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ON THE SPHERICAL DERIVATIVE OF
SMOOTHLY GROWING MEROMORPHIC FUNCTIONS
WITH A NEVANLINNA DEFICIENT VALUE

SAKARI TOPPILA

1. Introduction and results

Let f be meromorphic in the finite complex plane C. We write
_ @i
V) =T 7P
and

u(r, f) = sup{e(f(2): |z| = r}.

We shall use the usual notations of the Nevanlinna theory.
Clunie and Hayman [3] proved the following result.

Theorem A. If ¢(r) is positive and increasing and f(z) is a transcendental
entire fuction such that

2
tog M) = 0(1LL) ¢,
then
hm sup M = oo,

r- @(r)logr

This result was extended in [9] for functions which have a Nevanlinna deficient
value in the following form. ‘

Theorem B. Let 1<t<2 andlet f be a transcendental meromorphic function
such that (e, )=0 and that

1.1D) T(r,f) = O((logr)) (r— ).
Then
; log (rp(r,.f) _
(12) ll]'rn_,Scl.lp—(log———r)—zT = oo,
If f satisfies
(1.3) T(r,f) = O((logr)?) (r - <),
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then it satisfies

. TQ@rf) _
9 mTen "

too. We shall prove the following extension for Theorem B.

Theorem 1. Let f be a transcendental meromorphic function satisfying (1.4)
such that (<o, f)=0. Then

- ru(r, f) _
- MR TG )
and

. n(r, 0, Hlog(ru(r, ) _ .
(1.6) lim sup T, f) = 0(=, f).
If, further, 6(<=,f)=0 and f satisfies (1.1) for some t, 1<t=2, then
. log (ru(r, 1)) _

(-7 LR TG, fdog i 0

Clunie and Hayman [3] proved that, given an increasing function ¢ (r) such that
@(r)—>o as r—eo, there is a transcendental entire function f satisfying (1.3) such
that ’

ru(r, f) = O0(p(r)logr) (r— ).

This example shows, since

logr =o(T(r, f)) (r— <),
that (1.5) is essentially sharp. The following theorem shows that (1.2), (1.6) and (1.7)
are essentially sharp.

Theorem 2. Let t, 1<t<2, and d, O<d=1, be given, and let ¢(r) be an
increasing function of r such that @(r)—oc as r—oo. There exists a transcendental
meromorphic function f satisfying (1.1) such that (e, f)=d,

(1.8) log (ru(r, f)) = O(e (N (log r)*~)  (r - =),
, . n(r, 0, f) log (ru(r, /) _

1.9) llrrn*s;lp T /) =0(e, f)
and

(1.10) lim sup 128 (ru(r, 1))

et T(r, f)logNt=

The following result shows that (1.3) is the best possible growth condition
under which (1.5) holds.

Theorem 3. Let ¢(r) and d be as in Theorem 2. There exists a transcendental
meromorphic function f such that (e, f)=d,

(1.11) T(r,f) = O(p()(log r)?) (r - =)
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and

: (s ) _ 5o

It is proved in [14] that if f is a transcendental meromorphic function of order

A, then

e f) .
(1.13) hrrn»s«fp_T(T,fT = Ay(1+ 1) (e, f),

where A,>0 is an absolute constant, and in [11] a counter example is given which
shows that (1.13) is essentially sharp for 0<A<o and 0<d(ee, f)=1. Our Theo-
rem 3 shows that (1.13) is essentially sharp for A=0 and 0<d(ee,f)=1. The
question “which is the best possible value for 4, in (1.13)” remains open.

2. Proof of Theorem 1

Let f be as in Theorem 1. We write .
L(r,f) = min {|f(2)]: |z| = r}.

It follows from Lemma 1 of [7] that
2.1) n(r, a,f) = o(T(r,f) (r - =)

for all complex values a and that there exist sequences x, and r; such that l<x,<
ry<2X,<Xg+1, L(x,/)=0 and L(ry,f)=2 for any k,

G2 lim ryfx, =1,
- and that
(2.3 log L(re, f) = (8(co, /)+0(W)T(ry, ) (k — ).

