ON THE SPHERICAL DERIVATIVE OF SMOOTHLY GROWING MEROMORPHIC FUNCTIONS WITH A NEVANLINNA DEFICIENT VALUE

SAKARI TOPPILA

1. Introduction and results

Let \(f \) be meromorphic in the finite complex plane \(\mathbb{C} \). We write

\[
\varrho(f(z)) = \frac{|f'(z)|}{1 + |f(z)|^2}
\]

and

\[
\mu(r, f) = \sup \{ \varrho(f(z)) : |z| = r \}.
\]

We shall use the usual notations of the Nevanlinna theory. Clunie and Hayman [3] proved the following result.

Theorem A. If \(\varphi(r) \) is positive and increasing and \(f(z) \) is a transcendental entire function such that

\[
\log M(r, f) = O\left(\frac{(\log r)^2}{\varphi(r)} \right) \quad (r \to \infty),
\]

then

\[
\limsup_{r \to \infty} \frac{r \mu(r, f)}{\varphi(r) \log r} = \infty.
\]

This result was extended in [9] for functions which have a Nevanlinna deficient value in the following form.

Theorem B. Let \(1 < t < 2 \) and let \(f \) be a transcendental meromorphic function such that \(\delta(\infty, f) > 0 \) and that

\[
T(r, f) = O((\log r)^t) \quad (r \to \infty).
\]

Then

\[
\limsup_{r \to \infty} \frac{\log (r \mu(r, f))}{(\log r)^2 - t} = \infty.
\]

If \(f \) satisfies

\[
T(r, f) = O((\log r)^2) \quad (r \to \infty),
\]

then it satisfies
\[(1.4) \quad \lim_{r \to \infty} \frac{T(2r, f)}{T(r, f)} = 1,\]
too. We shall prove the following extension for Theorem B.

Theorem 1. Let \(f \) be a transcendental meromorphic function satisfying (1.4) such that \(\delta(\infty, f) > 0 \). Then

\[(1.5) \quad \limsup_{r \to \infty} \frac{r \mu(r, f)}{T(r, f)} = \infty\]
and

\[(1.6) \quad \limsup_{r \to \infty} \frac{n(r, 0, f) \log(r \mu(r, f))}{T(r, f)} \leq \delta(\infty, f).\]

If, further, \(\delta(\infty, f) > 0 \) and \(f \) satisfies (1.1) for some \(t, 1 < t \leq 2 \), then

\[(1.7) \quad \limsup_{r \to \infty} \frac{\log(r \mu(r, f))}{T(r, f)(\log r)^{1-t}} > 0.\]

Clunie and Hayman [3] proved that, given an increasing function \(\varphi(r) \) such that \(\varphi(r) \to \infty \) as \(r \to \infty \), there is a transcendental entire function \(f \) satisfying (1.3) such that

\[r \mu(r, f) = O(\varphi(r) \log r) \quad (r \to \infty).\]

This example shows, since

\[\log r = o(T(r, f)) \quad (r \to \infty),\]
that (1.5) is essentially sharp. The following theorem shows that (1.2), (1.6) and (1.7) are essentially sharp.

Theorem 2. Let \(t, 1 < t < 2 \), and \(d, 0 < d \leq 1 \), be given, and let \(\varphi(r) \) be an increasing function of \(r \) such that \(\varphi(r) \to \infty \) as \(r \to \infty \). There exists a transcendental meromorphic function \(f \) satisfying (1.1) such that \(\delta(\infty, f) = d \),

\[(1.8) \quad \log(r \mu(r, f)) = O(\varphi(r)(\log r)^{d-1}) \quad (r \to \infty),\]
\[(1.9) \quad \limsup_{r \to \infty} \frac{n(r, 0, f) \log(r \mu(r, f))}{T(r, f)} = \delta(\infty, f)\]
and

\[(1.10) \quad \limsup_{r \to \infty} \frac{\log(r \mu(r, f))}{T(r, f)(\log r)^{1-t}} < \infty.\]

The following result shows that (1.3) is the best possible growth condition under which (1.5) holds.

