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1. Introduction and results

Letf be meromorphic in the finite complex plane C. We write

r f, (z)la(f@):ffi
and

p(r,f): sup{e(,f(r)): lzl : {.
We shall use the usual notations of the Nevanlinna theory.

Clunie and Hayman [3] proved the following result'

Theorem A. If EQ) is positiae and increasing and f(z) is a ffanscendental

entire fuction such that

togM(r,f): o(W) {" * -1,

then

lim suo 'l!':f) : *.r*-^ e(r)togr

This result was extended in t9] for functions which have a Nevanlinna deåcient

value in the following form.

Theorem B. Let l<t<2 and let f be a transcendental meromorphicfunction

such that 6(-,fl>O and that

(1.1) T(r,f'): O(log r)') (r * -).
Then

(r.2\ ri-*nffip: -.
If/satisfies

(1.3) T(r,f): o((log r)') (r * -),
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then it satisfies

(1.4) ,u:tffi:t,
too. We shall prove the following extension for Theorem B.

Theorem l. Let f be a transcendental meromorphic function satisfying (1.4)

such that ö(-,f)>Q. llxsn

(1.s) timsunffi: -
and

(1.6) rif*offi=6(-,f).
If,further, å(-,fl>0 and f satisfies (l.l)for some t, 7<t=2, then

(r.7) rimzuoffffi=0.
Clunie and Hayman [3] proved that, given an increasing function g(r) such that

E(r)** äS r+6r there is a transcendental entire function/satisffing (1.3) such

that
rp(r,n: O(E@)loer) (r * -).

This example shows, since
logr: o(f1r,9) (r*-),

that (1.5) is essentially sharp. The following theorem shows that (1.2), (1.6) and (1.7)
are essentially sharp.

Theorem 2. Let t, I<t<2, and d, 0=d<1, be giuen, and let cp(r) be an
increasingfunction of r such that E(r)-- as r+6. There exists a transcendentol

meromorphicfunction f satisfyrng (l.l) such that ö(-,fl:d,
(1.8) tog(rp(r,f)): o(E0)Qocr)'-) (r * -),

(1.9) limsupW:ö(-,f)
and

(1.10) li.*n7ffffi--.
The following result shows that (1.3) is the best possible growth condition

under which (1.5) holds.

Theorem 3. Let EQ) and d be as in Theorem 2. There exists a transcendmtal
meromorphicfunction f such that 6(-,fl-fl,
(1.11) T(r,f): o(E|)@er)) (r * -1
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(t.t2) lim-sup H* = sö(-,l).

It is proved in [1a] that if/is a transcendental meromorphic function of order
)", then

(1.13) ,t^;yoffi > Aoa+),)ö(*, f),

where ,40>0 is an absolute constant, and in [11] a counter example is given which

shows that (1.13) is essentially sharp for 0<),"<- and 0=ö(-,"f)=1. Our Theo-

rem 3 shows that (1.13) is essentially sharp for )':0 urd 0<ö(-,fl=1. The
question "which is the best possible value for ,40 in (1.13)" remains open'

2. ProofofTheorem 1

Letf be as in Theorem l. We write

L(r,J): min {lfQ)l: lzl: 7tt.

It follows from Lemma I of lTlthat
(2.1) n(r, a,f) : o(r?,.f)) (r * -)
for all complex values a and that there exist sequences xp and ro such that l<xr<.
rp<2xo<.vo*t, L(xr,,f):0 and L(ro,f)>2 for any k,
(r,r) 

It5rolxo: r,

and that

(2.3) logL(ro,f) = (ä(-, f)+o!7)r(rr,1 (k * -;.
For any k, we choose z* such that xo<lz1,l=r*, lfQo\l:I, and that lf(z)l>|

for lzol-.1"1=-ro. lf lzl:lzyl or lzl:r*, then

(2.4) toetfb)l = #?mbgL(rr,fl,
and since log lf(z)l is superharmonic on lzol=lzl=rr, we deduce that (2.4) holds
for all z lying in lzol-.lzl=ro.