For any k, we choose z, such that x,<|z,|<ry, |f(z)|=1, and that |f(z)|>1

for |z|<|z|=r. If |z]=]z| or |z]=r;, then
log |z/z|

2.4) lo 2)| = —==""=_log L(ry, /),
( glf( )l lOg ]rk/zkl g k f)
and since log | f(z)| is superharmonic on |z;|=|z|=r;, we deduce that (2.4) holds
for all z lying in |z,|<|z|<Fy.

Let s=0. From (2.4) it follows that

log £ (241 +514D)| = 2522 (2] +(5)

as s—0, and since

log | f(ze+5(zi/|zi))|
= log (|/(z)|+(s+ o)1 @) = (s+o@)If @] (s~ 0),
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we deduce that
]ZkIQ(f(Zk)) = 1z/2|1f" (z)] = (2 log (rk/xk))_l log L (ry, f).
This together with (2.2) and (2.3) shows that

lzde(f(z)) _ _
T(]Zkl’ f)

2.5 as k —» oo,
which proves (1.5).

Let a, be the zeros of f. For any k, we choose w; such that f(w,)=0, x,=|w]|<r,
and that f(z)=0 for |w|<|z|=r,. Since L(r,f)=1, there exists d;, 0<d;<

(2.6) [f(w,(1+d)) <1 for 0<d <d,.

Applying the Poisson-Jensen formula with R=r, and w=w,(1+d)=re"’, we
get

0 = log | f(w)|
R2_r2
= -1 [2rm o
= @07 [ 0g |/ R gy proo o o
R*—a.w
—2]a8[<Rlog R(W—as)
=log L(ry, /) —n(lw, 0, f) log 2
= log L(ry, kls £ w—w|’

which together with (2.3) implies that
n({wil, 0, 1) log (4/d) = (6 (=, f)+0 (1)) T (. 1)

as k— . This implies that

@2.7) log (4/dy) = (6(>, f)+0(1)) 7,%)

as k-—-eo.
Since |f(w)|=1 and f(w,)=0, there exists b,=w,(1+d) such that 0<d<d,
and that
L7 (B)] = w—wi| 72 = |dw| 7%

This together with (2.7) and (2.1) implies that
log (lble(f(bk))) = log ({bk/zl |f,(bk)|) = log (2dy) !

T(rk’f)
n(lwkl’ 0’ f)

T(bdS)
Abd, 0, *

= 0(1)+(8(s=, f)+0(1))

= (8(ce, f)+0(1)
which proves (1.6).
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Let us suppose that f satisfies (1.1) for some ¢, 1<¢=2, and let r>1. We get
n(r, 0, f) = (log r)* f:’ n(t, 0, f)t~1dt
= O((log ™IN(% 0, £)) = O((log r)'"Y)  (r »<°),
which together with (1.6) proves (1.7). This completes the proof of Theorem 1.
Remark. From (2.5) we get the following result slightly stronger than (1.5).
Theorem 4. Let f be as in Theorem 1. Then

, |zle(f(2))
lim sup ———== = o,
- T(|zl, /)

where E(f)={z:|f(2)|=1}.

3. Proof of Theorem 2

Let ¢, d and ¢(r) be as in Theorem 2. We set r,=100, and for n=1 we choose
r, such that

3.1 r, > exp exp exp (r,—1)
and
(3.2 @(rnf2) > 1y
We denote by [x] the integral part of a non-negative real number x. We set
(3.3) s, = [(log r,)* 71,
34 gp = [s,(1—a)]
and

w (=2z[r,)™

£2) = [T, 32

If d=1, then f is an entire function.
Let rl?=|z|=r}?,. We have

(3.5) log | f(2)] = (L+0(1))(S4-1— qu-1) log | 2]
+ 8, IOg ‘(Z_rn)/rnl + G log Ir,,/(Z'l‘ rn)l'
Let 0<e<1/9. We set