Theorem 3. Let \(\varphi(r) \) and \(d \) be as in Theorem 2. There exists a transcendental meromorphic function \(f \) such that \(\delta(\infty, f) = d \),

\[(1.11) \quad T(r, f) = O(\varphi(r)(\log r)^d) \quad (r \to \infty)\]
and
\begin{equation}
\limsup_{r \to \infty} \frac{r \mu(r, f)}{T(r, f)} \equiv 5\delta(\infty, f).
\end{equation}

It is proved in [14] that if \(f \) is a transcendental meromorphic function of order \(\lambda \), then
\begin{equation}
\limsup_{r \to \infty} \frac{r \mu(r, f)}{T(r, f)} \equiv A_0(1+\lambda)\delta(\infty, f),
\end{equation}
where \(A_0 > 0 \) is an absolute constant, and in [11] a counter example is given which shows that (1.13) is essentially sharp for \(0 < \lambda < \infty \) and \(0 < \delta(\infty, f) \equiv 1 \). Our Theorem 3 shows that (1.13) is essentially sharp for \(\lambda = 0 \) and \(0 < \delta(\infty, f) \equiv 1 \). The question "which is the best possible value for \(A_0 \) in (1.13)" remains open.

2. Proof of Theorem 1

Let \(f \) be as in Theorem 1. We write
\[L(r, f) = \min \{|f(z)| : |z| = r\}. \]
It follows from Lemma 1 of [7] that
\begin{equation}
n(r, a, f) = o(T(r, f)) \quad (r \to \infty)
\end{equation}
for all complex values \(a \) and that there exist sequences \(x_k \) and \(r_k \) such that \(1 < x_k < r_k < 2x_k < x_{k+1}, \) \(L(x_k, f) = 0 \) and \(L(r_k, f) \equiv 2 \) for any \(k \),
\begin{equation}
\lim_{k \to \infty} \frac{r_k}{x_k} = 1,
\end{equation}
and that
\begin{equation}
\log L(r_k, f) \equiv (\delta(\infty, f) + o(1))T(r_k, f) \quad (k \to \infty).
\end{equation}

For any \(k \), we choose \(z_k \) such that \(x_k < |z_k| < r_k \), \(|f(z_k)| = 1 \), and that \(|f(z)| > 1 \) for \(|z| = |z_k| \) or \(|z| = r_k \), then
\begin{equation}
\log |f(z)| \equiv \frac{\log |z/z_k|}{\log r_k/x_k} \log L(r_k, f),
\end{equation}
and since \(\log |f(z)| \) is superharmonic on \(|z_k| \leq |z| \leq r_k \), we deduce that (2.4) holds for all \(z \) lying in \(|z_k| < |z| < r_k \).

Let \(s > 0 \). From (2.4) it follows that
\[\log |f(z_k(1+s/|z_k|))| \leq \frac{\log L(r_k, f)}{\log r_k/x_k} (s/|z_k| + o(s)) \]
as \(s \to 0 \), and since
\[\log |f(z_k + s(z_k/|z_k|))| \leq \log (|f(z_k)| + (s + o(s))|f'(z_k)|) \leq (s + o(s))|f'(z_k)| \quad (s \to 0), \]
we deduce that
\[|z_k| \varrho(f(z_k)) = |z_k/2| |f'(z_k)| \lesssim (2 \log (r_k/x_k))^{-1} \log L(r_k, f). \]
This together with (2.2) and (2.3) shows that
\[\frac{|z_k| \varrho(f(z_k))}{T(|z_k|, f)} \to \infty \quad \text{as} \quad k \to \infty, \]
which proves (1.5).