Let s>0. From (2.4) it follows that

toglf (z*(r +V l,-D)l =- ffffiGl l,* I + o G))

as s*0. and since
toglf(a+s('JVil)l

= toe (l fk*)l + G + o (s)) t/' Q)l\ =- G + o G)) l/' (zJ | (s * 0),
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we deduce that

l"-le(f @) : lzol2llf ' Q)l = (Z tog (rrlx))-'rog L (rp, f).
This together with (2.2\ and, (2.3) shows that

(2.s) I'L)-:({k!)-- as k**,r(l"rl.f)
which proves (1.5).

Let a" be the zeros off For any k, we choose w1 such that .f(w):0, xpslwpl<ry,
and that f(z)*O for lwll=lzl=r1,. Since .L(r*, fl=|, there exists d1,, 0<d1=.
r*llw*l-l, such that lf(wo(+dk))l:1 and that

(2.6) lf(w*(I+il)l=t for O<d<dy.
Applyrng the Poisson-Jensen formula with R:rr and w:wr(l*do):7sio, *.
get

o : log l,f(w)l

= en)-, Ii"loe t/(Reto)l ffi *
-zp;-*r"rl##l

> logL(r1, f)- n(lwrl,O, flrcrffi,
which together with (2.3) implies that

n(lwrl, 0,/) log (4lilo\ = (41-,fl+o(l))T(rk,J)

as k*-. This implies that

(2.7) tog(ald)= (å1-,fl+ "G))m
as k*-.

Since l/(w)l:l and f(w,):O, there exists b*:w*(l*d) such that O<d<dr,
and that 

l.f ' (b*)l= lw - wol -r : lilrwvl-L'

This together with Q.7) nd (2.1) implies that

log ( | 
b* | 

q (/( åo))) = tog (lb kl 2ll f ' (b )l) = to s (2d *)-'

=o(1)+(ä(-,fl+o(l)) ffih
>(ä(-,r+ "O>1ffi (k *-),

which proves (1.6).
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Let us suppose that/satisfies (1.1) for some t, I<t=2, and let r>1. We get

n(r,O,fl = 
(log ')-, Ii' n(t,0, f)t-r ilt

: o((log r)-rN(rz,0,fl): o((ogr)'-1) (r *-),
which together with (1.6) proves (1.7). This completes the proof of Theorem 1.

Remark. From (2.5) we get the following result slightly stronger than (1.5).

Theorem 4. Let f be as in Theorem l. Then

ri-r,ro l"]9((")) -^nys:P-7tr;Jy:*,

where E(f1: {z: lf(z)l:1!.

3. ProofofTheorem 2

Let t, d and <p(r)beas in Theorem 2. We set ro- 100, and fot n>l we choose

rn such that

(3.1) ru > exp exp exp (r,-)
and

(3.2) E(rJ2) > rn-!'

We denote by [xl the integral part of a non-negative real number x. We set

(3.3) so : [0oB ro)t-t],

(3.4) q,: lso(l-d)l
and

f(z):nz,ffis,^.
lf d:1, then f is an entire function.

Let rrt2=lrl=f/1r. We have

(3.5) loglf(g)l: (1+o(l))(sn-r-4n-r) loglzl

* sn log l(z - r )l r,l * q"log lr"l (z * r)1.

Let 0<e.< 1/9. We set

Do: roexp ((- 1+e)sn-'(so-r- qn-J log rJ

and
do: tnexp((-1-e)sn-r(sn-r-{n-)logr). :
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It follows from (3.5) that

(3.6) loglzzf(z)l = (-e+o(l))(s,-r-4o-r) log lzl

in lz-r,l=d, and that

(3.7) toglz-zf(z)l = (e+o1t1) toglzl

as z+@ outside the union of the discs lz-rnl<D,.
From (3.7) we deduce that

(3.8) a(f@) = ffi :l{rn,t-'1,--^:,ffia*l= g+orr\)t,t-,

as 2-6 outside the union of the discs lz-r,l-.L+Do, and, similarly, from (3.6)

we get

(3.e) p(f(")) = lf'Q)l = (t+o1t))lzl-, (n *-)
in lz-r,l<do-I.