Dn = I, €Xp ((_1+8)stl_1(sn—1_qn—1) lOg rn)

and
dn =1, eXp ((_ 1 _a)s;l(sn—l— qn—l) IOg rn)-
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It follows from (3.5) that

(3.6) log |22£(2)| = (—&+0(1))(Sy-1—gu—1) log |2|
in |z—r,]<d, and that
3.7 log |z72f(2)| = (e+0(1)) log |z]

as z—co outside the union of the discs |z—r,|<D,.
From (3.7) we deduce that

1@l l/f(W) _ .
B8 (@)= w = (D G| = (o)l
as z—oo outside the union of the discs |z—r,,]<1+D,,, and, similarly, from (3.6)
we get

(3.9) (/D) =1 @ = (1+o)|z[7 (n >)

in |z—r,|<d,—1
Let d,—1=|z—r,|=1+D,. We have

e(f(2) =11 DIf(2)] =

(-2
z—r, z+r,

= LoD _ (14 o)ds, (-

= d,—-1
which implies together with (3.3) and (3.4) that
(3.10) log (1zle(f(2))) = log (s,rmdi ) +0(1)

= O(loglog r,)+(1+8) 21 og ,

= (1+e+o())s; ds,_1logr, (n o).
Combining the estimates (3.8), (3.9) and (3.10), we deduce that
3.11) log (ru(r, ) =—1+40(1)

as r—o outside the union of the intervals r,/2<r<2r, and that

(k <)

(3.12) log (ru(r, ) = (1+s+o(1))w

for r,/2<r<2r,. Since we get (3.12) for all ¢=0 and

n(2r., 0, 1) =(1+o)s, (k > ),
we deduce that

(3.13) log (ru(r, f)) = (d+o(1))f(":2;r1’cl%°’% (k <)

for r2<r<2r,.
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It follows from the first main theorem of the Nevanlinna theory and (3.7) that
(3.14) TQre, f) = (1+0())NQ2r, 0, ) = (1+0(1))s,_1 log 7,
=(1+o(D)N (2, 0, /) =(1+0W)T(r/2, ) (k ><).
From (3.4) we deduce that
N(r, =, f) = (1=d+o())N(, 0, /) (r—>=),

which together with (3.14) implies that &(ee, f)=d. This together with (3.13),
(3.14) and (3.11) shows that
I(r, )

(3.15) log (ru(r, )) = (6(=, N +o (D) 5757

as r—oo. From (3.11), (3.12), (3.14) and (3.3) we deduce that

tog (ru(r, ) = O (o) (=

which proves (1.10), and from (3.11), (3.12), (3.2) and (3.3) we get

log (ru(r, /) = O(@(r)(log r)*™)  (r =),

which proves (1.8).
From (3.3) we deduce that

n(r, 0, f) = O((logry™) (r <),
which together with (3.7) and (3.14) implies that
T(r, )= (1+0Q)N(, 0, f)
=0 (fl' (log x)y 1x~1 dx)
= 0((logrY) (r ~ ).
Combining (3.15) and (1.6) we get (1.9). Theorem 2 is proved.

4. Some lemmas

Lemma 1. Let @(r) be an increasing function of r such that ¢(r)—>c as
r—co. We choose ry=s5,=100, and for n=1, r, and s, are chosen such that

4.1) r, > €Xp exp exp (7—1),
4.2) o(Y7m) = 541
and

4.3) s, = [s,-1log r,).
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We set
g@=II,_,(A—zr)n
Then
(4.9 T(r, g) = O(p(r)logr)?) (r - =),
. ru(r,g)  _
4.6) N(r,/9,0,8) = (1+0(1)s, (p > =),
and
4.7 z%g(z) - 0

as z--oo through the union of the discs |z—r,|=r,/3.

