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CONFORMAL REFLECTIONS AND
MEROMORPHIC SLIT MAPPINGS

URI SREBRO

1. In an earlier paper [3] I showed that if fis a rational function in C=Cu {=}
and if £ maps A={z€C: |z|<1} injectively onto C—E where E is a continuum
in € with void interior, then E is a circular arc or a line segment in C, fisof
degree 2 and has the form

@ o =0((2=4))

where a and b are distinct points on d4 and ¢ is a M6bius transformation with
®(0)=f(a) and ¢ (=)=f(b).

As an answer to a question raised by Y. Domar about the possibility of extend-
ing this result to meromorphic functions in C, we now prove the following

3. Theorem. Let f be a meromorphic, single-valued function in C—F, where
F is a compact set in C—24 of zero linear measure. If fy=f|A4 maps A injectively
onto a dense set in C, then

(i) E=C—fy(4) is a circular arc or a line segment in C.

(ii) The function f is the restriction of a rational function of degree 2 and has
the form (2) with distinct points, a, b€dA.

The proof of the theorem is based on a lemma about conformal reflections;
see Sections 5 and 6 below.

4. An immediate corollary of the theorem applies to slit functions in the class
S of all univalent functions f(z)=z+a,z?+... in 4. A function f¢€S is called a
slit function if I'=C—f(4) is a Jordan arc in € with a tip at <. In the following
sections A, (F) denotes the linear measure of F.

Corollary. Let f be a slit function in S. If f has a single valued meromorphic
continuation on C—F where F is a compact set in C—A4 with A,(F)=0, then the
slit of f is straight and f=@okoy where k(z)=z(1—2z)"2 is the Koebe function
and @ and Y are Mobius transformations.

5. Conformal reflections and a counterexample. The assumption in the theorem
and in the corollary that f or its continuation is single-valued is indispensible as can
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be seen from examples which we will construct here by using the generalized reflection
principle. According to this principle, cf. [2, p. 187], a continuous function f: 4—~C,
which is meromorphic in 4 can be continued meromorphically across every point
of 04, provided that there is a conformal reflection with respect to f(04). A function
@ is said to be a conformal reflection with respect to an infinite closed set E in C, if
@ is antimeromorphic in some domain containing E and ¢(z)=z for all z€E.
Obviously, not every set admits a conformal reflection and if an infinite closed set
E has a conformal reflection, then the conformal reflection is unique. One can show
by considering @ o that ¢ is a (single-valued) involution in some domain contain-
ing E.

We now turn to the construction of a (multivalued) function f (mentioned above)
which is meromorphic everywhere in € except for a finite set of points, such that
f maps 4 conformally onto C—I" where I is a compact simple arc in C which is
neither a line segment nor a circular arc. In this example I' is part of an algebraic
curve.

Let F(u, v) be a (real) polynomial in u and v and I" a compact simple arc in C,
which satisfies the equation F(u, v)=0 and the condition |F,(u, v)|+|F,(u, v)| #0
for all (u, v)€I. By setting u=(1/2)(w+w) and v=(1/2) (w—w), F(u, v) reduces
to a polynomial G(w, w) and since G,=(1/2)(F,+iF,)#0 on I, it follows that
G(w, w)=0 can be solved for w yielding a meromorphic function g which is locally
univalent at every point of I' and such that g(w)=w for all werl'. Evidently, the
function @=g¢ is a conformal reflection in I'. Note that g is algebraic and hence it
is meromorphic everywhere except for a finite set in € —TI.

Now let /' be a conformal mapping of 4 onto € —TI'. Then f can be continued by
letting f(2)=¢(f(1/2)) for zeC—4. Since § is algebraic, it follows that fis mero-
morphic everywhere in € except for a finite set. It is clear that in the above construc-
tion I' need not be a line segment of a circular arc.

6. Lemma. Let ¢ be a conformal reflection with respect to an infinite closed
set E. If ¢ is single-valued (antimeromorphic) in D =C—F, where F is a compact
set in C—E with A(F)=0, then

(1) E is contained in a straight line or in a circle.

(ii) The function @ is injective and @ is the restriction of a Mébius transformation.

Proof of the lemma. A,(F)=0 and ¢ is meromorphic, hence by using injective
branches of ¢~ one sees that A;(¢ *(F))=0. Consequently, A,(Fu¢@~1(F))=0
and Dy=D—¢1(F) is a domain. Let ¢o=¢|D,. Then A=¢ o, is a well defined
single-valued meromorphic function in D,. Now, ¢@(w)=w for all weE, hence
h(w)=w for all we€E, and since E is infinite and closed in C, it follows that E clus-
ters in the domain of % and thus A(w)=w for all weD,. Consequently, ¢, is in-
jective in Dy. Indeed, ¢ (w;)=¢@(wy) for wy, wy€ D, implies

wi = (W) = @ (@ (Wy) = w,.
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Next A,(Fu¢@~(F))=0 and @, is conformal, hence, by a known removability
theorem (cf. [1]) applied to @, it follows that @, has a conformal extension on ¢
and thus (ii) follows.

Finally, note that the fixed set of an anti-Mdbius transformation is either finite
or a circle or a line, thus (i) follows by (ii) and the fact that ¢ fixes every point of E.

7. Proof of the theorem. We first show that E admits a conformal reflection
which satisfies the assumptions of the lemma. This will imply part (i) of the theorem.

Let ¥ (z)=1/z and F’=fyoy(F). Evidently, F’ is compact and F'nE=,
and since fyoy is a diffeomorphism in C—4 and A;(F)=0, it follows that
A, (F)=0. Let fy=f|C—A4—F, then

¢ =fioy o(fi ! |C~E~F)
is antimeromorphic in ¢ —E— F’. Now, f has only finitely many branch points on
04, f, is a homeomorphism and int E=0, therefore

E = 0fo(4) = f(04)

is a finite union of analytic arcs. Furthermore, ¢ has a continuous extension on
C — F’ denoted again by ¢, with ¢(w)=w for all we E. Hence, by applying Morera’s
theorem to @, or by [2, p. 183] it follows that ¢ is antimeromorphic in € — F’. There-
fore, ¢ is a conformal reflection in E and satisfies the assumptions of the lemma.
Thus, by part (i) of the lemma, E is either a circular arc or a line segment in € as
stated in part (i) of the theorem.

We now turn to part (i) of the theorem. Since E=f(04) is either a circular arc
or a line segment in €, we may apply the standard reflection principle to f,. By doing
so noting that f; is univalent, we conclude that fis a rational function of degree two
and that f maps its two branch points to the two tips of E. By using an auxiliary
Mébius transformation ¢ which maps 0 and < to the tips of E it is not hard to verify
that f has the form (2) (c¢f. [3]). This completes the proof of the theorem.
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