Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 10, 1985, 511-514

BOUNDARY OF A HOMOGENEOUS JORDAN DOMAIN

JUKKA SARVAS

A Jordan domain D in the extended complex plane \overline{C} is called a quasidisk if D is the image of an open unit disk under a quasiconformal (abbreviated qc) mapping of \overline{C} onto itself. For the basic properties of qc mappings we refer to [3]. Quasidisks can be characterized in several different ways which illustrate the multitude of the interesting properties of these domains [2].

One of the characteristic properties is homogeneity. Let $\mathscr{F}(K)$ be the family of all K-qc mappings $f: \overline{C} \to \overline{C}$ with $1 \leq K < \infty$. We say that a set $E \subset \overline{C}$ is homogeneous with respect to $\mathscr{F}(K)$ if for each $z_1, z_2 \in E$ there is an $f \in \mathscr{F}(K)$ with g(E) = E and $f(z_1) = z_2$. Erkama showed in [1] that a domain D is a quasidisk if and only if the boundary ∂D of D is a Jordan curve which is homogeneous with respect to $\mathscr{F}(K)$ for some K. This result raised the question if ∂D can be replaced by D in this characterization. In the present paper we answer the question affirmatively and prove the following result.

Theorem. A Jordan domain D is a quasidisk if and only if D is homogeneous with respect to $\mathcal{F}(K)$ for some K, $1 \leq K < \infty$.

Especially, this result shows that the boundary of a homogeneous Jordan domain is a quasicircle, i.e., the image of the unit circle under a qc mapping of \bar{c} onto itself.

To prove the theorem we note that a quasidisk is always homogeneous with respect to $\mathscr{F}(K)$ for some K because a disk is homogeneous with respect to Möbius transformations of \overline{C} . It remains to prove the sufficiency. By an auxiliary Möbius transformation we may suppose that D lies in the finite complex plane C. Suppose that D is homogeneous with respect to $\mathscr{F}(K)$ with $1 \leq K < \infty$ but D is not a quasidisk. Then its boundary cannot be a quasicircle and cannot have the three point property, i.e., we can find a sequence $(u_i, v_i, w_i), i=1, 2, ...,$ of triples of distinct points $u_i, v_i, w_i \in \partial D$ such that

(i) if J_i and J'_i are the components of $\partial D \setminus \{u_i, v_i\}$ and diam $(J_i) \leq \text{diam}(J'_i)$, then $w_i \in J_i$ and

(ii)
$$\lim_{i \to \infty} \frac{|w_i - v_i|}{|u_i - v_i|} = \infty.$$

In the rest of the paper we show that this situation leads to a contradiction.

We may suppose that each open segment of line (u_i, v_i) is contained either in D or in int $(C \setminus D)$, the interior of $C \setminus D$. To see this, suppose that $|v_i - w_i|/|v_i - u_i| > 2$. Let $z_i \in J'_i$ with $2|v_i - z_i| \ge |v_i - w_i| > 2|v_i - u_i| = 4r_i$. We denote by B(z, r) the open disk with center at $z \in C$ and radius r > 0. The closure of a set $E \subset \overline{C}$ is denoted by \overline{E} . Next we set $\overline{B}_i = \overline{B}((1/2)(u_i + v_i), r_i)$. Let I_i and I'_i be the components of $\partial D \setminus \{w_i, z_i\}$. Let $a_i \in I_i$, $b_i \in I'_i$ be two points such that

$$|a_i - b_i| = \operatorname{dist}\left(\overline{I}_i \cap \overline{B}_i, \overline{I}'_i \cap \overline{B}_i\right) > 0,$$

where we have denoted the distance between two sets $A, B \subset C$ by dist $(A, B) = \inf \{|z_1 - z_2| : z_1 \in A, z_2 \in B\}$. Then (a_i, b_i) lies entirely in D or int $(C \setminus D)$, w_i and z_i are in different components of $\partial D \setminus \{a_i, b_i\}$ and $|z_i - b_i|/|a_i - b_i|$ and $|w_i - b_i|/|a_i - b_i|$ tend to ∞ as *i* tends to ∞ . Finally, replace u_i and v_i by a_i and b_i (and replace w_i by z_i if necessary).

Note also that if a_i and b_i are as above and H_i and H'_i are the two open half disks of $B((1/2)(a_i+b_i), (1/2)|a_i-b_i|)$ with (a_i, b_i) as a common boundary, then one of them, say H_i , lies in \overline{B}_i , and, therefore, it lies in D or $C \setminus \overline{D}$ because it does not meet $\overline{I}_i \cup \overline{I}'_i = \partial D$. Recall that after the above replacement $u_i = a_i$ and $v_i = b_i$. By passing to a subsequence, if necessary, we can divide the proof into the following two cases:

Case A: Every $(u_i, v_i) \subset D$ and also the half disk $H_i \subset D$.

