Annales Academiz Scientiarum Fennice Commentationes in honorem
Series A. I. Mathematica Olli Lehto
Volumen 10, 1985, 545—560 LX annos nato

AUTOMORPHIC QUASIMEROMORPHIC MAPPINGS
FOR TORSIONLESS HYPERBOLIC GROUPS

PEKKA TUKIA

A. Introduction. In this paper we consider groups of isometries of the hyper-
bolic space H"={(xy, ..., x,)éR": x,>0} whose hyperbolic metric d is given by
|dx|/x,. Let G be such a group of isometries acting discontinuously in H". Martio
and Srebro [3] raised. the question whether there always exists a G-automorphic
quasimeromorphic mapping f: H"—~R"=R"uU {e}. That is, f satisfies

(A1) fg®) =/ &)

for all xc¢H" and g€G and, moreover, f is quasimeromorphic in the sense of
Martio and Srebro [3, 1.1]. In the theory of quasiregular mappings, this problem is
the analogue of the question of the existence of complex analytic maps automorphic
with respect to a Fuchsian group.

We prove here the existence of such maps under the assumption that the group
G is torsionless and does not contain orientation reversing elements. More precisely,
we prove

Theorem A. For every integer n>1 there are K=K(m)=1 and a positive
integer N=N(n) with the following property. Let G be a discontinuous, torsionless
group of isometries of H" not containing orientation reversing elements. Then there
is a quasimeromorphic G-automorphic mapping f: H"—~R". Moreover, f is K-quasi-
meromorphic and the local topological index i(x,f) of f is less than N for every
x€H".

The local topological index i(x,f) of fat x has been defined in [3, 2.6] and f'is
K-quasimeromorphic if it is ACL" and satisfies almost everywhere in H" the equation
(1) of [3, 1.1].

We will prove Theorem A in the course of this paper and the proof is concluded
in Section F. We remark that G is torsionless if and only if it acts without fixed
points in H", i.e. the equation g(x)=x for some x implies g=id. The existence
of a G-automorphic mapping f: H"—~R" implies that G cannot contain orientation
reversing elements. However, the assumption that G is torsionless is unnecessarily
strong. In fact, if the hyperbolic measure of H"/G is finite, and every g€G is orien-
tation preserving, then it is known that there are quasimeromorphic G-automorphic
mappings (cf. Martio and Srebro [4]).
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Our method is an extension of the method of Alexander [1] by which one can
construct quasimeromorphic maps if M=H"/G is compact. A G-automorphic map
can be identified with a map M—R". One first triangulates M (in a sufficiently
regular manner); let the set of vertices be vy, ..., v,. Next one finds points b, ..., b€
R" in general position. One then maps an n-simplex 7" of M with vertices Vis -5 Vi
iy<...<I,, either to the simplex 4 of R" with vertices b, , ..., b; or to the outside
of 4 in R", depending on the orientations of 7" and 4. The resulting map is quasi-
meromorphic. If M is non-compact, one can construct by this method branched
coverings M —R" but they are not in general quasimeromorphic. The gist of our
method is that one can find such triangulations of M which allow the construction
of quasimeromorphic mappings by Alexander’s method also if M is non-compact.
To find such triangulations, we construct in Section C triangulations of H" whose
set of vertices is a beforehand given discrete set A. If this set 4 is judiciously chosen,
we get a G-invariant triangulation of H" (Theorem D) whose simplexes are not very
flat. This makes it possible to apply Alexander’s method in the construction of the
quasimeromorphic map.

We have constructed such triangulations in the hyperbolic space. We could
have done it as well in the euclidean space and since in a smooth Riemannian mani-
fold every point has neighbourhoods whose metric is arbitrarily close to the euclid-
ean, it seems possible to construct such triangulations for any smooth Riemannian
manifold. Thus Theorem A should be valid in fact for any smooth Riemannian
manifold, and not only for hyperbolic ones. Perhaps we can return to it.

Notation and terminology. Hyperbolic isometries of H" are also called M6bius
transformations and groups of isometries Mobius groups. We use the words G-auto-
morphic and G-invariant synonymously for a map f defined in a G-invariant subset
A of H" (i.e. gA=A for every g€G) such that (Al) is true for every x€A4 and
gea.

We use d for the hyperbolic metric of H" and the euclidean distance of two points
of R"is |x—y|. We denote by d(4) and by d(x, A) both the hyperbolic and euclidean
diameter of a set and the distance of a point to a set, respec:ively. If confusion is
possible, we say which metric we mean. The closed hyperbolic ball with center x
and radius r is D(x, r). The standard basis of R"is ey, ..., e,.

Interior, closure and boundary are usually taken in H" and are denoted int, cl
and bd; the last one sometimes also 9. If they are taken in some other space, we use
a subscript, e.g. 0.

We denote the identity map of a space by id.

