(R': lxl : t}:83.

It should be noted that this is a boundary value problem for vectorfields, involving

a hyperbolically invariant second order differential operator. Among other results, he

proved that the solutions satisfy the equation

su(o);, : m;!,(rtxi+f1x,) ao

provided that f is a tangantial vectorfield.
In Chapter 1l of his lecture notes on the geometry and topology of three-mam-

folds Thurston applied the notion of visual averages to vector- and tensorfields on

the sphere ^EcR8. The visual averages were used for the construction of contin-
uous extensions into .B of vectorfields / which were defined on ^8. The extended vec-

torfields a:extf were shown to satisfy a certain differential equation. Furthermore

a formula expressing Su in terms of ffwas derived. It now appears that the two ap-
proaches lead to the same result (for dimension n:3).

The present paper is structured as follows: The flrst section is introductory. The

following two deal with the extension of vectorfields. The reader should have no dif-
ficulties in verifying, that the definition for the extension operator given here coin-
cides with the definition given by Thurston.

In the next section, the differential operator S' on vertorfields on the sphere is

introduced and its invariance properties are studied. It is shown that for any targen-
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tial Cr-vectorfield f: Z * Rn the formula

Irt'fijdo - (+-#)1,@,ri. xifi)do

holds. The main result can then be expressed by the formula

su(o): #+l,s,fdo
which holds for a:extf. The special case n:3 is a different version of Thurston's
result. The proof given here should clarify the connection between the two different
approaches by Ahlfors and Thurston.

In Sections 7 and 8 the results are applied to the extension problem for quasi-

conformal mappings. The discussion concentrates on c-quasiconformal defor-
mations, i.e. vectorfields u: Rn*R' satisfying ll Sull-=c. These vectorfields have

the property that they generate flows of quasiconformal mappings.
In the lowest dimensional case n:3, the K-quasiconformal mappings E:

E*2 can be embedded into a flow of quasiconformal mappings %generated by a
quasiconformal deformation/on .E. The extended vectorfield u:extf is then a qua-

siconformal deformation in .B and the flow ry', which it generates gives the desired
extension. If g is K-quasiconformal then ry' is K3-quasiconformal. Still in dimension
n:3, the same exlension process can be applied if the quasiconformal mapping

E: E-Z is invariant with respect to isomorphic discrete groups f and A of Möbius-
transformations. It should be noted that the methods of Tukia [6] in connection with
the parametrisation of quasiconformal mappings also lead to a proof of this result.

1. The Möbius group and its Lie-algebra

The Möbius grotp M(n) is the group of conformal mappings of the extended

euclidean space ån:R"u {-}. The subgroup of M(n) which stabitizes the unit ball
3:{x6Ro: lxl=1} is isomorphicto M(n-l), it will also be denoted by M(n-l).
It is a transformation group of both B and Z:0B.

The action of the groups M(n) and M(n-l) on the space of C--functions g is
given by

rg(x): g(t-Lx)

and the induced action on the tangentspace can be described by the formula

w(rg): r(ug), r(M'

Herb, u is a vectorfield on in, B or 2 and og is differentiation of g in direction of the
vectorfield u. Using euclidean coordinates (these are the only coordinates to be used)
and denoting the standard basis in R' by {e, , . . ., €o), the action can be described by
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the formulas .,

u(x) : )i=rui(x)e1, x€Ro,

tu(x) : T(r-rx)o(t-Lx), r(M(n),

where T:(l t), tii(x):(0trl0x)(x\, is the Jacobian matrix of the conformal mapping

":Gr, ..., roi. Since we are mainly interested in the action of M(n-l\ on 'B and on

X, we can refrain from introducing a coordinate system in a neighbourhood of the

Point -'
An element in the Lie algebra of the Möbius group is a vectorfield generating a

l-parameter subgroup of Möbiustransformations. The Lie algebra *'(n-l) of the

Möbius grotp M(n-l) acting on B or on X has a basis given by the vectorfields

/k(x) : Yff"o-*oZ'j=,xiei' k: !' "''n'

|il(7c) : xi€i-xi€i, 1 < i = i =n'
The Lie bracket (Poisson bracket) is given by

lu, w|g : a(wg)-w(ug), u, w(.oe(n-l),

lo, wlig) : Zi=r(r, * - r,H).
In particular

f/k'/"1 :Xk"' k'n'
The group M(n-l) acts on its Lie algebra

o * rt), r(M(n-l), o(n(n-l).

This action is usually referred to as the adjoint representation.

