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Introduction

We study geometric parametÅzations of the Teichmäller space of an orientable

or non-orientable C--surface which may have a non-empty boundary. Suppose

that the dimension of the Teichmiiller space is n. The problem is to find n geodesics

on the surface whose lengths parametrize the Teichmiiller space in question. This

problem can be solved explicitly if the surface is elementary or its fundamental

group is free (cf. e.g. [TS 2l and ITS 3]). For a compact surface the problem turns

out to be more complicated. It is well known that for oriented surfaces this problem

can be solved locally. In this paper we present an explicit construction which gives

a local panmetnzation for the Teichmiiller space even in the case of non-orientable

surfaces. Our basic reference in the theory of Teichmiiller spaces is the forthcoming

monograph [L] of O. Lehto.

Parametrizations of two elementary Teichntiller spaces

1. A hyperbolic Möbius transformation g is uniquely determined by its attract-

ing fixed point a(g), its repelling fixed point r(g) and its multiplier k(d. For any

point z not fixed by g it then holds

k(s) : (g(r), z, r(s), a(s)) : m ffi
consider the set I whose elements are pairs (gr, g) of hyperbolic transfor-

mations with the following properties (Figure 1):

(i) g, and Ba map the unit disk D onto itself.
(ii) r(gr): -1, a(gr):1.
(iii) y:Ps (r(gJ)=0, Im (r(gJ)>0.
(iv) a(gJ:-a(il.
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Figure 1

The real numbers

kt : k(gt),

kz: k(gz),

x : (r(gr), a(g), r(g), a(g))

determine (gr, g) uniquely and

(h, g) - (k1, k2, x)

defines a one-to-one mapping ftom I onto 18, l: {16Rlt>1}.
Consider the function/

f(k): lE+rl1rE.
If k increases from I to -, thenf(k\ increases from 2 to *.

Denote kg:k(grogr). By formula (4.11) in [TS 1]'

r(k") :l* u *s-ft rr*,rwl.

Inserting x:("(gr), -r(gJ-, -1, l):(t +y)10-y) and supposing

(kr- 1)(k2- t)
v < I <!t:-(h+D(k2+D

we get

f(k,) : +try - f&,k,) - f (kJ k,)1.

We keep k, and /c, fixed and let y yary between 0 and y1. If y is sufficiently small,
then the isometric circles 1(g) and I(S;'\ do not intersect (Figure 2).

The group G generated by g, and g, is now discontinuous, 8r o8s is hyperbolic
and the Riemann surface DIG is conformally equivalent to a sphere from which
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three disks are removed, i.e., a pair
and I(Sil) are tangent to each other.

Y:lo

We restrict the set I by requiring

(v)

lf y increases from 0
oo to l. Hence kr, k,

of pants. The limiting case occurs when I(Sr)
In this case gf gz is parabolic or f(kr)-2 or

(kr- r)(kr- 1)

(h*D@r+1) +4lm
that also the following condition is satisfied:

(kr-. 1)(kr- 1)
Y<!o- '

to yo, then f(kr) decreases from oo to 2 and k, decreases from
and k, determine the pair (gr, gz) uniquely and

(h, gz) * (kr, kr, k")

defines a one-to-one mapping from I onto .I3.

2. Let k be the set of pairs (gr, g) of hyperbolic transformations satisfying
the following properties (Figure 3):

(i) g, and Ss map the unit disk D onto itself.
(ii) r(g): -1, a(g):1.
(iii) a(gr):s'*, r(gr.\ : - eie, O= tp =n.
Denote x:(r(gJ, a(gt), r(g), a(d), kt:k(g), kz:k(E) and kg:k(g1og).

Then we have three parametizations of ft:

(9t,gil-(ftr, kz,Q),

(gr, gr) - (kr., krlx), :

(gi, gr) * (kt, kz, ks),

where l=ki=-, i:1,2,3, --<x=0 and }-tp<fr. We consider the inter-
dependence of tp,x, and k".

A direct calculation yields
x: -(tanEl2)2.

r (92) a(,gz)

Figure 3

r (sL)

Figure 2

I (s;')
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Applyrng formula (a.11) in [TS 1l we have now

.f(k") : fi lu,os - ft t<k,l k).

Hence /(kr) increases from f(kJk) to f(kft) as x increases from - - to 0.

Inserting x- -(tan El2\2 we get

f(kr) : * [(t +"or d f(k'kr)+(1 -cos 0 f(k,lkr)]

: ] [co s E (f (k L k,) - f (k | | k )) + f (k L k,) + J' (k rl k,)].

The set I is actually a model for the Teichmiiller space of a pair of pants.