B. Hyperbolic k-cells. In the next section we will construct special tessella-
tions of H". For this we need to know what one means by a k-cell of H". We will
now define these cells and prove what we need to know about them.

We mean by a convex subset of H" a set which is convex with respect to the
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hyperbolic metric. If XC H", we let
(B1) Co(X)

denote the smallest closed and convex subset of H” such that XcCo(X). We say
that H is a half-space of H" if H is the closure of a component of H™\T for some
hyperbolic (n—1)-subplane of H"; similarly one defines half-spaces of hyperbolic
i-subplanes of H". Then we have

Lemma Bl. If T is a hyperbolic subplane of H" and XCT, then
(B2) Co(X)=nH

where the intersection is taken over all such half-spaces H of T for which HOX
(and Co(X)=T if there are no such half-spaces).

Furthermore, if xcbdy Co(X), then there is a half-space H of T such that
H>Co (X) and x€0r H.

Proof. To prove the validity of (B2), denote the right-hand side of (B2) by Z.
Then obviously Z>Co (X) since half-spaces are closed and convex. To prove the
reverse inclusion, we find for every x€ 7\ Co (X) a half-space H such that
x¢ HoCo (X). If x€T\Co (X), let ycCo(X) be a point such that d(x,y)=
d(x, Co (X)). Let L be the hyperbolic line passing through x and y. Let H be the
half-space such that dH intersects L orthogonally at y and that x¢ H. We claim
that Co (X)c H. If this is not the case, pick a point z€Co (X)\H. Let S be the
open hyperbolic line segment with endpoints z and y. Then a point »” of S near y
satisfies d(y’, xX)<d(y, x) as is geometrically evident and can be proved precisely
using hyperbolic trigonometry (see Beardon [2, 7.11]). This is a contradiction since
ScCo (X) and hence d(y, x)=d(x, Co(X))=d(y’, x). Thus (B2) is true.

To get the second part of the lemma, pick x€bd;Co (X). By the first part of
the lemma, we can find a sequence H;> Co (X) of half-spaces of T such that there
are x;€0H; for which x;—~x as i—~o. Then we can pass to a subsequence in
such a way that H;,—~H for some half-space H (the limit being taken in an obvious
topology). Then H>Co (X) and x€0H and the lemma is proved.

We can now define that a k-cell of H" is a set C which is of the form
C=Co(V)
for some finite, non-empty set ¥ H" such that the smallest hyperbolic subplane
T of H" containing ¥V has dimension k. We denote
int C=inty C and ¢C =bd; C.
We then define that a p-face (or a face) of a k-cell C=Co (V) as follows. There

are no p-faces for p<0 or p=k. If p=k, then F is a p-face of C if and only if
F=C. If p=k—1, then F is a p-face of C if F is a maximal p-cell of the form

F=Co(U)
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where UcV and such that Fnint C=0. For p<k—1 the definition is recursive:
now F'is a p-face of C if and only if Fis a p-face of some (p+ 1)-face of C. Obviously,
a face of a face of C is again a face of C. The O-faces of C are also called the vertices
of C.

We now give what we need to know of cells of H" in

Lemma B2. Let C=Co (V), VCH" finite, be a k-cell of H". Then
(@) if H is a half-space of H" such that HOV, then HOC and

(B3) OHNC=Co (0HN V)

and 0HN C is a face of C if non-empty,
(b) if x€C, then there is a face F of C such that x€int F.

Proof. If H>V, then obviously H>C. We then prove (B3). Note first that
obviously dHN C=0HnCo (V)>Co ()Hn V). To get the opposite inequality,
choose xEQH\Co ()0HN V). Then by (B2) thereis a half-space H’ of dH such that
H’ >0HANV and that x¢ H’. Since V is finite, we can find a half-space H” of H"
such that H’>V and that H”nH=H’. Then H”">Co(V)=C and x¢H".
This implies (B3).

Suppose then that F=9H n C=0. We must show that Fis a face of C. In any
case F=Co ()HN V) is a p-cell for some 0=p=k. If p=k, then 0HDC and
hence this case is clear. If p=k—1, then obviously FnintC=@ and if U
is a set such that Vo UDJHANV, then Co (U)nint C=0 if and only if U=
OH N V. This proves that F is a (k—1)-face of C.

Suppose now that p<k—1. We show that there is then a half-space H’ of
H" such that H’ > C and that dH’ N C is a g-cell where p<g<k. This gives then
a recursive argument proving (a).

To see this let T be the hyperbolic k-plane containing C. Then TnoH is a
(k—1)-plane and there is a (k—2)-plane T’ in TndH which contains 0Hn C.
If ac V\QH, let L, be the hyperbolic line passing through a and intersecting 7~
orthogonally (if 7" is a point, let L, be the line containing {a} U T"). Let ¢,£(0, n/2]
be the angle between L, and dH. Choose a€V\JH such that ¢, is minimal. By
the minimality of ¢, there is a half-space H” of T such that H”>V and that dH" D
T’ U {a}. Note that JH” "V is a proper subset of ¥. Now let H’ be any half-space
of H"such that H' " T=H”". Then H’>V and 0H' n C is a g-cell for some g€(p, k).