Case B: Every $(u_i, v_i) \subset int (C \setminus D)$.

We first treat Case A. Fix $a \in D$. Let again $z_i \in J'_i$ with $2|z_i - v_i| \ge |w_i - v_i|$. Let $y'_i = (1/2)(u_i + v_i)$ and let y_i be the middle point of the line segment which joins y'_i and the middle point of the circular arc in the boundary of H_i . Let $f_i \in \mathscr{F}(K)$ such that $f_i(a) = y_i$ and $f_i D = D$. Let $L_i: \overline{C} \to \overline{C}$ be an affine conformal mapping such that $L_i H_i = \{z \in C: |z| < 1, \text{Re } z < 0\} = H$ and $L_i(u_i) = -e_2$, $L_i(v_i) = e_2 = (0, 1)$, where H is the open half disk $\{z \in C: |z| < 1, \text{Re } z < 0\}$. Let $g_i = L_i \circ f_i$, i = 1, 2, Then $b = g_i(a) = (-1/2, 0)$, i = 1, 2, ... Note also that $|L_i(w_i)| |L_i(z_i)|$ tend to infinity as i tends to infinity because $|w_i - v_i|/|u_i - v_i| = |L_i(w_i) - e_2|/2$ tends to infinity as i tends to infinity.

The family $\{g_i|D: i=1, 2, ...\}$ is normal because every $g_i|D$ omits points $e_2, -e_2$ and ∞ . Then we may suppose that $\lim_{i\to\infty} g_i=g: D\to \overline{C}$ locally uniformly in D. Because $H\subset g_iD$ and $g_i(a)=b\in H$ for all i, g is not constant, and therefore, g is a K-qc mapping from D onto $D'\supset H$. Because the sequence $\{g_i\}$ converges locally uniformly to g in D and g is injective in D, then $\{g_i\}$ is a normal family in \overline{C} , and we may assume that $\{g_i\}$ converges to a K-qc mapping $h: \overline{C} \to \overline{C}$ uniformly in \overline{C} . Then h|D=g, and we extend g to \overline{C} by setting g=h. We may also suppose that

$$\lim_{i \to \infty} f_i^{-1}(u_i) = \tilde{u} \in \partial D, \quad \lim_{i \to \infty} f_i^{-1}(v_i) = \tilde{v} \in \partial D,$$
$$\lim_{i \to \infty} f_i^{-1}(w_i) = \tilde{w} \in \partial D, \quad \lim_{i \to \infty} f_i^{-1}(z_i) = \tilde{z} \in \partial D.$$

Then by the construction of $g, g(\tilde{u}) = -e_2$, $g(\tilde{v}) = e_2$ and $g(\tilde{w}) = \infty = g(\tilde{z})$, and therefore, \tilde{u}, \tilde{v} and \tilde{w} are distinct, but $\tilde{z} = \tilde{w}$.

On the other hand, let I_i and I'_i be the components of $\partial D \setminus \{f_i^{-1}(u_i), f_i^{-1}(v_i)\}$ such that $f_i^{-1}(w_i) \in I_i$ and $f_i^{-1}(z_i) \in I'_i$. Let I and I' be the components of $\partial D \setminus \{\tilde{u}, \tilde{v}\}$ labelled so that I_i tends to I and I'_i tends to I' as i tends to ∞ . Then $\tilde{w} \in I$ (because $\tilde{w} \neq \tilde{u}, \tilde{v}$) and $\tilde{z} \in \bar{I}'$. But $I \cap \bar{I}' = \emptyset$ and thus $\tilde{z} \neq \tilde{w}$, which is a contradiction.

Next we treat Case B. Here every $(u_i, v_i) \subset C \setminus \overline{D}$. We may assume that $|w_i - v_i| = \sup \{|w - v_i|: w \in \overline{J}_i\} > |u_i - v_i|$ for all *i*. Then it is not difficult to see that for every *i* there is r > 0 such that

(1)
$$B(y_i, r|w_i - v_i|) \subset D \quad \text{with} \quad y_i = w_i + r(w_i - v_i).$$

Next we observe that, by passing to a subsequence, we may assume that (1) is true for all *i* and for a fixed r>0. Namely, if this is not the case, we have a decreasing sequence r_i , $i \ge i_0$, with $\lim_{i\to\infty} r_i=0$ and

$$B_i = B(y_i, r_i | w_i - v_i |) \subset D$$
 and $w'_i \in (\partial D \setminus \{w_i\}) \cap B_i$

for all $i \ge i_0$. Here $w'_i \in J'_i$ because w_i is the furthest point on J_i from v_i . But now the points w'_i , w_i , v_i , $i \ge i_0$, form triples which reduce the situation to Case A because $(w'_i, w_i) \subset D$ and if I_i and I'_i are the components of $\partial D \setminus \{w'_i, w_i\}$, then

$$\frac{\min\left\{\operatorname{diam}\left(I_{i}\right),\operatorname{diam}\left(I_{i}'\right)\right\}}{|w_{i}'-w_{i}|} \geq \frac{\min\left\{|u_{i}-w_{i}|,|v_{i}-w_{i}|\right\}}{|w_{i}'-w_{i}|}$$
$$\geq \frac{|v_{i}-w_{i}|-|u_{i}-v_{i}|}{2r_{i}|v_{i}-w_{i}|} \to \infty \quad \text{as} \quad i \to \infty.$$

Therefore, we may assume that (1) is true for a fixed r>0 and all $i \ge 1$.