Similarly, the set k represents the Teichmiiller space of a torus from which a disk

is removed. The method we used to parametrize them admits a generalization to
all freely generated Fuchsian groups (cf. e.g. ITS 2] and [TS 3]). In a forthcoming
paper [SS] we apply the above technique to the Teichmiiller spaces of all compact

surfaces of genus at least two.
Also topological methods can be applied here if the orbit space of the corre-

sponding Riemann surface is compact. In order to describe how this can be done it
is necessary to review a topological approach to Teichmiiller spaces.

Teichmiiller spaces of hyperbolic metrics

3. Compact surfaces whose Euler-Poincarö characteristic is non-negative are

elementary. We suppose from now on that ) is a compact and not elementary

C--surface which may have a non-empty boundary. This excludes the following
surfaces: the sphere, the real projective plane, the disk, the annulus, the Möbius

band, the torus, the complex plane and the Klein bottle. These surfaces can be

treated by explicit methods.
All surfaces that are not elementary carry hyperbolic metrics. These metrics

correspond to conformal structures of the surfaces and can be recovered from the

hyperbolic metric of the unit disk via the uniformization theorem. Let "&/(E) be

the set of complete hyperbolic metrics on the non-elementary C--surface ).
A diffeomorphism h;E*E induces a mapping h*:-//(E)*"4'114' h*(m)

for an me"4/(2) is defined requiring h:(r,h*(m))*(Z,m) be isometric. In this

way the group Diffs()) of diffeomorphic self-mappings of ^E isotopic to the identity
acts on .,#(2). The orbit space

T(,): '&Q)lDttrop)

is the Teichmiiller space of .8. It carries a standard topology which makes f(.X)
homeomorphic to a Euclidean space. The surface ) being oriented and without
boundary, f() is also a complex manifold. For non-orientable surfaces or surfaces
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with boundary 7"Q) is a real analytic manifold. We assume the standard results

about Teichmiiller spaces known. The forthcoming monograph of Lehto [L] is our
basic reference.

If ^[ is not orientable we may form its oriented double cover n: Ed*Z whose

covering group is generated by an orientation reversing involution o:Ed-Ed
which does not have fixed-points. If (o) is the group generated by o, E:Edl(o).

The projection n:td-E defines' n*;"4/(E)*"44(.Ed) where n*(m) for an

m(l/(Z) is defined by requiring n:(Zd,n*(m))*(2,m) be isometric. This map-
pingn*inducesaninjectivemapping n*:T(2)*!(.Ed) forwhich n*(Z(tD:T(rd),*.
Here T(Z),* is the set of fixed-points of the induced mapping o*:T(E\*f(2d\
(cf. [MSD.

4. A disk with two holes is a pair of pants. It is a building block for compact

oriented surfaces. In order to study Teichmiiller spaces we should first parametrize

hyperbolic metrics of pairs of pants. This is, of course, well known. We will, however,

briefly indicate how the considerations of Section I can be applied here.

Let P be a fixed topological pair of pants. Denote the boundary components

of P by yr,yrand yr. A complete hyperbolic metric m on P corresponds to a complex
structure X of P. (P, X) is a Riemann surface whose universal covering is the unit
disk which can be normalized in such a way that the covering group G is freely
generated by Möbius transformations 91 and g, in 9. The hyperbolic metric of the
unit disks then gives the metric m of (P, X).

Denote the hyperbolic length of the geodesic curve homotopic to 7, by l^{yi\.
It is immediate that

(4.t) L: T(P) * (Rl)t, Iml * (I^{yt}, I^br}, I^{yr];)

is a well-defined mapping. Here Rf : {r(Rlr>0}.

Proposition 4.1. The mdpprng L: T(P)*(Rl)t rs a homeomorphism.

Proof. Let us first show that L is one-to-one. Consider points lml and lm'l
in f(P) with L(lml\:L(lm'7).The hyperbolic metrics m and m' can be recovered

from the hyperbolic metric of the unit disk by the identifications (P,m):2t16
and (P, m'):DlG' where G is freely generated by gt and grh g and G' is likewise
freely generated by gi and gi in 9. Write gr:gzoh, gi:glrogi and assume

that gt and, g'j both cover y j, i:1,2,3.
Let k 1 be the multiplier of g, and k!, that of g'i, i :1, 2, 3. Now /.{yr}:leg 7g-

and l^,{yr\:logk:i. Hence kj:k'i for i:1,2,3. Consequently, gt=El and

8z:8i, and G:G'.
Now the identity mapping of D induces an isometry (P,m)*(P,m') which

maps yj onto itself for j:1,2, 3. Since it is also sense preserving it must be homo-
topic to the identity mapping of P. This means that m and, m' define the same point
in I(P), and the mapping Z is injective.
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The mapping,L is also onto since (gt,gr)-(kr,kr,ku) defines a surjection of
I onto 13. This shows that Z is bijective.