Proof. Let r,/4=|z|=4r,. We have

4.8) log [g(2)] = (1+0(1))s,-1 log 1, +5, log [(z—1,)/r,| (P ~=).
If |z—r,|=2r,/5, we get from (4.3) and (4.8)
4.9) log |z73g(2)| = (1+0(1))s,-1 log r,—s, log (5/2)

= (1-log (5/2)+0(1))s,—1logr, =14+0(1) (p —).
If |z—r,|=r,/3, we deduce from (4.3) and (4.8) that
(4.10) log |z3g(2)| = (1+0(1))s,-; logr,—s,log 3
=—(log3—1+0(1))s,-1logr,=—1+0(1) (p »),

which proves (4.7).
Using the minimum principle, we deduce from (4.9) that

(4.11) |z272g(2)| <

as z—oco outside the union of the discs |z—r,|<2r,/5.
From (4.11) it follows that

(4.12) zle(g(2)) = |28’ (2)lIg ()| 2
= |2ri)~ 1z |w—z|=1(v1v/f_(zz))2dw =o0(1)

as z— oo outside the union of the discs |z—r,|<r,/2, and from (4.7) we get
(4.13) |zle(g(2)) = 128" (2)]
= |@ri)~12 f| e EO =22 dw| = o(1)

as z—oo through the union of the discs |z—r,|=r,/4.
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Let r,/4<|z—r,|<r,/2. We have

“.14) |zle(g(2) = |zg' (/g (D] = |2 27, se(z—r) 7
= s,|zl|z—1,| T 44s,o1+0(1) = (5+0(D)s, (p ).
Let r,/100<r=r,. From (4.1) and (4.3) we get
4.15) N(,0,f) = (1+0(1))s,-, logr
= (1+o(1))s,—1logr, = (1+0(1)s, (p >),
which proves (4.6), and together with (4.14), (4.12) and (4.13) shows that
ru(r, f) = (5+o()N(@/9,0,f) (r—~ <),

which proves (4.5).
From (4.1), (4.2) and (4.3) we get for ri2=r=rl},

T(r, f) = (1+0(1)) log M(r, f) = (1+0(1))s, log r
= (240(1))s,-1(log )2 = (2+0(1)) @ (r)(log )%,

which proves (4.4). Lemma 1 is proved.
The following lemma is proved in [11].

Lemma 2. Let k be a positive integer, g(z2)=(1—z%)71, g, (z2)=g(2?¥z)
for p=1, ..., k, and

f@) =35 (= 1)Pg,(2).
Then n(r, =, f,)=8k? for r=2,

(4.16) Q(fk (z)) < 72k
for all z in the finite complex plane C, andif |z|=4, then
(4.17) Ife(@)| = 12/z].

5. Proof of Theorem 3

Let ¢(r) and d be as in Theorem 3. If d=1, we choose f(z)=g(z), where g
is the function of Lemma 1, and deduce from Lemma 1 that f satisfies the assertions
of Theorem 3.

Let us suppose that 0<d<1. Let g, s, and r, be as in Lemma 1. We set

G.1) b=1/d—1,
(5.2 q, = 1+[(bs,/8)",
h,(2) =f;p(8r;1p2(z—rp)),
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where f, is as in Lemma 2, and
P

h(z) = 2751 hp(2).

We set f=g+h.
1t follows from Lemma 2 that
5.3) o(h,(2)) = 8r;1p2Q(j;p (8ry1p*(z—r),))) = 576r, " p*q,

for all z, and if |z—r,|=r,/p, then
qu

r .
=min (p~2% r,lz—r,| 7).

P
4p*(z—r,)
Since the series >p~2 is convergent and, for any fixed p, r,|z—r,[7*~0 as z—oo,
we deduce from (5.4) that

(54 |k, (2)| =

(5.5 h@2)| = 2., k(2] ~0
as z—oo outside the discs |z—r,|<r,/p, and that
(5.6) |h(2)—h,(2)| = o(D) (p ~=)

in |z—r,|=r,/2.
Let |z—r,|=r,/3. We write f(z)=h,(2)+H,(2). Since H,=g+h—h,, we
deduce from (5.6) and Lemma 1 that