Let \(a_\delta \) be the zeros of \(f \). For any \(k \), we choose \(w_k \) such that \(f(w_k) = 0 \), \(x_k \leq |w_k| < r_k \), and that \(f(z) \neq 0 \) for \(|w_k| < |z| \leq r_k \). Since \(L(r_k, f) > 1 \), there exists \(d_k \), \(0 < d_k < r_k/|w_k| - 1 \), such that \(|f(w_k(1 + d_k))| = 1 \) and that
\[|f(w_k(1 + d)| < 1 \quad \text{for} \quad 0 < d < d_k. \]
Applying the Poisson–Jensen formula with \(R = r_k \) and \(w = w_k(1 + d_k) = re^{i\varphi} \), we get
\[0 = \log |f(w)| \begin{align*}
 &\lesssim (2\pi)^{-1} \int_0^{2\pi} \log|f(Re^{i\varphi})| \frac{R^2 - r^2}{R^2 + r^2 - 2rR \cos(\varphi - \alpha)} \, dx \\
 &\quad - \sum_{|a_\delta| < k} \log \left| \frac{R^2 - \bar{a}_\delta w}{R(w - a_\delta)} \right| \\
 &\lesssim \log L(r_k, f) - n(|w_k|, 0, f) \log \frac{2r_k}{|w - w_k|},
\end{align*} \]
which together with (2.3) implies that
\[n(|w_k|, 0, f) \log (4/d_k) \equiv (\delta(\infty, f) + o(1)) T(r_k, f) \]
as \(k \to \infty \). This implies that
\[\log (4/d_k) \equiv (\delta(\infty, f) + o(1)) \frac{T(r_k, f)}{n(|w_k|, 0, f)} \]
as \(k \to \infty \).

Since \(|f(w)| = 1 \) and \(f(w_k) = 0 \), there exists \(b_k = w_k(1 + d) \) such that \(0 < d < d_k \)
and that
\[|f'(b_k)| \equiv |w - w_k|^{-1} = |d_k w_k|^{-1}. \]
This together with (2.7) and (2.1) implies that
\[\log (|b_k| \varrho(f(b_k))) \equiv \log (|b_k/2||f'(b_k)|) \equiv \log (2d_k)^{-1} \]
\[\equiv O(1) + (\delta(\infty, f) + o(1)) \frac{T(r_k, f)}{n(|w_k|, 0, f)} \]
\[\equiv (\delta(\infty, f) + o(1)) \frac{T(|b_k|, f)}{n(|b_k|, 0, f)} \quad (k \to \infty), \]
which proves (1.6).
Let us suppose that \(f \) satisfies (1.1) for some \(t, \ 1 < t \leq 2 \), and let \(r > 1 \). We get
\[
n(r, 0, f) \equiv (\log r)^{-1} \int_r^* n(t, 0, f) t^{-1} dt = O((\log r)^{-1} N(r^2, 0, f)) = O((\log r)^{-1}) \quad (r \to \infty),
\]
which together with (1.6) proves (1.7). This completes the proof of Theorem 1.

Remark. From (2.5) we get the following result slightly stronger than (1.5).

Theorem 4. Let \(f \) be as in Theorem 1. Then
\[
\limsup_{z \to \infty} \frac{|z|^q(f(z))}{T(|z|, f)} = \infty,
\]
where \(E(f) = \{ z; |f(z)| = 1 \} \).

3. Proof of Theorem 2

Let \(t, d \) and \(\varphi(r) \) be as in Theorem 2. We set \(r_0 = 100 \), and for \(n \geq 1 \) we choose \(r_n \) such that
\[
(3.1) \quad r_n > \exp \exp \exp (r_{n-1})
\]
and
\[
(3.2) \quad \varphi(r_n/2) > r_{n-1}.
\]
We denote by \([x]\) the integral part of a non-negative real number \(x \). We set
\[
(3.3) \quad s_n = \lfloor (\log r_n)^{f^{-1}} \rfloor,
\]
\[
(3.4) \quad q_n = [s_n(1-d)]
\]
and
\[
f(z) = \prod_{n=1}^{\infty} \frac{(1-z/r_n)^{q_n}}{(1+z/r_n)^{q_n}}.
\]
If \(d = 1 \), then \(f \) is an entire function.