If ro is the l-parameter group generated by the vectorfield f,then it follows from

the above commutator relation (by exponentiation) that

r"/k: Chslk-Shsfk', k = n,

t"/n : /''

2. Extension of vectorfields

For a continuous vectorfield J' on ^E which is tangent to the sphere

(x, f)G) : Z;=rxifi(x) - 0, lxl - 1,

the extension u-extf is defined bY

r(extfxo) : #+ [ rrf(x) do(x), rQM(n- 1'),

@,: Irdo (z c. Rn).
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First it is to be noted, that for r in the stabilizer of the origin, i.e. for r a rotation, the
formula does not lead to a contradiction. In fact, setting u:axtf, rx:Kx with f
an orthogonal matrix, it follows that

zu(0) : Ku(0) : r,Kf ,f@)do(x)' : c,trflrx)do(*): r,f r{Q)do(y).
Therefore, if KM(n-l) is a Möbiustransformation mapping J, onto 0, then the
vectorfield a:extf at y is unambiguously determined by

rj)u(Y): zu(6).

Furthermore it follows, that for any e(M(n-l)
q(extl) : ext(Pf)'

The extension operator can be represented in the form of a Poisson-type inte-
graloperator. In the remainder ofthis section, the corresponding kernel is calculated
explicitly.

Since the transformations r(M(n-l) are conformal, the scalar product

L I 1n1*1. r(x))do(x)
o)n J 2\6t't'1 '

of two tangential vectorfields on the sphere satisfies

I r,(z g (x,,,.], 

iT *i,,;:::: ; ::;:::,'J;,, 
n - o) d. (x)

61 J 2\"-'- tttl

Conformality is expressed by the factthat f (fl is a multiple of an orthogonal matrix.
The transformation r is considered as a transformation of rtn. The expression
(Aet f1y1;r'-ol" is the Poisson kernel for the hyperbolically invariant Laplace
operator. lf r(M(n-l) satisfies r(z):9 11tnt

detr(1)-(ffi)" ye.

Observing that for tangential vectorfields f:(fr, ...,f)

I rfoao@) 
: f r(/o, fl(x)do(x)

one is led to the formula" (r,: . ll_*-" 1""_@$)
T(z)u(z): zu(0) : c,Zi.=rtoQ) I, Vo,"f)(x) do(x),

o (z.s : c, 2X =, @ 
n fo) Q) l, k -' /o, f) (y) (ff1".' d o ( y).
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If r" is the l-parameter group generated by the Lie algebra vectorfield /",then

?"(0): ffi",
In order to calculate u at the point

z: ren: ffi%
it is sufficient to know the action of (r")-r:1-" on the Lie algebra vectorfields /t:

t -"/k (x) : chslk (x)* shs/h"(x), k < n,

A short calculation gives 
t-"/"(x\:/"(x)'

' r-"/o(z): #rr, k: l, ..., n,

and for y€ 
^E

(" - "/0, 
f) : Ch sf*+ sh s(yef,- y,f)

l-t'z ): frfo+fr, (YoQ, fl-foQ, Y)), k' n,

(r -"1",.f\ - f,,
where We have used that Chs:(l +r'z)/(l -rz), Sh s:2rl(l -r21. lf c is a unit vector
orthogonal to z, then

(c, a (z)) : 
" 

n f , {a, n $ + @, v) (2, ! ) - (c, f ) (', rl (ffi)" 
*' 

o o rr',

whereas fot c:e,

(e^,u(z)): ",5{ I, e,n[ff)"*' oo(r).

It is now easy to verify that these two formulas can be expressed in matrix form by
Ahlfors' formula ([], p. 34):

o (z) : ffi + [, t z - v l'z (r - 2Q Q - v)) f , r, | ^ A,ry" -, l" 
*' 

o o (r)

with

In fact, if (c,z):Q 1fusn 
Q@)ti:ffi'

(c, o(z)) : Z I, {@, fl1"-yl,-t2(2, fl(c, ril(ffi)"*' Oorr,

and

(e,, o (z\) : * I, {G, fl lz - vlz - 2 (2, z - !) (2, il (ffi)" 
*' 

oo rrr.
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3. Properties of the extension

Assume that f: )-Ro is a continuous vectorfield on the sphere .EcRo, which
is tangent 

@,f(x)) :0, rxr : t.

The extension ?:ext./ of/is defined by

zu(o) : #+ I r{'(x) do(x), r€M(n-t),

or equivalently by Ahlfors' formula

u (z) : th + [,{r -ze{, - v))1 0) ffi do 0).