Let {-l=lz-rnl=l+D,. We have

a(f@)=tf'(z\tfe)t : lz;, (+-*)l
= (t t o(t-))r' : (t+o(l))it;,s, (n *-),

dn-l \^

which implies together with (3.3) and (3.4) that

(3.10) log(lzlpQfQ))) = log(s"r, il;t)+o(t)

: o(los los r")+(1 +e) I-ff tos r,

= (t + e + o (1))s,-1d sn-1 log rn (n * -).
Combining the estimates (3.8), (3.9) and (3.10), we deduce that

(3.11) tog(rp(r,"f)) = -1*o(1)
as r+6 outside the union of the intervals rpf2<r<)yo and that

(3.12) log(rp(r,fl) = (1+e+r(t))4* (k *-;

for 4f2=r<2r0. Since we get (3.12) for all e=0 and

we deduce that 
n(2rr,0,f): (tao(l))so (k * -),

(3.13) tog(rp(r, g) =- (d+o(I))m (k *-;
for rof2<r=2ro.
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It follows from the first main theorem of the Nevanlinna theory and (3.7) that

(3.t4\ T(2ro,.f): (1+o(l))nr(2r1,,0, f): (l*o(1))sp-l log ro

: (t+o(l))N(rol2,o, f):(t+o(t))r(rrl2, f) (k *-;.
From (3.4) we deduce that

N(r, -,.f): (1-d+o(1))If(r, 0, /) (r *-),
which together wi;h (3.14 implies that 6(-,fl:6. This together with (3.13),

(3.14) and (3.11) shows that

(3.15) los(rtrt(r,fl) = (41-,,f)+o(r)) #r,#
as r+@. From (3.11), (3.12), (3.14) and (3.3) we deduce that

tos(r1t(r, f\): o(ffi) {" *-),

which proves (1.10), and from (3.11), (3.12), (3.2) and (3.3) we get

los (rp(r, f)) : o(E(r)(los r)'-') (r *-),
which proves (1.8).

From (3.3) we deduce that

n(r,0, J) : O((loSr)-') (r *-),

which together with (3.7) and (3.14) implies that

T(r, .f\ : (1 + o(1))N(r, O, .f)
: o(l:(togx)'-tx-Ldx)

: o(0og t)) (r * -).
Combining (3.15) and (1.6) we get (1.9). Theorem 2 is proved.

4. Some lemmas

Lemma l, Let EQ) be an increasing function of r such that E(r)*- a5

t*-. VIle choose /0:Jo:I00, andfor n>-1, rn and sn are chosensuchthat

(4.1) rr > exp exp exp (rn-r),

(4.2) E(F) ='*-,
and

(4.3) sn : [sn-r log rl'
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ll/e set

Then 
gk) : II:=r(r- zlr)*.

(4.4) T(r, g): o(q(r\(toer)') (r * -),

(4.5) ti-*n"ffi= s,

(4.6) N(rol9,O,g;: (r+o(l))s, (p * -),
and

(4.7) ' z'g(z)*0
as 2+6 through the union of the discs lz-rol=rol3.

Proof. Let rol4=lzl=4ro. We have

(4.8) log lg(z)l : (t+o1t;)sr-r log rr*sn logl(z-ro)lrrl (p *-).

If lz-rol>2rol5, we get from (a.3) and (a.8)

(4.9) loglz-sg(z)l = (t+o(t))so-r log ro-solog(512)

: (1-log(5/2)+o(1))+ 4logrr> 1*o(1) (p *-).