Let \(r_n^{1/2} \leq |z| \leq r_n^{1/2} \). We have
\[
(3.5) \quad \log |f(z)| = (1+o(1))(s_{n-1} - q_{n-1}) \log |z| + s_n \log |(z-r_n)/r_n| + q_n \log |r_n/(z+r_n)|.
\]
Let \(0 < \varepsilon < 1/9 \). We set
\[
D_n = r_n \exp \left((-1+\varepsilon)s_n^{-1}(s_{n-1} - q_{n-1}) \log r_n \right)
\]
and
\[
d_n = r_n \exp \left((-1-\varepsilon)s_n^{-1}(s_{n-1} - q_{n-1}) \log r_n \right).
\]
It follows from (3.5) that

\begin{equation}
\log |z^2 f(z)| \equiv (-e + o(1))(s_{n-1} - q_{n-1}) \log |z|
\end{equation}

in \(|z - r_n| < d_n|\) and that

\begin{equation}
\log |z^{-2} f(z)| \equiv (e + o(1)) \log |z|
\end{equation}

as \(z \to \infty\) outside the union of the discs \(|z - r_n| < D_n|\).

From (3.7) we deduce that

\begin{equation}
\phi(f(z)) \equiv \frac{|f'(z)|}{|f(z)|} = \left(2\pi i\right)^{-1} \int_{|w-z|=1} \frac{1}{(w-z)^2} d\mu_w \equiv (1 + o(1))|z|^{-2}
\end{equation}

as \(z \to \infty\) outside the union of the discs \(|z - r_n| < 1 + D_n|\), and, similarly, from (3.6) we get

\begin{equation}
\phi(f(z)) \equiv |f'(z)| \equiv (1 + o(1))|z|^{-2} \quad (n \to \infty)
\end{equation}

in \(|z - r_n| < d_n| - 1|\).

Let \(d_n - 1 \leq |z - r_n| \leq 1 + D_n|\). We have

\begin{equation}
\phi(f(z)) \equiv |f'(z)/f(z)| = \left|\sum_{p=1}^{\infty} \left(\frac{s_p}{z - r_p} - \frac{q_p}{z + r_p}\right)\right|
\end{equation}

\begin{equation}
\leq \frac{(1 + o(1))s_n}{d_n - 1} = (1 + o(1))d_n^{-1}s_n \quad (n \to \infty),
\end{equation}

which implies together with (3.3) and (3.4) that

\begin{equation}
\log \left(|z|\phi(f(z))\right) \equiv \log \left(s_n r_n d_n^{-1}\right) + o(1)
\end{equation}

\begin{equation}
= O(\log \log r_n) + (1 + e)\frac{s_{n-1} - q_{n-1}}{s_n} \log r_n
\end{equation}

\begin{equation}
\equiv (1 + e + o(1))s_n^{-1}d s_n^{-1}\log r_n \quad (n \to \infty).
\end{equation}

Combining the estimates (3.8), (3.9) and (3.10), we deduce that

\begin{equation}
\log (r\mu(r, f)) \equiv -1 + o(1)
\end{equation}

as \(r \to \infty\) outside the union of the intervals \(r_k/2 < r < 2r_k|\) and that

\begin{equation}
\log (r\mu(r, f)) \equiv (1 + e + o(1))\frac{d s_{k-1}\log r_k}{s_k} \quad (k \to \infty)
\end{equation}

for \(r_k/2 < r < 2r_k|.\) Since we get (3.12) for all \(e > 0|\) and

\begin{equation}
n(2r_k, 0, f) = (1 + o(1))s_k \quad (k \to \infty),
\end{equation}

we deduce that

\begin{equation}
\log (r\mu(r, f)) \equiv (d + o(1))\frac{s_{k-1}\log r_k}{n(2r_k, 0, f)} \quad (k \to \infty)
\end{equation}

for \(r_k/2 < r < 2r_k|\).
It follows from the first main theorem of the Nevanlinna theory and (3.7) that

\begin{equation}
T(2r_k, f) = (1 + o(1))N(2r_k, 0, f) = \frac{(1 + o(1))N(r_k/2, 0, f) - (1 + o(1))T(r_k/2, f)}{k \to \infty}.
\end{equation}