Propositio n l. The extension u:ext.f is q continuous extension of f:

Hu("):.f(x)' x(2'

This is a result of Alhfors ([], Theorem 1). For the dimension n:3 a direct
proof is given by Thurston ([5], Proposition ll.l.l).

The differential operator S mapping vectorfields into fields of symmetric ten-
sors with vanishing trace is defined by

(...' | ( 0q , 2'r\ 
-ö,t >.! -%.ou)ii TIE-61--;.zr=tfi '

The adjoint operator S* is then given by

(,S*E), : Z;=rW.
Proposition 2 (Ahlfors [l], Theorem l). The extension a:extf is the unique

solution with boundary oalues f of the inuariant dffirential equation

q-n-zS*qnSu:0, q(x): +r - lxl'

Corollary. If f is the restriction of the Lie algebra uectorfield /(rn(n-l) to
the sphere, then /:extf.

It suffices to observe that S/:0.

Proposition 3.

sur$.. -n(n+r) 
I I(o);i : Zffi * J r@ifi* xifido(x).

This is a special case of Theorem 3 in Ahlfors []. It can be proved directly from
the definition of a:extf.

I
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4. The definition for S'

First order differential operators on the unit sphere .X c R' are given by tangen-

tial veciorfi.elds. Let us in particular consider the vectorfields /k from the Lie algebra

of M(n-l) 
rk61: Zi=r(öi*-xix)ei, lxl : l.

Definition. The differential operator St mapping tangential uectorfields f
on E into functions Stf withualues in the space of symmetric matrices of uanishing

trace is defined by

s D .f(x)ii : ! v' f, /, + + v r f, t\ - 
(;':? 

zx=, vo f, /o).

Theexpression lif isthederivative of the vectorfield/indirection of fi (not the Lie

bracket):

n,

with respect

r'f@)i - ZX=r#(öio- xixr,).

Let us note the following equations for the scalar products:

(/i, /i) - öij xixit

ZX=r(/k, /o) : ZX=1 (1 - x') : n-1.

x- -en the vectorfields 7i are given by

/'(-€n): €i i - 1, ...,fl-l

/"(-en) :0' 
:

this point the operator ,S' therefore takes the form

,s,r(- en)ii :[+(#.#)-+zx:i#' i#tt' i *
[O if i-n or if i:n.

Theorem 1. The operator SE has the following inuarionce property

Möbiustransformations x(. M (n- l) :

sz rf(i) - T(r-t x) s'J'(t-t) 7-t(t-tx)
qny tangential CL -uectorfield f on D.

Let us first prove the invariance under rotations rx-Tx, where

orthogonal matrix. A straightforward calculation shows that

(/, rf, /o)(x) : Z j,* ti,,(/*f, /i)(t-t x)t nj .

particular this gives

>.' ,(/o tf, /o)(x) - Z\=r(/kf, /o)(t-l.r).Z.tk:

At

At

T-(t,) is

to

for

an

In
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Furthemore, since (/t, /):öu-xixi one has

(/t, /k)(x) : 2 i,^trn (l^, lJ)trq.

Those equations clearly imply invariance under rotations.
Next let us introduce stereographic projection as the restriction to .E of the

Möbiustransformation n€M(n) given by

(nx), : &n, i : t,...,n-1,
1-l-12(nx)n:EöF, i: n.

This transformation is often referred to as the Cayley transformation. It induces a
bijection between tangential vectorfields on the punctured sphere and tangential
vectorfields on Rn-l:åRi. If P(x): (pri@)) is the Jacobian matrix of z, then a
tangential vectorfield f:Ur,...,f,) on X corresponds to the vectorfield f:
(fr, ..., fn-t, o):nf given bY

f(x): P(n-'x)f(n-'x).
A short consideration shows that the pafiial derivatives at -e, and 0 respectively
satisfy

Furthermore

Consider the
(ft, ... rfn-1 , 0)

Sf,i_
|fo
M, i*tt, j#n,

#?e,) 
: 
#(o), i, i : t, ..., n- 1..

P(-e,,) - + I.

S-oper ator on Rn-1 and set for any Ct-vectorfield f-

lf a(M(n) is a conformal mapping, which maps the upper halfspace Ri onto
itself, then its Jacobian matrix A:(ai) at x(R'-L:åRi satisfies

ain: a6:01 i : 1r.,.rn-1,
ao,: (det Afln,

since ,4 is a multiple of an orthogonal matrix leaving invariant the hyperplane (x, en)

:0. The known invariance properties of the S-operator (see Ahlfors [], equation
1.7) admit the conclusion that

Stw> : A(a-L x) Sf(a-L x) A-L(a-L x), x€Rn-t.