This proves (a). In case (b), let T be as above the smallest hyperbolic subplane
of H" containing C. If x€int C, then (b) is true for F=C. Otherwise, x€dC and
now Lemma Bl implies that there is a half-space H of T such that H>C and
x€0H. Then case (a) implies that F;=dH n C is a face of C of dimension less than
k. If x€int F;, we are ready. Otherwise we repeat the above process and find a face
F, or F;, F,=F,, such that x€ F,. After a finite number of steps we find a face
F of C such that x€int F.
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C. Triangulations of H". Our proof of Theorem A is based on special trian-
gulations of H"*+! which we now construct. If 4 is a discrete subset of H"*+* satisfying
a boundedness condition, then we prove that there is a triangulation of H"** whose set
of vertices is 4. The construction of such a triangulation is based on a method which
is fundamentally a construction dual to the familiar construction of fundamental
domains for discrete groups of isometries of H"” when A=Gx for some x€H"
and the n-cells are

(C1) F,={x€¢H": d(x,a) =d(x,b) for beEA},

acA. However, our construction is direct and not based on the fact that {F,},c,
is a tessellation of H".

We have already constructed triangulations of this kind if n=2 (in a slightly
more general setting) in [6, Section 4] but for the convenience of the reader we give
the complete proof although many steps are directly parallel to those of [6].

Tessellations. Let Ac H" be discrete. We first construct a tessellation of H"
by n-cells, denoted ,, which covers H" under a mild condition on 4. Later we will
subdivide J into a triangulation of H".

The first step in the construction is to define the centers of the n-cells of J;
we denote this set by V. If we let D, be the closed hyperbolic disk with center v
and radius d(v, A), then we can define that v€ ¥V, if and only if

2 A,=D,nA =0D,nA

is not contained in any proper hyperbolic subspace of H™. It is not difficult to see
that V¥, is discrete and obviously each A4, is finite. Then, given v€V,, we define
an n-cell C, of H" by

C, =Co (4,),
where Co is as in (B1). Now we can define the family J, of n-cells of H" by
(C3) T4 = {C,: v€V,}.

This is the tessellation at which we have been aiming. Note that each v€V,
would be a vertex in the tessellation {F,} defined by (CI) and so our method is
indeed dual to the construction of Dirichlet fundamental domains for discrete groups
of H". That J, is indeed a tessellation is shown by

Theorem Cl. If A is a discrete subset of H", then I, is a tessellation in
the sense that if C,C’€J,, then

(C4 cncC’

is either empty or a common face.
Furthermore, suppose that there is M =0 such that

(C5) dx, =M
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for all x¢H". Then 7, is a locally finite cover of H" such that for all CcJ,,
(C6) d(C) =2M.

Proof. Let C=C, and C’=C,. where v,v'€V,. We can assume that v=v".
Since CcD, and C'cD,, CnC’=0 if D,nD,=0. So we can assume that
D,nD, 0. In this case let T be the hyperbolic n-plane containing the (rn—2)-circle
oD,noD,. (or, if 9D,ndD, = apoint, let T be the common tangent to 9D, and
0D,). Let H and H’ be the two half-spaces of A" whose boundary is 7. In view of
(C2), we can name them in such a way that 4,CH and 4,,cH’. Thus, by Lemma
B2 (a), CcH and C’'cH’ and,since A,nA,=A,nT=A4,nT,

CnC ' =(CnT)N(C'AT)=Co(4,nT)nCo(4,NnT) = Co (4,nA4,)

is a common face.

This proves the first paragraph. We then assume that (C5) is true for some
M=0. We prove first (C6). This is an immediate consequence of (C2) and (C5).
These imply that if x€A4,, then d(x,v)=M and hence

dC,)=d(D,) =2M
and (C6) is proved.

Next we prove that Z, is locally finite. Pick xcH". If CeJ,; and
Cn D(x,1)#0, then (C6) implies that CcD(x,2M+1). Hence the vertices of T
are in the finite set 4 N D(x, 2M +1). It follows that the number of C€ J, intersecting
with D(x,1) is finite and this proves the local finiteness of J.

We must now only prove that J,; covers H". Since every T€J, is closed
and we now know that Z, is locally finite, it follows that U, is closed. As a
consequence, to prove that J is a cover of H", it suffices to prove that (a) U J,#0
and (b) U J, is open.

Now U J,#0 if and only if J,0. We can prove that 7,0 as follows.
Pick first ag,€A. In view of (C5), there is such q,. Let R, be a hyperbolic ray with
endpoint a,. Let v; be the first point on R, from a, such that there is a;€ A\ {a,}
with d(vg, a)=d(v;, a;). By (C5), there is such a;.

