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ON META.NORMAL FORMS
FOR ALGEBRAIC POWER SERIES
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1. Introiluction and preliminaries. The theory of formal power series in non-
commuting variables was initiated around 1960 - apart from some scattered work
done earlier in connection with free groups. Such power series are applicable in
a number of areas but, in particular, they have turned out to be an indispensable

tool in automata and language theory. Their usefulness in the latter theories is due

to the fact that, in a sense, they lead to the arithmetization of the theory.
The purpose of this paper is to establish classes of normal forms for algebraic

power series. The normal forms, as well as the definition of algebraic power series

in general, are closely connected with the corresponding questions dealing with
context-free grammars. In fact, one of the most important open problems concerns

the possibility of extending the "terminally balanced" normal form beyond the

Boolean semiring. (It is well known how the theory of power series over the Boolean

semiring is isomorphic, in a well-defined sense, to language theory.)
The reader is referred to [11] for motivation and background material, as well

as for all unexplained notions. We try to follow the notation of [ 1] whenever
possible. In particular,

Ars <<x*>>

denotes the family of all A-algebraic power series with variables in X. Throughout
this paper, we assume that the semiring,4 is commutative.

Every series in Aurs<<X*>> can be obtained as the first component of the so-

lution ofa proper algebraic system

(1) Zi:pi, i:I,...,n.

Here Z:{"r,...,2o\ is an alphabet disjoint from X, and p, are polynomials in
A=(XvZ)* >. Moreover, the coefficients of the empty word l. and those of terms

z, in each of the pi are equal to 0. (This follows because the system (l) is proper.)

In what follows, the alphabet Z will be referred to as the alphabet of aariables.

In this paper we consider the problem of restricting the form of the polynomials
pr in (l) without affecting the family Antc<<X*>>. For instance, the following
result was established in [1], p. 128]:
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Lemma l. Eaery A-algebraic series with oariables in X equals the first com-

ponent in the solution for some algebraic system such that the supports of the right

sides of the equations are included in the set

Xv XZv XZ',

where Z denotes the set of oariables in the system.

As regards normal forms for context-free grammars, the normal form obtained

from Lemma 1 represents the starting point: all right-hand sides of productions

begin with a terminal letter. The next step is "head-and-tail" normal form, [7]:
all right-hand sides begin with and end in a terminal letter. The positioning of ter-

minals in an arbitrary fashion was accomplished in [1] and [4]. Of course, [1] and

[4] deal only with languages. Related results are contained in [8] and [10]. In the

present paper, we establish analogous results for power series.

The positioning of terminals in an arbitrary fashion can be viewed as a "super"

or "meta" normal form. In language theory, a Yery important strengthening of
this normal form deals with the balancing of terminals, [6]. The completeness cri-
terion of context-free grammar forms, [5], is based on this result. The extension of
this result to algebraic power series will also be considered below. Essentially, the

problem remains open.

While the reference I l] constitutes a sufficient background for understanding

the results and proofs contained in this paper, the reader is referred to l2l, [9] and

especially to [3] for a broader spectrum of related results. The main purpose of
this paper is to establish the following result.

Theorem l. Let k1,k2 and k" be nonnegatiue integers' Then eaery A-alge-

braic series ouer X* (i.e., with uariables in X) equals the first component in the solution

for some algebraic system such that the supports of the right sides of the equations

are included in the set
X+ v XkrZXkrZXk",

where Z is the alphabet of aariables in the system.

2. A class of normal forms. For any choice of kr,k, and k", Theorem I gives

a normal form for algebraic systems defining A-algebraic power series. Thus, Theorem

I constitutes a "super" normal form or a class of normal forms.

The proof of Theorem I will be given in this section. The proof is split into
a sequence of lemmas.

We make some conventions, valid throughout this paper. The alphabet of
variables in an algebraic system is denoted by Z, possibly provided with some indi-
ces. The underlying (commutative) semiring will always be denoted by ,,4. The

series will have variables in X, i.e., we consider series in A"tc<<X*>>. In connec-

tion with systems of equations, matrix notation is sometimes used in the natural
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fashion. Although not explicitly stated, it is understood that the series defined by
a system of equations is the first component of the solution of the system.

