Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 10, 1985, 527-530 Commentationes in honorem Olli Lehto LX annos nato

CONFORMAL REFLECTIONS AND MEROMORPHIC SLIT MAPPINGS

URI SREBRO

1. In an earlier paper [3] I showed that if f is a rational function in $\hat{C} = C \cup \{\infty\}$ and if f maps $\Delta = \{z \in C : |z| < 1\}$ injectively onto $\hat{C} - E$ where E is a continuum in \hat{C} with void interior, then E is a circular arc or a line segment in \hat{C} , f is of degree 2 and has the form

(2)
$$f(z) = \varphi\left(\left(\frac{z-a}{z-b}\right)^2\right)$$

where a and b are distinct points on $\partial \Delta$ and φ is a Möbius transformation with $\varphi(0)=f(a)$ and $\varphi(\infty)=f(b)$.

As an answer to a question raised by Y. Domar about the possibility of extending this result to meromorphic functions in C, we now prove the following

3. Theorem. Let f be a meromorphic, single-valued function in $\hat{C}-F$, where F is a compact set in $\hat{C}-\bar{\Delta}$ of zero linear measure. If $f_0=f|\Delta$ maps Δ injectively onto a dense set in C, then

(i) $E = \hat{C} - f_0(\Delta)$ is a circular arc or a line segment in \hat{C} .

(ii) The function f is the restriction of a rational function of degree 2 and has the form (2) with distinct points, $a, b \in \partial \Delta$.

The proof of the theorem is based on a lemma about conformal reflections; see Sections 5 and 6 below.

4. An immediate corollary of the theorem applies to slit functions in the class S of all univalent functions $f(z)=z+a_2z^2+...$ in Δ . A function $f\in S$ is called a *slit function* if $\Gamma = \hat{C} - f(\Delta)$ is a Jordan arc in \hat{C} with a tip at ∞ . In the following sections $\Lambda_1(F)$ denotes the linear measure of F.

Corollary. Let f be a slit function in S. If f has a single valued meromorphic continuation on $\hat{C} - F$ where F is a compact set in $\hat{C} - \overline{A}$ with $\Lambda_1(F) = 0$, then the slit of f is straight and $f = \varphi \circ k \circ \psi$ where $k(z) = z(1-z)^{-2}$ is the Koebe function and φ and ψ are Möbius transformations.

5. Conformal reflections and a counterexample. The assumption in the theorem and in the corollary that f or its continuation is single-valued is indispensible as can

be seen from examples which we will construct here by using the generalized reflection principle. According to this principle, cf. [2, p. 187], a continuous function $f: \overline{\Delta} \rightarrow \hat{C}$, which is meromorphic in Δ can be continued meromorphically across every point of $\partial \Delta$, provided that there is a conformal reflection with respect to $f(\partial \Delta)$. A function φ is said to be a conformal reflection with respect to an infinite closed set E in \hat{C} , if φ is antimeromorphic in some domain containing E and $\varphi(z)=z$ for all $z \in E$. Obviously, not every set admits a conformal reflection is unique. One can show by considering $\varphi \circ \varphi$ that φ is a (single-valued) involution in some domain containing E.

We now turn to the construction of a (multivalued) function f (mentioned above) which is meromorphic everywhere in \hat{C} except for a finite set of points, such that f maps Δ conformally onto $\hat{C}-\Gamma$ where Γ is a compact simple arc in C which is neither a line segment nor a circular arc. In this example Γ is part of an algebraic curve.

Let F(u, v) be a (real) polynomial in u and v and Γ a compact simple arc in C, which satisfies the equation F(u, v)=0 and the condition $|F_u(u, v)|+|F_v(u, v)|\neq 0$ for all $(u, v)\in\Gamma$. By setting $u=(1/2)(w+\bar{w})$ and $v=(1/2)(w-\bar{w})$, F(u, v) reduces to a polynomial $G(w, \bar{w})$ and since $G_{\bar{w}}=(1/2)(F_u+iF_v)\neq 0$ on Γ , it follows that $G(w, \bar{w})=0$ can be solved for \bar{w} yielding a meromorphic function g which is locally univalent at every point of Γ and such that $g(w)=\bar{w}$ for all $w\in\Gamma$. Evidently, the function $\varphi=\bar{g}$ is a conformal reflection in Γ . Note that g is algebraic and hence it is meromorphic everywhere except for a finite set in $\hat{C}-\Gamma$.

Now let f be a conformal mapping of Δ onto $\hat{C} - \Gamma$. Then f can be continued by letting $f(z) = \varphi(f(1/\bar{z}))$ for $z \in \hat{C} - \Delta$. Since $\bar{\varphi}$ is algebraic, it follows that f is meromorphic everywhere in \hat{C} except for a finite set. It is clear that in the above construction Γ need not be a line segment of a circular arc.