The proof of the theorem can now be completed as follows: Because S, is
invariant under rotations it suffices to prove the theorem under the special assump-
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tion that x:rx: -en. From the above equations it then follows that

^ff(o) 
: P (- e) s'f(- e,\ P-t (- e).

If z is conjugate to the transformation a,

T : n-loq.oqr,
then

S' fl- e) : p-r (- e) Sn-r af(O) r 6 e,)

- 
D-L/ye,)A(0)P(-")St.f (-e,)P-L(-e,)A(O)-LP(-e)

= T (- e,) sz f(- e,) T -L (- c ).

Corollary. (Inder stereographic projection n the operator S' corresponds to

the operatur s 
sfixy : p(n-Lx)s2f(n-rx)p-L(n-rx).

5. Partial integration on ^E

Lemma l.

for any c,-function'; :::'" 
o' : # !'/t g(x) ito (x)

The proof is based on explicit calculations using polar coordinates

rr:. Sitr 01...sin 0n-1,

xn-L: sin 0t cos 02,

'fn : COS 01'

I, gndo, : f r.-,doo-r/i s "ot 
0'(sin0if-2 it01

: - f ,,u 
0", -, fi #o| r-t" lt\,-t dlL : - # [, ff,'i" 01 do n,

# - ff "org1 
sin g,... sin 0o-1 *... +7fi 

"o. 
o, cos o,-fisin g,,

sinl,ffi : ff*,*,+ .*#o-,*-#(t-xil: - ZX=,,(6,,-x*ilff.

Lemma 2.

485

I r{ttf, /i) do : I ,Kn-r)fixi* xrf) do
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for any tangential Cr-aectorfield on Z.

Proof. We have
li (x i x e) : xv(ö ii - x ix ) -f x i (ö v- x ix n),

0 : lr (ZX =, x i *o f) : Zi =, x, xrlt fi + )i =, "f,,/i (x i x) : 2X =, x, xolt fr + x i fi,
(/t.f , /\ : ftfi- 2X=, x, xolifo = tifi * xifi'

The proof of Lemma 2 is hereby reduced to the statement of Lemma l.

Lemma 3.

1, r"fi, a, : ffi !,@,f,+*,fi ao

for any tangential Cr-uectorfield f on E.

There remains the calculation of the integrals over the expressions

(/t, /i) ZX=r.(/* f, fo) : (öii- xixi) Zl=r(tkfo+ xf).
First note that

IrzX=,ukf, /\do : IrzX=,t*fodo : ("-D IrZ\=,xpf1,do 
:0.

Furthermore 
.

f , *, *, ZX =, lk fo do : !, ZX = rffk (x ix 1 f) -fyx,(ö o, - xyx ) -fi,x i (ö *- x ix *)l do

: I r{-fi*r-fr*i) do

which shows that

! r{tt,ti) ZX=rVr./, fr) do : f r@,fi+ xin ao.

From Lemma 2 it then follows that

6. The main result

In the previous section it was shown that for tangential Cl-vectorfields on .E

the formula

I, szfii ito : !#P ! ,t*,f,+ *, f,) ao

holds. Since this formula is based on partial integration, it still holds if the tangential

vectorfleld f only has distributional derivatives (in the direction of the vectorfields

I
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li, i:1,...,n) which are integrable. In connection with Ablfors' formula

su(o)ry : m+ [,{r,f,+*,,f;) ao

this result means that we have proved the following theorem

Theorem 2. Ass_ume that the continuous oectorfield f: 2*R", n>-3, ls
tqngent to E and has integrable distributional deriuatiues. Then the extension o:extf
satisfies

. su (o) : #+ !,s'1x1ao.
For the case n:3 this theorem (in a different form) is due to Thurston ([5],

Proposition I 1.1.5).

Corollary l. If rQM(n- l) is a Möbiustransformation, mapptng the unit ball
onto itself and the point z into the origin, thm

sa (z) : r (z) 4 
n:T { I, r e) s' f e) r -' 0) (ffi)" -' o o 1r7, 1,1

(f1x) * the Jacobian matrix of r at x).

Ifthe theorem is applied to cf,the corollary follows from the invariance relations
for S and S'.