From (3.4) we deduce that

\[N(r, \infty, f) = (1 - d + o(1))N(r, 0, f) \quad (r \to \infty), \]

which together with (3.14) implies that \(\delta(\infty, f) = d \). This together with (3.13), (3.14) and (3.11) shows that

\begin{equation}
\log (r \mu(r, f)) \equiv (\delta(\infty, f) + o(1)) \frac{T(r, f)}{n(r, 0, f)} \quad \text{as } r \to \infty.
\end{equation}

From (3.11), (3.12), (3.14) and (3.3) we deduce that

\[\log (r \mu(r, f)) = O \left(\frac{T(r, f)}{(\log r)^{\delta-1}} \right) \quad (r \to \infty), \]

which proves (1.10), and from (3.11), (3.12), (3.2) and (3.3) we get

\[\log (r \mu(r, f)) = O(\varphi(r)(\log r)^{2-\delta}) \quad (r \to \infty), \]

which proves (1.8).

From (3.3) we deduce that

\[n(r, 0, f) = O((\log r)^{t-1}) \quad (r \to \infty), \]

which together with (3.7) and (3.14) implies that

\[T(r, f) = (1 + o(1))N(r, 0, f) \]

\[= O \left(\int_1^r \frac{1}{x^{\delta-1} x^{-1} dx} \right) \]

\[= O((\log r)^{\delta}) \quad (r \to \infty). \]

Combining (3.15) and (1.6) we get (1.9). Theorem 2 is proved.

4. Some lemmas

Lemma 1. Let \(\varphi(r) \) be an increasing function of \(r \) such that \(\varphi(r) \to \infty \) as \(r \to \infty \). We choose \(r_0 = s_0 = 100 \), and for \(n \geq 1 \), \(r_n \) and \(s_n \) are chosen such that

\begin{equation}
r_n > \exp \exp \exp (r_{n-1}),
\end{equation}

\begin{equation}
\varphi(\sqrt[3]{r_n}) > s_{n-1}
\end{equation}

and

\begin{equation}
s_n = \lfloor s_{n-1} \log r_n \rfloor.
\end{equation}
We set
\[g(z) = \prod_{n=1}^{\infty} (1 - z/r_n)^{s_n}. \]

Then
\[T(r, g) = O(\varphi(r)(log r)^g) \quad (r \to \infty), \]
\[\limsup_{r \to \infty} \frac{r \mu(r, g)}{N(r/9, 0, g)} \leq 5, \]
\[N(r/9, 0, g) = (1 + o(1))s_p \quad (p \to \infty), \]
and
\[z^2g(z) \to 0 \]
as \(z \to \infty \) through the union of the discs \(|z-r_p| \leq r_p/3. \)

Proof. Let \(r_p/4 \leq |z| \leq 4r_p \). We have
\[\log |g(z)| = (1 + o(1))s_{p-1} \log r_p + s_p \log |(z-r_p)/r_p| \quad (p \to \infty). \]

If \(|z-r_p| \leq 2r_p/5 \), we get from (4.3) and (4.8)
\[\log |z^2g(z)| \equiv (1 + o(1))s_{p-1} \log r_p - s_p \log (5/2) \]
\[= (1 - \log (5/2) + o(1)) s_{p-1} \log r_p \equiv 1 + o(1) \quad (p \to \infty). \]

If \(|z-r_p| \leq r_p/3 \), we deduce from (4.3) and (4.8) that
\[\log |z^2g(z)| \equiv (1 + o(1))s_{p-1} \log r_p - s_p \log 3 \]
\[= -(\log 3 - 1 + o(1)) s_{p-1} \log r_p \equiv -1 + o(1) \quad (p \to \infty), \]
which proves (4.7).