To complete the proof it suffices to show that L is continuous. But this is an

immediate consequence of Theorem 4.1 in [TS 1].

Construction of the local parametrization

5. Let ) be a compact and not elementary oriented C--surface without bound-

ary. It can be decomposed into -r(X):2g-2 pairs of pants. Here g is the genus

of ). Fix a decomposition (Pr, Pr,...,Pru-r) of .E into pairs of pants Pr. We

assume that each P, is the image of a standard pair of pants P under an embedding.

Let ar,dz,...,usr-g be the boundary crrrves of the pairs of pants in the above

decomposition. Each a, is a simple closed curve on X and appears as a boundary

component of two different pairs of pants.

Figure 4. A decomposition of a genus 3 surface into pairs of pants

Each point of the Teichmiiller space T()) of ) can be represented by a com-
plete hyperbolic metric m of Z for which each ui, j:1,2, ...,38-3, is a geodesic.

Hence there is no loss in generality in assuming that all the hyperbolic metrics under
consideration have this property.

Like in the case of pairs of pants

(5.1) L: T(Z) -* (Rl )ss-g, lm\,* (l*{at'|r, ... , I,,{oru- B})

is a well-defined mapping.
It follows, from Proposition 4.1, that the mapping (5.1) is onto. It is also real

analytic with respect to the complex structure of f()) but we do not need this fact.
Following A. Douady ([TT], Exposd 7) we study the mapping (5.1) introducing

an action of Ros-g on (X).
Orient the curves ai and choose collars a; X [0, l] on the left side of ar:a, a 191.

Assume that these collars are disjoint. For a complete hyperbolic metric m of E and
each number r€R define a diffeomorphism E,(m,t) of atX[O, l] onto itself with
the following properties:
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l) Ei(m,l) is the identity in a neighbourhood of crX{l}.
2) Ei(m,l) is an isometry of m rn a neighbourhood of arx{0}.
3) AliftingofEi(m,r)totheuniversalcoverRX[0,1]of a;X[0,1]istheidentity

on R X {1} and a translation of length tl^{ai\ on R X {0} which covers c.; X {0}.
Here we consider RX [0, l] with a lifting of the metric rn.

The deformed metric |j(m,t\ is now defined by 0t(m,t):Ej(m,t)(m) on

a.;X[0, l] and by |i(m, /):z elsewhere.

For (tr,tr,..., lrr-r)€R30-3, 0(m,tr,tz, ...,tgs-g) is the metric defined by

0,(m,t) in a;X [0, l], ,/:1,2, ...,3g-3, and by z elsewhere.

Note that the above construction (cf. e.g. [TT], page 129) gives a hyperbolic

metric since all the curves orj were assumed to be geodesics of the mefiic m'

We now quote a basic result ([TT], Exposd 7, Proposition 3, p' 133).

Proposition 5.1. Themapptng (5.1) Z: f(f r(R|)e-3 is aprincipal R8o-t-

fibration.

We continue to follow the construction of [TT], Exposd 7. For each index 7
consider the pairs of pants Pr, and P,, adjacent to ut. Let f i be a simple closed

curve in Pj,wP j, which is neither homotopic to any of the böundary components

of Pr, or P rrnot homotopic to a point. Fix the curves fr, fir, ... , f ,o-".
For a hyperbolic metric m we can now consider the function

(5.2) t*lt,<^,a{fi}
where /r.,,,,1{ft} it the length of the geodesic curve homotopic to B, in the de-

formed metric 0r(m, t).

Proposition 5.2. ([TT], Expos6 7, Proposition 2, p. 130.) The function (5.2)

is strictly conoex and has a unique minimum.

We will use the above results to find a local geometric parametization for the

Teichmiiller space (^X) in terms of lengths of n simple closed curves where n:
dim* r(r).

Proposition 5.1 means that the mapping (5.1)

L: T(2) * (R|)sa-a

has a continuous global section s:(Rf)se-3*T(Z), and that for each lmleT(Z)
there is a unique (q, ,.., ttrs-")€.Rsn-8 such that

lml : l0 (soZ([n]), tT, ..., #u -)l.
Furthermore, the mapping

Y,i f (D--* (Rl )tu-3; 334-3, lml ,* (f $*l), tT, ..., t\n-"),

521

(5.3)

is a homeomorphism of f(.E) which depends on the section s.