7. Quasiconformal defornations

Ä continuous vectorfield o: Rn*Ro is a c-quasiconformal deformation, if it
has locally integrable distributional derivatives and if

ll,Sull- : rt?;"* lsu(x)l 3 s < a.

In the present context, the norm of an nXn matrix ,4 is defined by

lll : ilrt l,lyl.

Observe that if T is a multiple of an orthogonal matrix, then

ITAT-LI: lAl.

For dimensions n >3 the only conformal deformations (i.e. the 0-quasicon-

formal deformations) are the vectorfields in the Lie algebra of M(n). Furthermore

any quasiconformal deformation in Rn decomposes as the sum of a conformal defor-
mation and a quasiconformal deformation satisfying

u(x): O(lxllog lxl), lxl *-
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(Sarvas [a]. This last statement is also true for n:2. In this case the conformal
deformations are given by the analytic functions. The condition

ll,lfll- = c

can be written in complex notation f:fr*if2 as

tif,,,_ : ll(fff _!{"!)il_= ",

and the equation 7-:g wrth ilgll-=c admits a continuous solution/witn 7p1:
o(lzltoglzl).

In view of the corollary to Theorem l, the c-quasiconformal deformations on the
sphere DcRo, n-3, can now be defined as the continuous tangential vectorfields

f witn integrable distributional derivatives satisfying

lls7lJ- : supess lsTx)l € c <-.

If/is such a vectorfield, then under stereographic projection it is mapped onto a
vectorfield

f : (fr, -.-,:f,-r)
satisfying

il,yil-: ilsyil-.
Conversely, if I is a c-quasiconformal deformation on Ro-l which satisfies

f(x\:o(lxllog lxl), then it is the image under stereographic projection of a quasi-
conformal deformation f on E. The only difrculty arising is the singularity at en.

However, by the results of Sarvas [a] this is a removable singularity.
Needless to say, the Lie algebra vectorfields are mapped isomorphically under

stereographic projection.

Corollary 2. ff f: Z*R" is a c-quasiconformal deformation, then u:extf:
B*R" is a (ncl(n-2))-quasiconformal deformation (n>3).

Let r€M(n-l) be a Möbiustransformation such that rz:0. Then

lsa (z)l : lr (z) su (z)r (z)-'l : lszu (0) | : # +l[, s' r1x) cro (x)l

= #+ !,V{,-'r)s2f(r-'Ix)rQ-Lx)ldo(x) = #+ f ,c do.

We will need the following theorem [3]:

Suppose that u(x, t) is a c-quasiconformal deformation in the sense that
a) a(x,t) is continuous on R'XIO, ll and has locally integrable distibutional

deriuatiues,

b) u(x, t) : O(lxl log lxl), lxl *-,
c) llSu(., r)ll- = c.
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Denote the solutions of the dffirential equation

d
fr.r: u(x, t)

with initial condition x(O):s by E@, t). Then for fixed t, E(2, t) is a e2"t-quasicon-

formal mapping.

For the special case n:2 this theorem has a converse, known as the parametric
representation of quasiconformal mappings (see e.g. [2]):

lf E: C-C is a K-quasiconformal mapping, then there exists a ((logK)lZ)-
quasiconformal deformation a(x, r) such that the flow <p(2, r) as defined above satis-
fies E(z,l):EQ).

Corollary 3. A K-quasiconformal mapptng of EcRs onto itself extends to
a K\-quasiconformal mapping of the unit ball ,BcRs.

If E: 2*E is a K-quasiconformal mapping, which we assume to be normalized
by E(en):en, then there exists a ((log K)12)-qtasiconformal deformation f(x, t):
R2x[0, l]*Rz whose flow @(x, r) satisfies

Q@,l) : noEon-r(x).

The transformed vectorfield n-rf:f is then a ((loS K)/2)-quasiconformal deforma-
tion on X (with a parameter r) and can therefore be extended to a ((3log K)12)-
quasiconformal deformation u:extf on B. If as above rlr(2, r) is the solution of the
differential equation (dldt)x:u(x, /) with initial condition tLQ,0):s13; then

ItQ,l), z(8,
vQ): IEG), z(0,

is a Ks-quasiconformal extension of g.

8. Group invariant extensions of quasiconformal mappings

Theorem 3. Assume that 0: l*A is an isomorphism between groups of Mö-
biustransformations f , AcMQ), acting on the unit ball B:BvE in Rs. Further-
more, ossame that E: 2*Z is a K-quasiconformal mapping satisfying

EoY : 0(Y)"E for all Y€.f .