Using the minimum principle, we deduce from (4.9) that
\[|z^{-2}g(z)| \to \infty \]
as \(z \to \infty \) outside the union of the discs \(|z-r_p| < 2r_p/5. \)

From (4.11) it follows that
\[|z|e(g(z)) \equiv |zg'(z)||g(z)|^{-2} \]
\[= \left| (2\pi i)^{-1}z \int_{|w-z|=1} \frac{1/g(z)}{(w-z)^2} dw \right| = o(1) \]
as \(z \to \infty \) outside the union of the discs \(|z-r_p| < r_p/2. \) and from (4.7) we get
\[|z|e(g(z)) \equiv |zg'(z)| \]
\[= \left| (2\pi i)^{-1}z \int_{|w-z|=1} g(z)(w-z)^{-2} dw \right| = o(1) \]
as \(z \to \infty \) through the union of the discs \(|z-r_p| \leq r_p/4. \)
Let $r_p/4 < |z - r_p| < r_p/2$. We have

\[
|z|g'(z)g(z) = |z| s_k(z - r_k)^{-1} \]

\[
\leq s_p|z||z - r_p|^{-1} + 4s_p + o(1) \equiv (5 + o(1))s_p \quad (p \to \infty).
\]

Let $r_p/100 < r \leq r_p$. From (4.1) and (4.3) we get

\[
N(r, 0, f) = (1 + o(1))s_p \log r
\]

\[
= (1 + o(1))s_p \log r_p = (1 + o(1))s_p \quad (p \to \infty),
\]

which proves (4.6), and together with (4.14), (4.12) and (4.13) shows that

\[
r\mu(r, f) \equiv (5 + o(1))N(r/9, 0, f) \quad (r \to \infty),
\]

which proves (4.5).

From (4.1), (4.2) and (4.3) we get for $r_p^{1/8} \leq r \leq r_p^{1/8}$

\[
T(r, f) \equiv (1 + o(1)) \log M(r, f) \equiv (1 + o(1))s_p \log r
\]

\[
\leq (2 + o(1))s_p \log r \leq (2 + o(1)) \varphi(r) \log r^a,
\]

which proves (4.4). Lemma 1 is proved.

The following lemma is proved in [11].

Lemma 2. Let k be a positive integer, $g(z) = (1 - z^{nk})^{-1}$, $g_p(z) = g(2^{-p/k}z)$ for $p = 1, \ldots, k$, and

\[
f_k(z) = \sum_{p=1}^{k} (-1)^p g_p(z).
\]

Then $n(r, \infty, f_k) = 8k^2$ for $r \geq 2$,

\[
q(f_k(z)) < 72k
\]

for all z in the finite complex plane C, and if $|z| \leq 4$, then

\[
|f_k(z)| \equiv |z|^{6k}.
\]

5. Proof of Theorem 3

Let $\varphi(r)$ and d be as in Theorem 3. If $d = 1$, we choose $f(z) = g(z)$, where g is the function of Lemma 1, and deduce from Lemma 1 that f satisfies the assertions of Theorem 3.

Let us suppose that $0 < d < 1$. Let g, s_p, and r_p be as in Lemma 1. We set

\[
b = 1/d - 1,
\]

\[
q_p = 1 + \frac{[(bs_p/8)^{1/2}]}{
\]

\[
h_p(z) = f_{q_p}(8r_p^{-1}p^2(z - r_p)).
\]

\[
(5.1)
\]

\[
(5.2)
\]
where f_{q_p} is as in Lemma 2, and

$$h(z) = \sum_{p=1}^{\infty} h_p(z).$$

We set $f = g + h$.