Let now T; be the hyperbolic line containing a, and «, and let v, be the orthogo-
nal projection of v, (in hyperbolic geometry) onto 7. If we set ry=d(vy, a)=
d(vy, a)=d(vy, A)=0, then

(C7 A; = D(vg, 1)) A = 0D (vg, r)) " A D {ay, a,}-

We can now repeat the above process. Let R; be a hyperbolic ray with endpoint
v, and which is orthogonal to T;. Let v; be the first point on R, such that there is
a6 ANA, for which d(v], a;)=d(vy, b) for b€A,. We now let T, be the hyper-
bolic i-plane (f=2) containing 4, U {a,} and let v; be the orthogonal projection
of v] onto T,. It is clear that in this manner we finally find v=v,£H", p=0, a
finite set 4,=A,CH" which is not contained in any proper hyperbolic subplane of
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H" such that if r=d(v, A)=0, then
A, =D, r)nA=0D(@v, r)NnA.

It follows that v€ ¥V, and that C,=Co (4,)€ 7,#0.

The final step is to prove that U J, is open. If x€ UJ,, then by Lemma
B2 (b), x€cint F for some k-face of 7, k=n, (i.e. F is a k-face of some C€ 7).
We prove by descending induction on k, beginning from k=n, that if x€int F
for some k-face of 7, then

(CS) v,

contains a neighbourhood of x.

This is clear if k=n. Suppose then that k=n—1. Then x€int F for some
F which is an (n—1)-face of some C,£9,, v€V,. Then there is a half-space H of
H"such that H>C, and that )H> F. Let L be the hyperbolic line passing through
v which is orthogonal to H. Let RcC L be the ray with endpoint v such that Rn H
is compact. If now u€ R, u#v, and if r is so chosen that dD(u,r)D Fn A, then

(C9) D(u,r)nA,=FnA,.

In view of (C9) and (C5), there is a first point ¥ on R\{v} such that for some
bEANA,,
d(u, b) = d(u, a)

for ac Fn A,. It follows that ucV,, C, has face F and that C,uC, contains a
neighbourhood of x.

Suppose then that x€int F for some p-face of 74, p<n—1, and that (C8)
is true for k=>p. Since J, is locally finite, we can find r=0 such that if F’is a
face of some C€J, and D(x,r)n F’#0, then x€F’. Let D’=D(x,r)\F which
is a connected set since p<n—1. Our assumption on r implies that if y€D’ (U J),
then y€int F’ for some k-face F’ of J,, k=p. Hence the inductive assumption
implies that D’ (U Z,) is open in D’. Since it is also closed in D’ and evidently
non-empty, we have the result that D’c U Z,. It follows that D(x, r)c U 7. Hence
(C8) is true also for p. We have proved that U J, is open. Our theorem is now com-
pletely proved.

Triangulations. So we now have a method to construct tessellations of H™.
We now make a triangulation out of the tessellation . A k-cell S of H" is a (hyper-
bolic) k-simplex if it is of the form

S =Co ({ao, ceey ak})

for some ;€ H". A family o of n-simplexes of H" is a triangulation of H" if it is a
locally finite cover of H" and if for all S, S’€ 4" the intersection

(C10) SnsS’
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is either empty or a common face. Note that faces of a simplex are also simplexes.
We say that S is a k-simplex of £ if it is a k-face of some n-simplex of £; vertices
of A" are 0-simplexes of .

We now give a condition when we can form a triangulation % of H" whose
set of vertices is a given set and which is, furthermore, G-invariant for some discrete
Mobius group G (i.e. g(T)ex if TeA and gEG).

Theorem C2. Let G be a discrete group of hyperbolic isometries of H" and
let AC H" be a G-invariant set such that A satisfies (C5) for some M=0. Further-
more, suppose that if T is a cell of the tessellation T, of Theorem Cl and g€ G\ {id},
then

(C11) Tng(T) = 0.

Then there is a G-invariant triangulation A" of H" whose set of vertices is A
such that if TEXA has vertices ay, ..., a,, then there is vEH" for which

(C12) dw,ay) =...=d(@, a,) =d(@, a)
when a€ A.

Proof. Since A satisfies (C5), 7 is a locally finite tessellation of H". Obviously,
the set ¥, is G-invariant if 4 is and obviously then 4,,,=g(4,) and C,, =g(C,)
for g€G. It follows that , is also G-invariant. Hence we need only to subdivide
the cells of J, into simplexes in such a way that the number of vertices is not in-
creased.

We first define a complete order < in 4/G; in view of countability of G this is
easily done. If a€ A4, we denote

a = class of a in A/G.

Finally, we denote by J, the set of k-cells of 7.

The construction of 2 is inductive. We subdivide each J; into k-simplexes,
beginning from k=0, and then extend this subdivision to J,,. We denote by
A} the subdivision ; which we have obtained.