Fix $a \in D$. Let $f_i \in \mathscr{F}(K)$ such that $f_i(a) = y_i$ and $f_i D = D$, i = 1, 2, ..., where y_i is as in (1). Let L_i be an affine conformal mapping such that $L_i B(y_i, r|w_i - v_i|) = B(0, 1)$ and $L_i(w_i) = e_2 = (0, 1)$. Then $L_i(v_i) = (1+1/r)e_2$. Let $g_i = L_i \circ f_i$, i = 1, 2, The family $\{g_i|D\}$ is a normal family because every $g_i|D$ omits points e_2 , $(1+1/r)e_2$ and ∞ . Therefore, we may assume that the sequence $\{g_i\}$ converges to a mapping $g: D \to C$ locally uniformly in D. Here g cannot be constant because $B(0, 1) \subset g_i D$ and $0 = g_i(a)$ for all $i \ge 1$. Therefore, $g: D \to D'$ is K-qc, and we can extend it K-quasiconformally to \overline{C} as in Case A, and we may assume that $\lim_{i \to \infty} g_i = g$ uniformly in \overline{C} .

Let z_i be the last point where the ray $\{w_i+t(w_i-v_i): t \ge 0\}$ meets ∂D . Then $z_i \in J'_i$. We may suppose that

$$\lim_{i \to \infty} f_i^{-1}(u_i) = \tilde{u} \in \partial D, \quad \lim_{i \to \infty} f_i^{-1}(v_i) = \tilde{v} \in \partial D,$$
$$\lim_{i \to \infty} f_i^{-1}(w_i) = \tilde{w} \in \partial D, \quad \lim_{i \to \infty} f_i^{-1}(z_i) = \tilde{z} \in \partial D.$$

Because $|g_i(f_i^{-1}(u_i)) - g_i(f_i^{-1}(v_i))| = |L_i(u_i) - L_i(v_i)| \to 0$ as $i \to \infty$, we have $g(\tilde{u}) = g(\tilde{v})$, and thus $\tilde{u} = \tilde{v}$. Furthermore, $g_i(f_i^{-1}(v_i)) = (1 + 1/r)e_2$, $g_i(f_i^{-1}(w_i)) = e_2$

and $g_i(f_i^{-1}(z_i)) = s_i e_2$ with $s_i < 0$ for all $i \ge 1$. Thus $g(\tilde{v}), g(\tilde{w})$ and $g(\tilde{z})$ are distinct points, and so are \tilde{v}, \tilde{w} and \tilde{z} .

Finally, let I_i and I'_i be the components of $\partial D \setminus \{w_i, z_i\}$ such that $u_i \in I_i$ and $v_i \in I'_i$, and let I and I' be the components of $\partial D \setminus \{\tilde{w}, \tilde{z}\}$ such that $f_i^{-1}I_i \rightarrow I$ and $f_i^{-1}I'_i \rightarrow I'$ as $i \rightarrow \infty$. Then $f_i^{-1}(u_i) \in f_i^{-1}I_i$ and $f_i^{-1}I_i \rightarrow I$ as $i \rightarrow \infty$. This implies that $\tilde{u} \in \overline{I}$. Further, $f_i^{-1}(v_i) \in f_i^{-1}I'_i$ and $f_i^{-1}I'_i \rightarrow I'$ as $i \rightarrow \infty$. This implies that $\tilde{v} \in \overline{I'}$. Because $\tilde{v} \neq \tilde{w}, \tilde{z}$, we have $\tilde{v} \in I'$. Since $\overline{I} \cap I' = \emptyset$, we have $\tilde{u} \neq \tilde{v}$, which is a contradiction. The theorem is proved.

References

- [1] ERKAMA, T.: Quasiconformally homogeneous curves. Michigan Math. J. 24, 1977, 157-159.
- [2] GEHRING, F. W.: Characteristic properties of quasidisks. Les Presses de l'Université de

Montréal, Montréal, 1982.

[3] LEHTO, O., and K. I. VIRTANEN: Quasiconformal mappings in the plane. - Springer-Verlag, Berlin—Heidelberg—New York, 1973.

University of Helsinki Department of Mathematics SF-00100 Helsinki Finland

Received 11 September 1984