It follows from Lemma 2 that

$$q(h_p(z)) = 8r_p^{-1} p^2 q(f_{q_p}(8r_p^{-1} p^{2}(z - r_p))) \leq 576r_p^{-1} p^2 q_p$$

for all z, and if $|z - r_p| \equiv r_p/p$, then

$$|h_p(z)| \leq \frac{r_p}{4p^2(z - r_p)} \left| \frac{1}{q_p} \right| \equiv \min (p^{-2}, r_p|z - r_p|^{-1}).$$

Since the series $\sum p^{-2}$ is convergent and, for any fixed p, $r_p|z - r_p|^{-1} \to 0$ as $z \to \infty$, we deduce from (5.4) that

$$|h(z)| \equiv \sum_{p=1}^{\infty} |h_p(z)| \to 0$$

as $z \to \infty$ outside the discs $|z - r_p| \equiv r_p/p$, and that

$$|h(z) - h_p(z)| \equiv o(1) \quad (p \to \infty)$$

in $|z - r_p| \equiv r_p/2$.

Let $|z - r_p| \equiv r_p/3$. We write $f(z) = h_p(z) + H_p(z)$. Since $H_p = g + h - h_p$, we deduce from (5.6) and Lemma 1 that

$$|H_p(z)| \equiv o(1) \quad (p \to \infty)$$

and, integrating along the circle $|w - r_p| = r_p/3$, that

$$|H'_p(z)| = |(2\pi i)^{-1} \int H_p(w)(w - z)^{-2} dw| \equiv o(r_p^{-1}) \quad (p \to \infty)$$

in $|z - r_p| \equiv r_p/6$. Since

$$q(f(z)) \equiv \frac{|h'_p(z)|}{1 + |h_p(z) + H_p(z)|} + |H'_p(z)|,$$

we get from (5.7) and (5.8)

$$q(f(z)) \equiv (1 + o(1))q(h_p(z)) + o(r_p^{-1}) \quad (p \to \infty),$$

which together with (5.3), (5.2) and Lemma 1 implies that

$$|z|q(f(z)) \equiv O(p^2 s_p) = O(p^2 s_p^{1/2}) = o(s_p) = o(N(|z|, 0, g)) \quad (p \to \infty)$$

in $|z - r_p| \equiv r_p/6$.

Integrating along the circle $|w - z| = |z|/24$, we deduce from (5.5) that

$$|h'(z)| = \left| (2\pi i)^{-1} \int h(z)(w - z)^{-2} dw \right| = o(|z|^{-1})$$

as $z \to \infty$ outside the discs $|z - r_p| \equiv r_p/6$. Since

$$q(f(z)) \equiv \frac{|g'(z)|}{1 + |g(z) + h(z)|} + |h'(z)|,$$
we get from (5.5), (5.10) and Lemma 1

\begin{equation}
|z|g(f(z)) \equiv (1 + o(1))|z|g(g(z)) + o(1)
\end{equation}

\begin{equation}
\leq (5 + o(1))N(|z|, 0, g)
\end{equation}

as $z \rightarrow \infty$ outside the discs $|z - r_p| < r_p/6$. Combining (5.9) and (5.11) we get

\begin{equation}
r \mu(r, f) \equiv (5 + o(1))N(r, 0, g) \quad (r \rightarrow \infty).
\end{equation}

Let $r_p(1 - 1/p) \equiv r \leq r_{p+1}(1 - (p + 1)^{-1})$. It follows from (5.2) and Lemma 2 that

\begin{equation}
N(r, \infty, h) \equiv (8 + o(1))q_{p-1}^2 \log r + 8q_{p}^2 \log \left(r/(r_p - r_p/p) \right)
\end{equation}

\begin{equation}
= (b + o(1))s_{p-1} \log r + (b + o(1))s_{p} \log^+ (r/r_p) \quad (p \rightarrow \infty)
\end{equation}

and that

\begin{equation}
N(r, \infty, h) \equiv (8 + o(1))q_{p-1}^2 \log r + 8q_{p}^2 \log^+ \left(r/(r_p + r_p/p) \right)
\end{equation}

\begin{equation}
= (b + o(1))s_{p-1} \log r + (b + o(1))s_{p} \log^+ (r/r_p) \quad (p \rightarrow \infty).
\end{equation}