We begin with a modification of Lemma l.

Lemma 2. Euery A-algebraic series is defined by a system of equations, where

the supports ofthe right sides are included in the set

XvX(XvZ)*X.

Proof. Consider an arbitrary A-algebraic series, defined by a system of equa-

tions satisfying Lemma 1. We write the system in the matrix form

(2) Cz: MC"l Cx.

Here C7 is the column vector, consisting of all letters in the alphabet Z of variables.

The entries in the square matrix M are polynomials whose supports consist of words

beginning with a letter of X. (Moreover, each word in the support belongs to X ot
XZ.) Tbe entries of C, arc polynomials whose supports consist of (possibly several)

letters of X.
The solution of (2), regardng Ct as an unknown column vector, is

(3) Cz: M*Cx.

(By our assumptions, the existenc e of M* is obvious.) On the other hand, M + : M M*
can be obtained as the unique solution ? of the system

(4) T _ M+ML+MTM,

regarding T as an unknown matrix.
By (3), the equation (2\ can now be replaced by (4) and (5), where (5) is given

below:

(s) Cz : C** M+ Cx : C"* MC*+ MTC7.

The right sides of the equations resulting from (5) are already ofthe form required.

We still have to transform (4) into this form. For this purpose, the following construc-

tion is applied.
Consider an entry p of M. Whenever a word in the support of p ends in a letter

z of Z, that particular occurrence of z is replaced by the right side of the defining
equation for z, resulting from (5). Thereby, the distributive laws are applied and

the coefficients positioned, after an eventual multiplication with original coefficients,

in front of each term. This construction gives rise to a matrix M, xtch that the entries

of M1 are polynomials but the support of each entry consists of words that both
begin with and end in a letter of X.

For instance, assume that A is the semiring of integers, F:3xtt2xtz1*3x221,
and that the defining equation for z, resulting from (5) is as follows:

zL : 4xr-2xr* 5 ztxs * 5 zltsxs.
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Then the entry corresponding to p in Mris

p1 : 3 4* 8xrxr- 4x1x1l l0x1 4xsl l0x1 4t 1,1,xs

* l2x 2x 2- 6x2x 1* I 5 x 2 4 x "i 
l5x2 z 1 t sxs.

Here t n refers to a variable in the matrix T. Of course, (4) gives rise to a system of
equations whose cardinality equals the square of the dimension of 7. When (4) is

explicitly written in this fashion, a new variable /;, has to be introduced for each

entry of Z.

An obvious induction based on (4) and (5) now shows that our original l-al-
gebraic series is defined by the system of equations

Cz- CxtMCx+MTCI,
T: MtlMMr+MTML.

When the matrix notation is eliminated, the resulting system is in the form required

in Lemma 2. n

Lemma 3. For each integer m>-1, euery A-algebraic series is defined by a
system of equations, where the supports of the right sides are included in the set

X+vX^(XvZ)*X^.

Proof. We begin with a system of equations satisfying Lemma 2. All occurren-

ces of letters z of Z are replaced by the right side of the equation for z in the system.

In this fashion, we obtain an equivalent system, where the supports of the right sides

are included in the set

X+ v Xz(XvZ)*yz.

(Observe that the alphabets X and Z are not affected.) By m-l similar substitu-
tions, we obtain the form of Lemma 3. n

The term X+ in the union appearing in Lemma 3 can be replaced by finitely
many powers of X. Their number depends on m. An analogous observation applies

also below.

Lemma 4. For each integer m>-1, euery A-algebraic series is defined by a
system of equations, where the supports of the right sides are included in the set

(6) X+ v X*Z* X*.