To obtain J;, and J; we need do nothing: we simply set #y;=9, and
A1=T,. Suppose then that we have constructed #; for some k=1. We now
construct #;,,. Pick T€Z,.,. Let v, ...,v, be its vertices. By (Cl1), we can
denote them in such a way that

(C13) by <...< D,

Let A#7={S€A;: SCT and v,¢ S} and let the elements of A} be S, ..., S,.

Let
Si’ = CO (S,U {Ul})'

Then Sj, ... S; is a subdivision of T into simplexes which extends the subdivision

of 0T. We do this for all T¢7, .
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In the (n+1)th step we have #,=2. It is a locally finite cover of H" since
T, is. Using (C4) one easily sees that " satisfies (C10). Hence %~ is a triangulation
of H" which is G-invariant by construction since the order in (C13) is preserved if
T is replaced by g(T) and v; by g(v;) for g€G. Since we have not increased the
number of vertices during the construction, the set of vertices of %" is 4. Finally,
in view of (C2) and (C3), we have (Cl12).

D. Triangulations with bounded flatness. In this section we construct trian-
gulations of H" whose simplexes cannot be very flat. For this we need a measure for
the flatness of a simplex. We will now give such a measure which may not be the
most natural but is the most convenient one for this paper.

If a=(a,, ..., a)E(H"*, let Vi(a) be the hyperbolic subplane of H" of
minimal dimension containing the points 4y, ..., @;—; and set

5(a) = min, (@, V(@)
If the points a; are the vertices of a hyperbolic k-simplex 7, we denote
(DO) T =T(a);

obviously this happens if and only if (a)=0. Thus if J(a)=0, then also
0(a,00)> ---» Ag) =0 for any permutation ¢ of the numbers O, ..., k. Thus setting

(D1) F(T)= mdin d(T)[5(ag0)s -+-> Aoie)>

the minimum taken over all permutations ¢ of 0,...,k, we get a number
F(T)€[1, =) and it seems evident that the bigger F(T) is, the flatter T is. So we call
F(T) the flatness of T.

We define the flatness F(7) in the same manner also for euclidean simplexes
T. We also denote T=T(a) as in (DO) if the (k+1)-tuple of the vertices of T is
a=(ay, ..., @). If confusion is possible we say whether we mean euclidean or hyper-
bolic simplexes.

So we will now construct triangulations whose simplexes are of bounded flat-
ness. Furthermore, the triangulations will be G-invariant under the action of a tor-
sionless Mobius group G of H". Given such a G we define

(D2) o(x) = inf {d(x, g(x)): g G\{id}} > 0, and
p(x) = min (¢ (x), 1),

if xcH" (if G={id}, we set o(x)=u(x)=1 for all x¢H"). Since G is torsionless,
pu(x)=0 always. We observe the following relations for u:

p(x)—2d(x, y) = p(y) = p(x)+2d(x, y)
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for all x, ye H", implying
c—2 c+2
(D3) —— #®) =p0) = ——nx)

if x,yeH" and d(x, y)=u(x)/c, ¢=0.

Now we construct a G-invariant set 4CH" such that every x¢ H" is not very
far from a point of A, measured with the number u(x), but that if a, b€ 4 are dis-
tinct, then d(a, b) cannot be very small in comparison with u(a) or u(b). Then we
will get a G-invariant triangulation of H" by the theorem of the preceding section
and if we are careful in the construction of 4, this will be the desired triangulation.

Let D(x,r) be the closed hyperbolic disk with center xé H" and radius r=0.
If ay,...,aq,€H", let V(a,, ..., a) be the hyperbolic plane of minimal dimension
containing the points a;.

When picking elements of 4, we must make sure that the simplexes obtained
by Theorem C2 are not very flat. This is accomplished by

Lemma DI. Let x¢H" and let BCD(x, u(x)/3) be a set such that d(a, b)=
u(@)/40 for all distinct a, b€ B. Then

(a) B contains at most q points for some q=q(n), and

(b) there is an integer p=p(n) such that if r=0 is given, there is ycD(x,r)
Sfor which

(D4 d(y,V(by, ..., b)) = r/4?
for all by, ...,b;€B such that the dimension of V(b, ..., b;) is less than n.

Proof of (a). By (D3), u(b)=u(x)/3 for all b¢B. Thus d(a, b)=pu(x)/120
for all a, b€B, a=b, and thus, if m is the n-dimensional hyperbolic measure,

(D3) 2resm(D(b, 1(x)/240)) = m(D(x, u(x))).

There are positive constants ¢ and ¢’ (depending on ) such that m(D(z, r)Eler™, ¢’r"
if z€H" and r=1. Since u(x)=1, it follows that in B there are at most 240"¢’/c
points, proving (a).

Let now Vi, ..., V), be the hyperbolic planes which are of dimension <# and
which are of the form V(b,, ..., b,), b;¢ B. Then, by (a), k=2? and thus the lemma
is true for p=27 if we can show that, given z€ H", s=0 and i=k, then there is
Y€D(z,s) such that d(y, V))=s/4" if j=i.