Let us now try to get a more detailed idea of the mapping (5.3). Fix a n
l;;i=-3r-3. For a hyperbolic metric m, the length l^{f i} of the geodesic curve
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homotopic to B, depends on the pont L(fml)e (nl)tn-t and on ti b:ut not on the
coordinates ti, k+j. This follows immediately from the definition of {.

Given an ln the function (5.2) has a unique minimum point (fl0 by Proposition
5.2. If s':(Rf)Be-3*f()) is a continuous section of the mapping (5.1) then for
each x€(R1-)3t-3 we may consider the points Gfr"lt. For eachT that point is the
unique minimum point of a strictly convex function which depends continuously
on the parameter xe (nl)tn-t. Such a minimum point depends continuously on x
as well. It follows that

s : (Ri)tn-t * T (Z), x + [9(s'(x), (/i'("))o , .. ., (tån?)r)o)]

is a continuous section of the mapping (5.1).

That section has the following property: For each x€(Rl)3s-s ailthefunctions

t * 16r1"1,1,q{Bi), j : 1,2, ...,3g-3,

are strictly increasing for />0 and strictly decreasing for l<0.
Consider the parametrization (5.3) of Z(^[) associated with this section s. Let

V- {(*, tr,..., teg_Je (Rl)tn-syftso-tlx€(nitn)-t, tj + 0 for all j}
and Y,:Y" t (V). V,is clearlY an o'en

The followittg result is now almost

Proposition 5.3. The mqpping

(5.5) 9: T(2) * (Rl)6t-6, lml* (l-{a1}, l^{frt\, ...,l^{orn-"), l^{Fu-"})

is a local homeomorphism on V".

Proof.It suffices to show that 9o(Y")-1 is a local homeomorphism on Z
This is, on the other hand, clear since for till each function

ti* ler<"<rl,rr'l{f i)
is a local homeomorphism. Hence the length of the curve Br locally parametrizes
the coordinate l, in Z This proves the proposition.

To get a local parumetization at points of f() which do not belong to Zo

we simply replace some (or all) of the curves f; by their Dehn twists around the
corresponding ut.ln that way we get a local parametrization for Z()) everywhere.

Parametrization of non-orientable surfaces

6. Let Z be a compact non-orientable C--surface without boundary. Consider
its orientable double cover 7r: 2d*2 and assume that Zd is of genus g, g>2. For
our considerations it is necessary to get a concrete picture of the covering n:2d*2.

Non-orientable surfaces with homeomorphic double covers are homeomorphic.
Hence it suffices to find one concrete non-orientable surface ) whose orientable

set of f Q) since Y, is continuous.
obvious.
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double cover .Xd is of genus g. This amounts to finding an orientation reversing

involution o:Dd*Ed, which does not have fixed points, of an oriented surface Id
of genus g. Because if o is such an involution of .Ed then Z:Edl(o) is a non-

orientable surface without boundary whose orientable double cover is .Id.

To construct the above jnvolution take first two copies of a sphere from which
g* I disks have been removed. Glue these spheres with holes together along the

boundary. In that way we obtain an oriented surface ^Ed of genus g. This surface

is a ramified double cover of the original sphere with two holes. Let r:Zd*Zd
be the sheet interchange of this double cover. Let dl,.,.,un*, be the components

of the fixed-point set of r; they are just simple closed curves on .Id which correspond

to the boundary curves of the sphere with holes we started with.
Let A, be a tubular neighbourhood of ai, i:1,2,...,9+1. Assume that

AinAo:Q for j+k. We mayfurther assume that r(A):A, for j:1,2,...,g+1.
We choose the universal coverings Åi-Ai of the annuli l; in such a way

that År:{z(Cl-l=lmz<+1}, the real axis covers c;, the complex conjugation

is a lifting of rla., and the covering group of Äi-Ai is generated by the translation

z*z*2.
The mapping fr:Ä1*Ä1, .f(z):z+(l-Imz), induces a homeomorphism

Ai-Ai which is the identity on the boundary of Ai. Let f:2d-2d be the orienta-
tion preserving homeomorphism of .Id which, in each Ait agrees with the above

mapping and is the identity in Zt-(Ui:i,l,S. fne following lemma is an imme-

diate consequence of all the definitions. The idea we have used here is due to B.

Mazur and H. Jaffee.

Lemma. The mapping 6-for is an orientation reuersing inuolution of Zd which

does not haue fixed points.

To get a better idea of o consider a simple closed curve p, which intersects dj
as in the picture below (Figure 5). Assume that t(Br) is homotopic to pr. Then

o(B) is homotopic to the Dehn twist of B, around a, (to a suitable direction).