Proof. We now begin with a system of equations satisfying Lemma 3. The
alphabet Z is extended by introducing a new letter z*for each letter x of X. Consider
some word w belonging to the support of the right side of some of the equations

in our system such that w is not of the form required in Lemma 4. This means that
w begins with and ends in mletters of Xand contains, furthermore, at least one letter
of Z and some additional occurrences of letters of X. The latter occurrences we
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now replace, in each such word w,by the corresponding letters z*. Finally, we add

the equations zx:x to the end of the system.

It is obvious that the new system is equivalent to the original one, as regards

the power series obtained as the first component of the solution. Moreover, the

supports of the right sides are included in the set (6), where Z is understood as the

extended alphabet described above. n

The next lemma is crucial in the construction. We now want to say more about
the words in Z* appearing in (6).

Lemma 5. For each integer m=1, euery A-algebraic series is defined by a
system of equations, where the supports of the right sides are included in the set

X+ V X* X" ZX^ X* V X' X* ZX^ X,'ZX^ X* V X* X* ZXNX* ZXN X* ZX^ X*.

Proof. Again, we begin with a system ,S of equations satisfying the previous

lemma, this time Lemma 4. Let n be the length of the longest word over the alphabet

Z, appeafng in some word belonging to the support of some of the right sides of
the equations in S. Such a number n exists because there are only finitely many

words appearing in the supports.

We first modify the alphabet Z rn stch a way that the new alphabet will consist

of all letters of the form lzt ... ztl, where I =i=n and the z's are letters of the

Z-alphabet (not necessarily distinct) associated with the original system S. Intui-
tively, lzr... z,] corresponds to the product of the power series defined by the

variables 21,...,2,. Thus [z;] behaves as the original ztbut it is notationally con-

venient to use brackets also in this case.

We now define a new system S' of equations by constructing the right side of
the equation for lzr... zil, where ltt..."rl is an arbitrary one among the newly
introduced letters. In the construction u and w, possibly provided with indices, de-

note words over X such that the length of each word w is at least m. Letterc z (pto-
vided with indices) belong to the Z-alphabet associated with the original system ,9.

Greek letters are elements of the semiring A. Finally, a,b,c and dare positive in-
tegers, and an "impossible" symbol

f"o...zul, a = b,

is understood to be the empty word.
The right side of the equation for lzrl is the same as the right side of the equation

for z, in S, except that all words over the Z-alphabet are bracketed. (For instance,

if 3xlzizizix, is a term on the right side of the equation for zr, the corresponding
term in the equation for [zfl is 3x]ziziz'rlxr.)

The right side of the equation for lzt... z;], where i>2, consists of all
terms obtained by the following three rules (t)-(iir).
(i) If ului is on the right side for zi, i:1,..., i, then the term dr... &ittr...ui
is obtained.
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(ii) The term ftu1 ... uo-1w112i... zijwru,+r... tti is obtained, whenever ajui
is on the right side for zi, for all j:1,..., i such that i+a, and Bw, 2i... zi w,
is on the right side for zo and, finally, z is the product of B and all a, involved.
(iii) The term

Tt tt1. . . u o - 1w 1fz'r. .. z'6lw 2lz, + r. . . z a - rf w gfz'{ . . . z'ilw n u a + t. . . u i

is obtained, whenever uru, is on the right side for zi, for all j:1,..., I such that
jla and jlb, and prw, zi ... z', w2 (respectively Fzws zi ... z'! wn) is on the
right side for zo (respectively zu) and, finally, z is the product of the a's and f's in-
volved.

Having defined the system S', we observe first that the right sides are of the

form required in Lemma 5. (Observe that two letters from Z can be obtained from
(iii) in the case where the brackets in the middle reduce to the empty word.)

Moreover, it is not difficult to establish the equivalence of ^S' and ,S. Indeed,
(i) corresponds to the case where all the variables ZL,...,zi are terminated. Simi-
larly, (ii) corresponds to the case where all the variables with the exception of one

are terminated. Finally, (iii) corresponds to the case where at least two of the vari-
ables remain unterminated. !