If lz-rol=rol3, we deduce from (4.3) and (4.8) that

(4.10) loglå s(z)l = (t +o1t))sr-r log ro-s, log 3

: -(log 3-1+o(l))so alogro = -1+o(1) (p -*),
which proves (a.7).

Using the minimum principle, we deduce from (4.9) that

(4.11) lz-z g(z)l **

as 2+6 outside the union of the discs lz-rol<2rJ1.
From (4.11) it follows that

(4.12) l"le(g(r)) = lzg'(z)llg(z)l-'

:l{rnD-, 1,--^ :,ffiawl : o (r)

as z+@ outside the union of the discs lz-rol=rJ2, and from (4.7) we get

(4.13) l"lp(c,k)) = lzg'(z)l

: le"i)-, " [,w_zt:1se)@ - z)-z dwl: o(1)

as z+@ through the union of the discs lz-rrl=rol4.
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Let rof4=lz-rol=rol2. Wc have

(4.14\ l"le(s/))= lzg'(z)lg("\l:VZZ,sy(z-r)-Ll

= solzllz-rol-L+4sr-1*o(1) = (s+o1t;)sn (p *-).

Let rnll0D<r<rr. From (4.1) and (4.3) we get

(4.15) N(r,O,f): (r+o1t))so-1log r
: (t +o1r))sn atog ro: (1+o(1))s, (B **\,

which proves (4.6), and together with (4.14), 6.12) and (4.13) shows that

rp(r,f) = (s+o1t))ar(rl9,o,f) (r * -),
which proves (a.5).

From (4.1), $.2) and (4.3) we get for rlz=r=rrfl,
T(r,.f) = (1+o(t)) logM(r,f) = (1+o(l))srlogr

= (z+o1t;)so-r(los r)z =- Q+o(1))e(r)(log r)'z,

which proves (a.a). Lemma I is proved.

The following lemma is proved in [11].

Lemma 2. Let k be a positiue integer, g(z):(l-2"\-', goQ):S(2-etkz)

for p-1,...,k, and

frk): ZI=,er)oso@)-

Then n(r, *, f*):8kz for r>2,

(4.16) e(fr@) = 72k

for all z in the finite complex plane C, and if lzl=-4, then

(4.17) lf*Q\l = l2lzl$k.

5. Proof of Theorem 3

I-et EQ) and dbe as in Theorem 3. If d:1, we choose f(z):g(z), where g

is the function of Lemma l, and deduce from Lemma I that/satisfles the assertions

ofTheorem 3.

Let us suppose that 0<d<1. Let g, s, and r, be as in Lemma l. We set

(5.1) b: Uil-L
(5.2) qo: l+l(bs/8\ttl,

hn?) : fn,(8r;t pz(z-r),
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where fo, is as in Lemma 2, and

h(z): Zi=rt o1"1.
We set f:g*h.

It follows from Lemma 2 that

(5.3) p(hok)) : 8r;'p'q(fn"(8r;tpz(z-rr))) = 576r;'n26

for all z,andif lz-rol>-rrlp, then

(5.4) lho4)l=-l#nluo'= -i., 1p-2, rnlz-r,l-L)'

Since the series )p-2 is convergent and, for any fixed p, rolz-rol-l*Q 43 2*-,
we deduce from (5.4) that

(s.s) lh(z)l = Z]=,lhnk)l *0
as z+@ outsidethediscs lz-rnl=rnlp, andthat

(5.6) lh(z)-h,(z)l = o(t) (p *-)
in lz-rol=rol2.

Let lz-rol=rnl3. We write f(z):hoQ\+nnQ\. Since är:g*h-h. we

deduce from (5.6) and Lemma 1 that

(5.7) lHoQ)l = o(1) (p *-)
and, integrating along the circle lw-rol:rpl3, that

(s.8) laiQ)l:ltznD-'! Ho(w)(w-z)-'d*l= o1i') fu *-)
in lz-r)=rl. Since

e(-f(,))=ffiW+P'o@)|,
we get from (5.7) and (5.8)

e(ft'17 = (t+o(t))e(hok))+o(r;r) (p *-),
which together with (5.3), (5.2) and Lemma 1 implies that

(5.9) l"le(fQ))=o(p'q): o(p's'1\: o(s): r(ar(lrl, o, g)) (p *-)
in lz-r)=ro16.