(
t ttOJ'f

L:---EJt
q,j

- T---ll
Aj

?---1i--r

Figure 5. The curve o(f) is homotopic to the Dehn twist of fi
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This mapping o is explicit enough in order to study the Teichmiiller space of the
non-orientable surface Z:Edl(o) of genus g.

Identify flrst 7(X) with ?1.8)"*, the fixed-point set of o+: T(Dr*fQ\.
We can do this by the considerations of Section 3.

Our aim is to find 39- 3:dim* f(D:Ql2) dim.T(Dd) simple closed curves on
) whose lengths parametrize Z()) locally on an open set of Z(^E).

By Proposition 5.3 the points lml of T(2\ can locally be parametrized by the
lengths of 69-6 geodesic curves. We will now show that o*(lml):lml implies
simple relations for the lengths of the parametrizng curves in such a way that only
3g-3 curves suffce to parametrue T(Zd)"* locally. The projections of these curves
to Edl(o):Z are then simple closed curves on .tr whose lengths parametrize T(E).

Note first that we can decompose )d into pairs of pants is such a way that the
following holds:

l) The components of the fixed-point set of the involution z : 2d - 2d, dt, dz, .. . ,
ds41, &ta boundary curves ofsome pairs ofpants.

2) Let &g+2,...,a,sg-s be the remaining boundary curves. The involution o
of )d permutes these curves.

These conditions imply that o maps each a i, j = 1,2, .,., g I l, onto itself and each
ar, k>g*I, onto some other uo,. Let us choose the indices in such a way that
o(an*1*p):azs-r+k fot k:1,2, ..., g-2.

We can further choose the curves f; associated with the boundary curves o(j

in such a way that for j:1,2,...,g+1, 't(fi\:fi and o(Bna1*o):fro-r*o for
k:1,2,...,9-2. Then, for j:1,2,...,8*1, o(f;) is homotopic to the Dehn
twist of f i arotnd ui.

Let s: (Rf)ss-3*Z(^fd) be the section (5.a) of the fibration (5.1), and let (
be the open set of T(2\ of Proposition 5.3. Then V"nT(Z\"* is open in ?(.t1"..

Proposition 5.4. The lengths of the 3S-3 geodesic curaes homotopic to
at, ..., dzs-! and f s+2, ..., fro-, pdrdmetrize T(rr"* locally on t(nT(Ed),..

d4: ils*t

ag

Figure 6. Here is a genus 3 surface with the curves di and Pj

d,g
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Proof. Let lml(T(X)"*. In view of Proposition 5.3 it suffices to show that
the numbers l*{at} and l^{fi}, i:1,2, ...,39-3 are locally uniquely defined by
l^{niJ, i:1,2,...,29-l and l-{f i}, i:9t2,...,29-1. To that end we use the

fact that the involution o:(Zd,m)-(2d,m) is an isometry (the point ld<fp\
is kept fixed by o*).

Consequently, since dzc-r+t:o(an*r+o) fot k:1,2,...,8-2, the lengths of
dt, . . . , uru-, determine the lengths of all the curves ut . In the same way the lengths

of the geodesic curves homotopic to frrn, ..., frr-" are determined by the numbers

l^ffin*r},...,L-{frn-r\. It remains to show that the numbers l^{ft},...,l^{fn+r)
are uniquely determined.

Let s be the above section of the fibration (5.1). Consider the parametrization
(5.3) Y": Z(t1*(Ri)ao-31X34-8 associated with this section. Note flrst that by
definitions

/e(r("), t1, ...,tsn - s){f } : /ur(r(" 1,t r> {fr i}(6.1)

for all j:1,2,...,3g-3 md x€(R|;tt-t.
Assume that (x,tr,...,tss-z):V"(lml\. Consider the function (5'2) t+

/rrr<"1,0{fi}. By the choice of the curves f i, o(fr) is homotopic to the Dehn twist
of B, around ocr. Ifence, since o is an isometry of the metic m,

(6.2) l^{o(B)\ : le,<"<*>,r,t{o(f i)} : lrr("(*),,r*o{fr} : lt,G@),,,){f i}.
The function (5.2) is stricfly convex with a unique minimum. Hence there is only
one value of t, for which (6.2) can hold. This implies the proposition.

Proposition 5.4 gives a local parametrization for Z(X) in the open set corre-

sponding to I(aT(Zr,*. To get a local parametruation at points that do not belong

to this set we simply replace some (or all) of the curyes fri, i=g*I, by their Dehn
twists around the corresponding a.;. In this way we get a local parametÅzation for
Z(.X) everywhere.
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