We show this by induction on i. Obviously it is true for i=0. Assume that it
is true for i—1. We prove it then for i. By the inductive assumption, there is
w€D(z,7/2) such that d(w, V))=r/2-4~" if j=i—1. We can find yeD(w, r/4)
such that d(y, V;)=r/4'. But then d(y, V))=d(y,dD(w,r/2-4~Y)=r/4 if j=i—]1.
Since y€D(z,r), (b) follows.
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Now we can prove

Lemma D2. Let G and pu be as above. Then there is a discrete set ACH"
such that

(a) gd=A for every g€G,

(b) d(x, A)=u(x)/10=1/10 for xcH",

(c) d(a, b)=p(a)/40 for distinct a, b€ A, and

(d) there is a constant M=M(n)=1 such that if a,, ..., q€A, k=n, and if
d(a;, a))=p(a;)/4, i,j=k, then ay, ..., a are the vertices of a hyperbolic k-simplex
T for which the flatness F(T)=M.

Proof. Let X={xy, X,, ...} CH" be a countable set which is dense in H". We
define inductively sets A,, 4,, ... satisfying

(a") A;=A;_, or A;=A;_,uGd, for some da.€D(x;, u(x)/20) (4_,=0),

) {x1, ..., xifc U {D(a, u(a)/10): ac 4;},

(") d(a, b)=pu(a)/40 for distinct a, b€ A;, and

(d) there is c=c(m)>0 such that if a€4\4;-; and a,..,qG€
A;_yn D(a, u(a)/4), k=n, then d(a,V(ay, ..., &) = cu(a).

We set A,=0 which obviously satisfies conditions (a")—(d"). Assume that
A;_, satisfying these conditions has been constructed. If d(x;, a)=u(a)/10 for some
a€A;_,, we set A;=A;_;. Obviously (a’)—(d") are valid in this case. Otherwise
there is by Lemma D1 and (D3) a;€D(x;, u(x;)/20) such that (d") is true if a=a;
for some c=c(n). We set 4;=A;_,uGa;. Conditions (a’), (b) and (d’) are now
easily seen to be true using (D3) and the fact that Ganint D(a, pu(a))={a}. To show
that it satisfies (c”), we can reason as follows.

It suffices to show that if a€A4;_;, then

(i) d(a, a;))=p(a)/30, and

(i) d(a, a})=p(a;)/40,
since the other cases follow from these, from the inductive assumption and from the
G-invariance of p.

Assume that (i) is not true. Then by (D3), u(a;)=32u(a)/30. Similarly, since
d(x;, @) =p(x))/20, u(x;)=20u(a;)/18. Thus u(x;)=640 u(a)/540=32 pu(a)/27. Now,
d(a, x)=d(a, a))+d(a;, x;)=u(a)/30+ pu(x))/20=(1/30+32/540) pu(a)=(1/3+16/27) -
1(a)/10<pu(a)/10, a contradiction since d(a, x;)=>p(a)/10. Thus (i) is true.

This implies then (ii), since if d(a, a))<p(a;)/40, we get by (D3), u(a)<
40 p(a)/38. Thus d(a, a})=p(a;)/40<40 u(a)/38-40=pu(a)/38, a contradiction
with (i) and we have also (ii). )

Thus we have sets 4yc A4, ... and we set A=J;=o 4;. We show that Lemma
D2 is true with this 4. Cases (a) and (c) are obvious by (a’) and (c). Then (c) together
with (D3) implies that A is discrete. To prove (b), observe that the discreteness of
A implies that {D(a, u(a)/10): a€ A} is locally finite. Thus

X’=u{D(a, u(@)/10): ac 4}
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is closed. Since X' X and X is dense in H", we must have X’=H". This implies
(b) since, in addition, p(x)=1.

Finally, we prove (d). Let a,,...,, be as in (d). Since d(a;, a;))=pu(a;)/4,
no two points in the sequence qy, ..., @, can be G-equivalent by the definition of
p. Thus if j(i) is the number such that a;€4;;\A4;4—,, then all the numbers
in the sequence j(0), ..., j(k) are distinct. Let o be the permutation of the numbers
0, ..., k such that the sequence j(c(0)), ..., j(c(k)) is increasing. Let b;=a;()-
Then, by (d"),

d(b;, V(bg, ..., bi—))) = cu(b) =0

for all i=0. Thus b,, ..., b, are the vertices of a k-simplex 7. We have d(T)=
u(by)/2. By (D3), u(b)=u(by)/2. Thus the flatness F(T)=c and the lemma is
proved.

We now need only to apply Theorem C2 to the set 4 constructed above to get
the theorem on triangulations at which we have been aiming:

Theorem D. Let G be a torsionless discrete Mobius group of H". Then there
is a G-invariant triangulation A of H" such that

(@) d(T)=1 for all TeX,

b) g(T)nT=0 for all gcG\{id} and Te XA,

(c) there is a number M=Mm)=1 such that for every TeX the flatness
(ef: D)

F(T)=M, and

(d) there is an integer N=N(n) such that the number of simplexes of A" with

a common vertex does not exceed N.