Lemma 6. For
system of equations,

(7)

each integer ffi>\, euery A-algebraic series is defined by o
where the supports of the right sides are included in the set

X+ v X* X* ZX* X* ZX^ X*

Proof. We begin with a system S of equations satisfying Lemma 5 but now we
assume that ,S satisfies Lemma 5 for the constant 2m*1. To establish Lemma 6,

we have to replace S by an equivalent system S' where the supports of the right
sides no longer contain words with one or three o@urrences of letters of the Z-al-
phabet.

To eliminate words of the former type, we introduce a new variable z*for each
letter x in X, and add the equation z*:x. (This construction was applied also in
the proof of Lemma 4.) Consider now a term au1zu2 appearing on the right side of
some equation in S, where z is a letter of Z, and u, and a2 are words of length at
least 2m* I over X. We write u, in the form n1:ugxtt42 where z, is of length z
and x is a letter of X. The original term is now replaced by the term au"z,ttnztt2,
and the same procedure is applied to all terms containing one occurrence of a letter
of the Z-alphabet. Since in Lemma 6 we are dealing with the constant m rather than
2m*1, the new terms are in accordance with Lemma 6.

To eliminate words of the latter type (i.e., containing three occurrences of
letters of the Z-alphabet), we "pack" two Z-letters into one by the following pro-
cedure. Consider an "illegal" tetm uurzrurz2ugzstr4, where the notation is as before.
Write u, and u"in the form

LIL: l,lstta and LIB : uzlta,
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where uu and u, are words of length z. Introduce the new Z-lettet luuzturzrurl and

the equation
luu zru2 z rurl - It6 Z1tt2 Z21tq.

It is clear that only finitely many new Z-letters are needed when this procedure is

repeated for all "illegal" terms. n

An analysis of the proofs of Lemmas 5 and 6 reveals the reason why the method

applied yields only X*X* instead of the accurate fotm X- appearing in Lemma 4:
the new words introduced may make the words altogether longer. Of course, the

finiteness ofthe system and the finiteness ofthe supports guarantee that only finitely

many powers of X can appear.

We are now in a position to establish Theorem l. Assume that kl,krand ku

are given. By Lemma 6, we may assume that the given A-algebraic series is defined

by a system S of equations, where the supports of the right sides are included in the

set (7). The idea is to choose m sufrciently large so that a suitable part of the words

over X can be "packed'o together with the Z-lettets. For this purpose, the choice

m : 9 max (kr, kr, k", t\ : 9m'
will suffice.

The Z-alphabet will be augmented by some letters defined below. We also

modify the right sides of the equations for the original Z-letters to satisfy Theorem l.
The terms on the right sides remain unaltered whenever their support is in X+.

Consider now a term autzlurzrur, resqrlting from the second part ofthe union
(7). We write zr, u2and au as follows:

rl1 : w1W21 Il2: wgw4W51 Ug: w6w7,

where the lengths of w1, ws, wn and w? ate kr, 4m' , k, and kr, respectively. (Clearly,

this condition uniquely determines the words wz,,ild and wu.) Theoriginal term is

now replaced by the term

(8) awllw2zrwf,walwsz2wulw1,

where the bracketed letters are new elements of the Z-alphabet. Clearly, (8) is of
the proper shape.

We still have to introduce equations for the bracketed letters. To satisfy Theorem

1, the supports ofthe right sides ofthese equations have to be ofthe proper shape.

For this purpose, we still augment the Z-alphabet by two new types of letters. It
will be obvious that the number of the new Z-letters is finite. In fact, an explicit

upper bound, based on the system, can easily be given.

Observe that each of the words wz,w1,ws,ws appearing in (8) is of length at

Ieast 4m'. Therefore, we may write w, and ws in the form

W2: U1U2UyO41 Wg: 06l.)647lJ92

where the lengths of or,u",o42us.o7 and o8 ate kL'kr,kr,kr,krand ftr, respectively.
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We now introduce new Z-letters, denoted by brackets and braces as indicated
below, as well as the following equations:

fw, z rw 
"f 

: u rlu 2l o r{rt a z 1a s o 6 rt 7} u g,

{u a z tu su 6o 7\ : n n 4u 6fo 6f o7,

luÅ: ,sr, luui : uu.