(5.7 |H,(2)| =0(1) (p <)
and, integrating along the circle |w—r,|=r,/3, that
(5.8) |H; (2)] = |@ni)~* [ H,()(w—2) "2 dw| = 0(r;1) (P ~=)

in |z—r,|=r,/6. Since

_ |k, (2)|
e(f(2) = 11k, +H,)P

we get from (5.7) and (5.8)
o(f(2)) = (t+oM)e(h,(D)+0(7Y) (P >,
which together with (5.3), (5.2) and Lemma 1 implies that
(5.9  lzle(f(2)) = 0(p*q,) = O(p*s®) = o(s,) = 0(N (2], 0, 8)) (p ~)

in |z—r,|=r,/6.
Integrating along the circle |w—z|=|z|/24, we deduce from (5.5) that

(5.10) W (2)| = |@ri) f h(2)(w—2)"*dw| = o(|z| )

+|H,(2)],

as z—oo outside the discs |z—r,|<r,/6. Since

_ g’ (2)] ’
/D) = T hE HI b
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we get from (5.5), (5.10) and Lemma 1
(5.11) |zle(f(2)) = (1+0(D)lzl e(g(2)+0 ()
= (5+o(M)N(l2, 0, g)
as z—oo outside the discs |z—r,|<r,/6. Combining (5.9) and (5.11) we get
(5.12) ru(r,f) = (5+o())N(r,0,g) (r ><).

Let r,(1-1/p)=r=r,.,(1—(p+1)7). It follows from (5.2) and Lemma 2
that

(5.13) N(r, =, h) = (8+0(1)) g3, log r+ 843 log (r/(r,—1,/P)
= (b+0(1))s,—1 log r+(b+o0(1))s, log* (r/r)) (p ~=)

and that

(5.14) N(r, =, h) = (8+0(1))g%_, log r+8¢; log™* (r/(r,+1,/P))
= (b+0(1))s,-1 log r+(b+o(1))s, log* (r/r,) (p ~ =)

Since

N(r, 0, g) = (1+0(1))s,— log r+s, log™ (r/r)),
for these values of r we deduce that
(5.15) N(r, o, h) = (b+0(1))N(r, 0, g)
= (b+0(1))s,-y log r+ (b + o(1))s, log (r/r,) (P~ =)

for r,=r=r,..
Using the first main theorem of the Nevanlinna theory, we deduce from (5.5),
(5.13) and (5.14) that if r,(1—1/p)=r=r,(1+1/p) then

m(r, o, h) = T(r, h)— N(r, =, h)
=T(r,(1+1/p), h)— N(r,(1—1/p), =, h)
= N(r,(1+1/p), k)= N(r,(1—1/p), h)+o(1)
= 0(s,-1 logr)+0(s,)
=o(N(r,0,8) (p~ )
which together with (5.5) implies that
(5.16) m(r, h) = o(N(r, 0, g)) = o(T(r, /) (r > ).
Since g is an entire function and
Im(r,f)—m(r, &) = m(r, h)+log 2,
we get from (5.16)
(5.17) m(r, f) = m(r, ) +o(N(r, 0, g))
=(1+oM)T(r,g) (r—> ).
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Since N(r, f)=N(r, h) for all r=0, we get from (5.15) and (5.17)

m(r, f) _ T(r, g)

T(r,f)  T(r,g)+bN(r,0,g)

={1+b)"+o(1) =d+o(l) (r— ),
which implies that (e, f)=d, and since

T(ry, 8) = (1+o())N(3,0,8) (p—~ =),

+0(1)

we get

mes, f)
.5 9

which implies that (e, f)=d. These estimates imply that J(ee, f)=d.
Since d(ee, )=0, it follows from (5.17) and Lemma 1 that

T(r,f) = O(m(r, /) = O(T(r, )
=0(p()(logr)?) (r o),

as p - oo,

which proves (1.11).
From (5.12), (5.15) and (5.17) we get

(/) _ SN0, g)
T(r,f) — bN(r,0,g9)+T(r, 2

=51+ +o(1) = 5d+o(1) (r ),

+0(1)

which proves (1.12). Theorem 3 is proved.

I'wish to express my thanks to the Academy of Finland for its financial support.
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