Since

\begin{equation}
N(r, 0, g) = (1 + o(1))s_{p-1} \log r + s_{p} \log^+ (r/r_p),
\end{equation}

for these values of r we deduce that

\begin{equation}
N(r, \infty, h) = (b + o(1))N(r, 0, g)
\end{equation}

\begin{equation}
= (b + o(1))s_{p-1} \log r + (b + o(1))s_{p} \log (r/r_p) \quad (p \rightarrow \infty)
\end{equation}

for $r_p \equiv r \leq r_{p+1}$. Using the first main theorem of the Nevanlinna theory, we deduce from (5.5), (5.13) and (5.14) that if $r_p(1 - 1/p) \equiv r \leq r_{p}(1 + 1/p)$ then

\begin{equation}
m(r, \infty, h) = T(r, h) - N(r, \infty, h)
\end{equation}

\begin{equation}
\leq T(r_p(1 + 1/p), h) - N(r_p(1 - 1/p), \infty, h)
\end{equation}

\begin{equation}
= N(r_p(1 + 1/p), h) - N(r_p(1 - 1/p), h) + o(1)
\end{equation}

\begin{equation}
= o(s_{p-1} \log r) + o(s_{p})
\end{equation}

\begin{equation}
= o(N(r, 0, g)) \quad (p \rightarrow \infty),
\end{equation}

which together with (5.5) implies that

\begin{equation}
m(r, h) = o(N(r, 0, g)) = o(T(r, f)) \quad (r \rightarrow \infty).
\end{equation}

Since g is an entire function and

\begin{equation}
|m(r, f) - m(r, g)| \equiv m(r, h) + \log 2,
\end{equation}

we get from (5.16)

\begin{equation}
m(r, f) = m(r, g) + o(N(r, 0, g))
\end{equation}

\begin{equation}
= (1 + o(1))T(r, g) \quad (r \rightarrow \infty).
\end{equation}
Since \(N(r, f) = N(r, h) \) for all \(r > 0 \), we get from (5.15) and (5.17)

\[
\frac{m(r, f)}{T(r, f)} = \frac{T(r, g)}{T(r, g) + b N(r, 0, g)} + o(1)
\equiv (1 + b)^{-1} + o(1) = d + o(1) \quad (r \to \infty),
\]

which implies that \(\delta(\infty, f) \equiv d \), and since

\[
T(r^2_p, g) = (1 + o(1)) N(r^2_p, 0, g) \quad (p \to \infty),
\]

we get

\[
\frac{m(r^2_p, f)}{T(r^2_p, f)} \to d \quad \text{as} \quad p \to \infty,
\]

which implies that \(\delta(\infty, f) \equiv d \). These estimates imply that \(\delta(\infty, f) = d \).

Since \(\delta(\infty, f) > 0 \), it follows from (5.17) and Lemma 1 that

\[
T(r, f) = O(m(r, f)) = O(T(r, g)) = O(\varphi(r)(\log r)^2) \quad (r \to \infty),
\]

which proves (1.11).

From (5.12), (5.15) and (5.17) we get

\[
\frac{r \mu(r, f)}{T(r, f)} \equiv \frac{5 N(r, 0, g)}{b N(r, 0, g) + T(r, g)} + o(1)
\equiv 5(1 + b)^{-1} + o(1) = 5d + o(1) \quad (r \to \infty),
\]

which proves (1.12). Theorem 3 is proved.

I wish to express my thanks to the Academy of Finland for its financial support.

References

Smoothly growing meromorphic functions with a Nevanlinna deficient value

University of Helsinki
Department of Mathematics
SF-00100 Helsinki
Finland

Received 8 February 1983