Proof. Let ACH" be a discrete G-invariant set as in Lemma D2. Let % be
the triangulation of H" whose set of vertices is 4 which is given by Theorem C2.
We claim that ¢ satisfies conditions (a)—(d).

Let T€X be a simplex which has vertices qy, ..., qt€ 4. By Theorem C2,
there are v€ " and r=0 such that d(v, a;)=r for all i and that d(v, a)=r for
all acA. Since d(x, A)=u(x)/10 for all x€¢ H* by Lemma D2 (b), we have r=
1(v)/10. Hence
(D6) d(T) = 2u()/10 = 1

and we have (a). By the definition of u, then d(T, g(T))=u(v)—2r=0.8 u(v)=0
for all geG\{id}, which implies (b).

By (D3), pu(a)=(10/8)u(v). Hence if i=#j, d(a;, a;)=(2/10) u(v)=pu(a)/4.
Then Lemma D2 (d) implies that indeed F(T)=M=M(n) and (c) is true. Finally,
(d) follows from Lemma D1 (a) and the theorem is proved.

Remark. Actually, if x€ T, we have the following, more precise, estimate
for d(T)
(D7) p(x)/80 = d(T') = p(x)/4.
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Indeed, since d(x, v)=pu(v)/10, (D3) and (D6) imply the second inequality and then
it, (D3) and Lemma D2 (c) imply the first one.

E. A canonical map between simplexes. We now define a canonical map be-
tween two n-simplexes T and S. The simplexes may be either hyperbolic or euclidean
(independently) and the map depends on a given order of vertices. If both simplexes
are euclidean, then the map will be affine.

Let T=T(a) and S=T(b), a=(ay, .., a,), b=(b,, ..., b,) be two n-simplexes
where the notation is as in (D0). We will now define a map h=h,,: T-S which
extends the map a;—b; of vertices. Let T; and S, be the union of k-simplexes of
T and S, respectively. We define the map inductively: first in T, then in T3, etc.
We define 4 in T, by

h(a;) = b;.

Suppose then that / has been defined in 7,_,. We extend % to T} as follows. Let
T = T(aio, . aik), ip<...<i,, be a k-subface of T and let T” be the (k —1)-subface
of T” opposite to a; . Then & is already defined in 77. If y€T”, let s, be the (hyper-
bolic or euclidean) segment joining a; and y; similarly, let s, be the segment joining
h(y) and bio=h(aio). We now define 4 in T’ by the requirements that

h(s)) =s,

and that hls, is an affine stretch in the metrics involved (which may be hyperbolic
or euclidean independently).

We record here some properties of the map #,,. If the (n+41)-tuples a and b
are as above, let a’=(q, , ..., a;) and b’=(bi0, .. b;) be k-subfaces of T(a)
and T'(b) where iy<...<i,. Then obviously

(El) ha’b’ = hab|T(a,)'
Also, if ¢ is another (n+1)-tuple, we have the following composition rule:
(E2) hac = thOhab'

Finally, if o and p are euclidean similarities or hyperbolic isometries (depending on
whether the simplexes are euclidean or hyperbolic), then

(E3) ha@py = Bohapo(a 2T (2 (a))).

We also need to know that A, is always a fairly regular map. It is always quasi-
conformal, even bilipschtiz; for explicit calculations in case n=2, see[5, Lemma 4.1].
We now show that if the simplexes T=T(a) and S=T(b) vary in such a way
that they satisfy a boundedness condition involving flatness (see the preceding
section), then the maps /4, are uniformly K-quasiconformal for some K.

Lemma E. Let n=2 and M=1. Then thereis K=K(n, M) with the following
property. Let T=T(a) and S=T(b) be two (hyperbolic or euclidean) simplexes
such that F(T)=M and F(S)=M. If T or S is hyperbolic, assume in addition
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that d(T)=M or d(S)=M, respectively. Then the map h,: T—~S is K-quasi-
conformal.

Proof. Suppose first that both 7 and S are euclidean. If there is no such X for
which the lemma is true, we can find sequences T;=T(a;) and S;=T(b;), where
a;=(a;, ..., a;,) and b;=(by, ..., b;,), of euclidean n-simplexes such that

(E4) F(T)=M and F(S)=M

and such that the maps hi=h,, have dilatation K;—»oc as i—oo. Composing
with auxiliary similarity maps, cf. (E3), which change neither flatness nor dilatation,
we can assume that a;,=5b;,=0 and that d(7;)=d(S;)=1. In view of this normal-
ization, we can pass to a subsequence in such a way that, as i— oo,

aij - a}ER" and

ES
£ b, —~ bjER".