6. Lemma. Let φ be a conformal reflection with respect to an infinite closed set E. If φ is single-valued (antimeromorphic) in $D = \hat{C} - F$, where F is a compact set in C - E with $A_1(F) = 0$, then

- (i) E is contained in a straight line or in a circle.
- (ii) The function φ is injective and $\overline{\varphi}$ is the restriction of a Möbius transformation.

Proof of the lemma. $\Lambda_1(F)=0$ and φ is meromorphic, hence by using injective branches of φ^{-1} one sees that $\Lambda_1(\varphi^{-1}(F))=0$. Consequently, $\Lambda_1(F\cup\varphi^{-1}(F))=0$ and $D_0=D-\varphi^{-1}(F)$ is a domain. Let $\varphi_0=\varphi|D_0$. Then $h=\varphi\circ\varphi_0$ is a well defined single-valued meromorphic function in D_0 . Now, $\varphi(w)=w$ for all $w\in E$, hence h(w)=w for all $w\in E$, and since E is infinite and closed in \hat{C} , it follows that E clusters in the domain of h and thus h(w)=w for all $w\in D_0$. Consequently, φ_0 is injective in D_0 . Indeed, $\varphi(w_1)=\varphi(w_2)$ for $w_1, w_2\in D_0$ implies

$$w_1 = \varphi(\varphi(w_1)) = \varphi(\varphi(w_2)) = w_2.$$

Next $\Lambda_1(F \cup \varphi^{-1}(F)) = 0$ and $\overline{\varphi}_0$ is conformal, hence, by a known removability theorem (*cf.* [1]) applied to $\overline{\varphi}_0$ it follows that $\overline{\varphi}_0$ has a conformal extension on \hat{C} and thus (ii) follows.

Finally, note that the fixed set of an anti-Möbius transformation is either finite or a circle or a line, thus (i) follows by (ii) and the fact that φ fixes every point of E.

7. Proof of the theorem. We first show that E admits a conformal reflection which satisfies the assumptions of the lemma. This will imply part (i) of the theorem.

Let $\psi(z)=1/\overline{z}$ and $F'=f_0\circ\psi(F)$. Evidently, F' is compact and $F'\cap E=\emptyset$, and since $f_0\circ\psi$ is a diffeomorphism in $\hat{C}-\overline{A}$ and $\Lambda_1(F)=0$, it follows that $\Lambda_1(F')=0$. Let $f_1=f|\hat{C}-A-F$, then

$$\varphi = f_1 \circ \psi \circ (f_0^{-1} | \hat{C} - E - F')$$

is antimeromorphic in $\hat{C} - E - F'$. Now, f has only finitely many branch points on $\partial \Delta$, f_0 is a homeomorphism and int $E = \emptyset$, therefore

$$E = \partial f_0(\Delta) = f(\partial \Delta)$$

is a finite union of analytic arcs. Furthermore, φ has a continuous extension on $\hat{C} - F'$ denoted again by φ , with $\varphi(w) = w$ for all $w \in E$. Hence, by applying Morera's theorem to $\overline{\varphi}$, or by [2, p. 183] it follows that φ is antimeromorphic in $\hat{C} - F'$. Therefore, φ is a conformal reflection in E and satisfies the assumptions of the lemma. Thus, by part (i) of the lemma, E is either a circular arc or a line segment in \hat{C} as stated in part (i) of the theorem.

We now turn to part (ii) of the theorem. Since $E=f(\partial \Delta)$ is either a circular arc or a line segment in \hat{C} , we may apply the standard reflection principle to f_0 . By doing so noting that f_0 is univalent, we conclude that f is a rational function of degree two and that f maps its two branch points to the two tips of E. By using an auxiliary Möbius transformation φ which maps 0 and ∞ to the tips of E it is not hard to verify that f has the form (2) (cf. [3]). This completes the proof of the theorem.

8. Acknowledgement. I wish to thank Yngve Domar for stimulating questions, the Academy of Finland for a research grant which I obtained during a visit to Finland. The research was partially supported by the fund for the promotion of research at the Technion.

References

- BESICOVITCH, A. S.: On sufficient conditions for a function to be analytic, and on behaviour of analytic functions in the neighbourhood of non-isolated singular points. - Proc. London Math. Soc. (2) 32, 1931, 1-9.
- [2] NEHARI, Z.: Conformal mapping. McGraw-Hill Book Company, Inc., New York—Toronto —London, 1952.
- [3] SREBRO, U.: Is the slit of rational slit mappings in S straight? Proc. Amer. Math. Soc. (to appear).

Technion Department of Mathematics Haifa 32000 Israel

Received 1 August 1983