Then E extends to a Kg-quasiconformal mapprng rlr: B*B such that

toy:O(y)"rlt Jbr all y([.

Before giving a proof of this theorem let us first recall some well known facts

about quasiconformal mappings E: e -Ö and their parametric representations.
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Assume that E is normalized by 9(0):01 9(1):I, E(*):- and denote its
dilatation by p. If ).oE:Eoy. for some Möbiustransformations A,y, then

|t'p(y): V0_,iu0_,t)
as can be seen immediately by differentiating the conjugation relation.

Conversely, if the complex dilatation p of the normalized quasiconformal map-
ping q satisfies

ntf

p(y): f (t-,ilu0-,t)

where y is a Möbiustransformation, then the mapping ,1 defined by

)'oE : tPoY

is a Möbiustransformation.
The parametric representation E(z,l) for the normalized quasiconformal map-

ping E is constructed as follows: Define p(z,t) by the equations

I*lp(2, t)l ( 1+;p1"ttr':[ffiC' o<r=r'
arg p(2, t): ary pk).

Then <p(z,l) is the unique normalized solution of the Beltrami equation

Qz : P(2, t)q,'

If now )"oE:Eoy, then not only p(z\ but also p(z,t) will satisfy the equation

nJ'

p(y, t) :4(v-'v)p(v-tv, t).

Hence there exist Möbiustransformations ,tr, such that <p,(z):cp(2, t\ satisfies

)'rogr: EroY'

The quasiconformal deformation associated to the parametric representation is

the vectorfield defined by

.f(EQ, t),1: $v{r, t)-

If )"roEr:E oy, then it satisfies

J'(E,oy) : $,o,ot : $ t oE,: #o*,* iloE,* E,,

f (1,(*), 4 : ft A> * )i (x)f(x, t\.

Observe now that the mappings A, are Möbiustransformations. Hence the vector-
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field g defined by

s(1'1x1' 4: ffAl
is in the Lie algebra of the Möbiusgroup (acting oo i;. Using the notation ).rf for
the vectorfield/transformed by the Möbiustransformation lr,we fud that

1,f(w, t) : Li@)f(x, t) (w : )',(x)),

J(w, t) : g(w, t)+),f(w, t).

For the proof of Theorem 3 it can be assumed that the K-quasiconformal map-
ping E: .E*^E isnormalizedbytherequirementthat er,e"and -esarefixedpoints.
Considerthen the conjugate K-quasiconformal mapping Q:noEon4: e *e and
the conjugate groups F:nolon-t, L-noÅon-L and construct the associated
parametric representation and vectorfieldsf(x, t), E(x, t). These vectorfields cart be

mapped onto tangential vectorfields on the sphere such that one arrives at the follow-
ing situation: There exists a ((log&/2)-quasiconformal deformation fr(x):f(x,t)
and a l-parameter family of quasiconformal mappings er(z):EQ, t) of the sphere

such that
,]

fivlt, t):f(EQ, t), t),

EQ,t\: EQ).

Furthermore there exist groups f , and Lie algebra vectorfields gr(x):g(x,l) such

that
fr: g'11'f', l€[0, 1]

(/o:1, At:A and g, depends on y).

The extended vectorfields
ur: extfr,

ur: ext g,
then satisfy

tsr: ur*).ra,

where )"ru, is the vectorfield u, transformed by the Möbiustransformation 7, acting
on .8. Furthermore, uris aLie algebra vectorfield (conformal deformation) and one
must have

*Ur: u,(),(z), t), zeB,

since this equation holds on ).
By Corollary 2, o is a ((3 log K\12)-quasiconformal deformation. The Ktr-

quasiconformal mappings rlrr: B*8, which are solutions to the equation

*he) - u(t,e),t)
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with initial condition {op):z are extensions of Er. It must be shown that

).rorlrr: {rroy.

The mappings yr:),"rorlr, satisfy the differential equation

d dL.
6, x,Q) : +(x)+1,u(1,(x), t), x: t,(z),

as can be seen by differentiating with respect to I and applying the chain rule. Since

d7...
#(.): u(l,(x), t)

and 
u(w' t) : tt(w' t)+;ta(w' t)

it follows that p satisfies the differential equation

* ofr> : v(nQ), 4
and the initial condition

XoQ) :"loo{roQ) : y(z).

However, the function tr"y(z) satisfies the same differential equation with the same

initial condition. Since the solutions are unique, it follows that

{tto1 : l,ofur'
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