Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 10, 1985, 499–500 Commentationes in honorem Olli Lehto LX annos nato

A CRITERION FOR THE NORMALITY OF A FAMILY OF MEROMORPHIC FUNCTIONS

H. L. ROYDEN*

Let D be a domain in the complex plane. A family \mathscr{F} of meromorphic functions on D is said to be normal if every sequence of functions in \mathscr{F} contains a subsequence which converges uniformly on compact subsets of D to function f which is meromorphic or identically ∞ , the convergence being with respect to the spherical metric $d\sigma = |dw|/(1+|w|^2)$. A well known criterion of Marty (cf. [1], p. 226) asserts that \mathscr{F} is normal if, and only if, for each compact subset $K \subset D$ there is constant C_K such that

$$|f'(z)| \leq C_{K}(1+|f(z)|^{2})$$

for all $f \in \mathcal{F}$ and all $z \in K$.

Although this criterion is necessary and sufficient, it does not tell whether the family of functions in D satisfying, for example,

 $|f'| \leq e^{|f|}$

is normal or not. The purpose of the present note is to prove the following strengthening of the sufficiency part of Marty's criterion:

Theorem. Let \mathscr{F} be a family of meromorphic functions on D with the property that for each compact set $K \subset D$ there is a monotone increasing function h_K such that

$$|f'(z)| \leq h_K(|f(z)|)$$

for all $f \in \mathcal{F}$ and all $z \in K$. Then \mathcal{F} is normal.

Proof. Since the property of being normal is a local one, it suffices to consider the case when $|f'(z)| \leq h(|f(z)|)$ in a domain Δ . Since this inequality holds a fortiori for any larger h, we may assume that h is continuous and that $h(t) > 1 + t^2$. For a differentiable curve γ on the Riemann sphere \hat{C} we define the length of γ by

$$l(\gamma) = \int_{\gamma} \frac{|dw|}{h(|w|)}.$$

^{*} This work is sponsored by the U.S. National Science Foundation.

Then $l(\gamma)$ is less than the spherical length of γ . We define a new metric ρ on C by setting

 $\varrho(w_1, w_2) = \inf \{ l(\gamma) : \gamma \text{ connecting } w_1 \text{ to } w_2 \}.$

Since h(|w|) is continuous and positive in C, ϱ is a metric, i.e. $\varrho(w_1, w_2)=0$ implies $w_1=w_2$. It is smaller than the spherical metric σ and hence uniformly equivalent to σ because of the compactness of \hat{C} in σ .

Each $f \in \mathcal{F}$ now satisfies

$$\varrho(f(z_1), f(z_2)) \leq |z_1 - z_2|,$$

and so the family \mathscr{F} is uniformly equicontinuous. By the Arzelà selection theorem (cf. [1], p. 222) each sequence from \mathscr{F} contains a subsequence which converges uniformly (on compacta) in the metric ϱ to a continuous map f of Δ into C. Since ϱ and the spherical metric are uniformly equivalent, the convergence is uniform (on compacta) in the spherical metric. Thus f is meromorphic (or $\equiv \infty$). This establishes the theorem.

References

[1] AHLFORS, L. V.: Complex analysis, third edition. - McGraw-Hill Book Company, New York— St. Louis—San Francisco—Toronto—London—Sydney, 1979.

Stanford University Department of Mathematics Stanford, California 94305 USA

Received 24 October 1983