Integrating along the circle lw-zl:lzll24, we deduce from (5.5) that

(5.10) lh'1211 :l{z"i\- [ n1)(w-z)-z itwl: o11r1-'1

as z+@ outside the discs lz-rnl=rnl6. Since

s(fk))=ffitft'(z)l'
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we get from (5.5), (5.10) and Lemma I

(s.11) lrle(fl2) = (t+o(t))lzlq(g(z))+o(l)

= (s+o1t))lr(lzl, o, g)

as z+@ outside the discs lz-rnl=rnl6. Combining (5.9) and (5'11) we get

(s.12) ,p(r,f) = (s+o1t;)lr(r,0, s) (r *-).

Let ro(l-llp)=r=rp+r(1-(p*1)-1). It follows from (5.2) and Lemma 2

that

(5.13) N(r, -, ft) = (8+ o(l))6'n-rlog r* Sqfilog(rl|r-'old)

and that 
: (b+o(l))sr-' log r+(b + o(1))sr log+ (rlr) (p --)

(5.14) N(r, -, ft) = (8 +o(l\)qzo-rlogr-l8qi;log+(rl(rt*rrld)

since 
: (b+o(l))sn-r loe r+(b+o(1)) solog+(rlro\ (p * -).

N(r, 0, c) : (1 + o(1))so-r log r a s, log+ (r/rr),

for these values ofr we deduce that

(s.15) N(r, -, h) : (b+ o(l))N(r, 0, g;

: (b+o(1))sr-r los r+(b+ o1t;)solos(rlr,) (p * -)
fot rn=r<rn*r'

Using the first main theorem of the Nevanlinna theory, we deduce from (5'5)'

(5.13) and (5.14) that if rr(1 -llp)=r=rr(1+ 1/p) then

fli(t, -, h) : T(r, h) - N(t, -, h)

= T(rp(t*Ud,h)- N(ro(-tlp), -,h)
: N(ro(l +tlil,h)- N(ro$-11d, h)+o(1)

: o(sp-r log r) + o(so)

: o(N(r,0, g)) (p * -),
which together with (5.5) implies that

(5.16) m(r,h): o(N(t,0, s)) : o(r(r,f)) (r * -1'

Since g is an entire function and

lrn (r, f) - m (r, s)l = m (r, h) alog 2,

we get from (5.16)

(5.17) m(r,f): m(r, C)+o(N(r,0, g))

: (1+ o(l))T(r, g) (r * -).
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Since i/(r, f):N(r,h) for all r>0, we get from (5.15) and (5.12)

m(r,f) _ T(r, g\ , ^,r,Nn : ,1, r11 tN@ o, d + o(r'

= (1+å)-t+o(1): d+o(l) (r * -),
which implies that ö(-,;f)=d, and since

T(r2o, s): (1+o(1))N(r?,0, g) (p * -),
we get

ffi#-d as P**,
which implies that å(-,;f)=d. These estimates imply that ö(*,f):d.

Since ö(-,/)=0, it follows from (5.17) and Lemma I that

T(r,f): O(m(r,f)): o(r7, d)
: o(E(r)(loer)') (r * -),

which proves (1.11).

From (5.12), (5.15) and (5.17) we get

AV:-L= 5l/(r,0, g) , ^,.{\Tv, fr = n x1,,3u1*r1*;1- o(r'

= 5(1+b)-1+o(1) : Sd+o(l) (r * -),
which proves (1.12). Theorem 3 is proved.

I wish to express my thanks to the Academy of Finland for its financial support.
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