The second Z-letter lwuzrwul is handled similarly. This concludes the proof of Theo-

rem 1.

The following more general result is now easily obtained.

Theorem 2. Assume that t>3 and that rt71;r/721 ...2r/\ are nonnegatiue

integers. Then euery A-algebraic series is defined by a system of equations, where

the supports of the right sides are included in the set

(9) X+ vX^'ZX',...ZX^".

Proof. We define

kr: m1*,,.+mt-z+t-3, kz: ffit-r, kz: ffit,

and apply Theorem l. The resulting system of equations can be immediately trans-
formed into the shape required in Theorem2,by introducing new Z-letters z*and
equations Z,:x, similarly to the proof of Lemma 4. The letters z, can be positioned
in such away thatthe supports corresponding to the transformed system of equations

are contained in the set (9).

3. The terminally balanced case. In Theorems I and 2, any word over the
"terminal" alphabet X may appear in the supports, i.e., there are no explicit restric-
tions as regards the first part ofthe union (9). It is clear that an explicit upper bound
in terms of the k's or the m'scan be given for the powers of Xrequired. However,

no good estimates for such an upper bound are known. Obviously, no upper bound
independent of the k's or the z's exists.

Apart from an upper bound, also other types of restrictions may be imposed

on the powers of X. A natural restriction, especially from the point of view of lan-
guage theory, is customarily referred to as the "balancing of terminals". We say

that a proper algebraic system defining a series r in A"rs<<X*>> is terminally bal-
anced if the supports of the right sides contain only those words over X whose length
belongs to the length set ofthe support ofr.

The basic motivation behind the definition above is language-theoretic: termi-
nating productions with the length of the right side lying outside the length set of
the language are unnatural because they are really not needed. On the other hand,
the resulting terminally balanced super normal form, [6], leads to the completeness

criterion of context-free grammar forms, [5]. Thus, if we want to exhaust all normal
forms for context-free grammars, we must consider the balancing of terminals.
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In the special case where the basic semiring ,4 is chosen to be the Boolean semi-

Ång B, the next theorem can be established by rather obvious modifications of the

methods applied in [6]. Therefore, its proof is omitted.

Theorem 3. Assume that kr,k, and k, are nonnegatioe integers. Then euery

series in B'rs<<X*>> is defined by a terminally balanced system of equations, where

the supports of the right sides are included in the set

X+ vXkrZXkzZXks.

A result analogous to Theorem 2 canbe obtained also in the terminally balanced

case for Boolean semirings. However, as pointed out in [6], this result is not a direct

consequence ofTheorem 3 in the same fashion asTheorem 2 is a direct consequence

ofTheorem 1.

4. Discussion and open problems. Many of the constructions presented above

are modifications of the corresponding language-theoretic arguments. In general,

every construction dealing with defining systems of equations for algebraic power

series yields as a special case the corresponding construction for context-free gram-

mars. On the other hand, the latter constructions cannot always be translated into

the former ones.

A typical example is the construction, [6], yielding the terminally balanced

(kr,kr,ft) normal form for context-free grammars. This construction involves

several arguments that seem to be inherently of language-theoretic nature. There-

fore, the construction applies only to power series over the Boolean semiring.

There are several open problems as regards the extension of the construction

given in [6] to more general semirings. We mention here only the most important

one. Is the length set of the support of an A-algebraic series always almost periodic?

This result holds true if ,4 is the Boolean semiring but does it hold, for instance, if
,4 is the semiring of integers? It is likely to hold for all positive semirings.

Also, as regards dealing with Theorems I and 2, some problems remain open.

We mention the problem of deriving an upper bound, as good as possible' for the

powers of X required when the triple (kr, kr, kr) is given.
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