Condition (E4) implies that a’=(ay, ..., a,) and b'=(b;, ..., b,) are the vertices
of non-degenerate n-simplexes 7'=T(a") and S’=T(b’) (with flatness =M).
Let K be the dilatation of A"=h,.,,. Now the maps 4" and #; are affine maps. Hence
we must have by (E5) that K;—~K<o, a contradiction.

Suppose then that one (or both) of the simplexes are hyperbolic. Suppose, say,
that T is hyperbolic and S euclidean. If the lemma is not true, we can find sequences
T; and S; as above. We cannot now normalize to have d(T;)=1 but we can still
have that a;,=e,=(0,...,0,1). Again, we can pass to a subsequence in such a
way that (ES) is true and that d=Ilim;_.. d(T};)€[0, =) exists. If d=0, we obtain
a contradiction as above. If d=0, we obtain a contradiction using the fact that
hyperbolic geometry is infinitesimally euclidean. This means that, taking account
of the bounded flatness, there is a non-degenerate euclidean simplex T'=T"(a)
such that the maps ha,ai are K;-quasiconformal where K;—1. Since the map /4,
is K-quasiconformal for some K<<e, a contradiction follows (cf. (E2)).

F. The proof of the main theorem. We now apply the preceding results and
construct the G-automorphic mapping whose existence was claimed in Theorem A.

Let A" be the G-invariant triangulation of H" whose set of vertices is 4 and
which is given by Theorem D. We then choose points a;6 A4, i<k=-oo, such that
every orbit Ga, a€ A, contains exactly one point a;.

Then let the integer N be as in Theorem D (d). Let BCR" be a set containing
nN+1 points in general position, i.e. any distinct n+1 points b,, ..., b,EB are
the vertices of a non-degenerate euclidean n-simplex.

The first step in the construction of the G-automorphic map f is to find a G-
invariant map ¢@: A—B which is injective on the vertices of a triangle:

Lemma F. There is a G-invariant map ¢: A—~B such that if a,b€A, a#b,
are vertices in a simplex of A, then ¢(a)#@(b).
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Proof. 1t suffices to define ¢ at the points g;. Set ¢(a;)=b where b is an arbi-
trary point of B. Assume then that ¢(a;) has been defined for i=p—1. Let b4, ...,
b€ A be the points of 4 such that b; and a, are vertices in a simplex of #” and such
that b;=g;(a;;) for some g,£G and j(/)<p. By Theorem D(d), g=nN. Thus
there is b€ B\ {¢(a;;): i=q}. We set ¢(a,)=b. This defines a unique G-invariant
map ¢: A—B which is the required map. Note that by Theorem D (b), @ and g(a)
are not vertices in a simplex 7€ for acA4 and ge€G\ {id}.

Let B’={(by, ..., b,)EB"+': b, distinct}. Then every b€B’ is the (n+1)-tuple
of a euclidean n-simplex T,=T(b), using the notation of (D0). We fix for every
beB’ a quasiconformal reflection r,: R"—~R" on 97}, i.e. r, is an orientation re-
versing quasiconformal map interchanging the components of R™\ 97, such that

(F1) 10T, = id.

Note that T, depends only on the set {by, ..., b,} and we can assume that this is
true of r,, too.

We can now define a G-invariant map f: H"—~R" as follows. If T€X% is an
n-simplex, let al, ..., al be the vertices of T, enumerated in such a way that a =
gl (a;;)) for some g/€G and j())=1 such that j(0)<...<j(n). By Theorem
D(b), all the numbers j(i) in the sequence are indeed distinct. Then we set, if
a=(ay, ...,al) and ¢(@)=(¢(a)), ..., ¢(a})),

(F2) f‘T = ha(p(a)’

where /1,4 T—T, is the map defined in Section E, provided that 7, is orien-
tation preserving. If this is not the case, we set

(F3) .fIT: (p(a)oha(p(a)'

By (F1) and (El), we get a well-defined continuous map f: H"—~R". Thus f|T is
always orientation preserving.

We show that f is G-invariant. Let T€X be as above and pick g€G. Let
S=g(T). Then a=gg](a;;) and hence (E3) implies that (f|S)og=f|T since
every g€G is orientation preserving.

Next we show that g is K-quasimeromorphic for some K=K(n). Observe
first that the set B’ is a finite set depending only on n. Thus the maps r,, b€ B’, are
K, -quasiconformal for some K;=K;(n). For the same reason, the flatness F(7,)=
M, for some M,=M,(n) if b€B’. Now Theorem D(c) and Lemma E imply that
the maps £, in (F2) and (F3) are K,-quasiconformal for some K,=K;(n). Thus,
if K=K,K,=K(n), f|T is K-quasiconformal for every T€x. It follows that f
is ACL", and since f|T is orientation preserving by the above definition for every
Te X, it follows that f is K-quasimeromorphic.

Finally, Theorem D (d) implies that i(x, f)=N for some N=N(n). Theorem A
is proved.
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