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A. Introduction. In this paper we consider groups of isometries of the hyper-

bolic space H':{(xt,...,x)€Än:t,=0} whose hyperbolic metric d is given by

ldxllx,. Let G be such a group of isometries acting discontinuously in H". Martio
and Srebro [3] raised. the question whether there always exists a G-automorphic
quasimeromorphic mapping f: H" *R"-R'u {-}. That is, y'satisfies

(A1) fG(")) -J'@)

for all x€H" and g€G and, moreover, / is quasimeromorphic in the sense of
Martio and Srebro [3, 1.1]. In the theory of quasiregular mappings, this problem is
the analogue of the question of the existence of complex analytic maps automorphic

with respect to a Fuchsian group.

We prove here the existence of such maps under the assumption that the group

G is torsionless and does not contain orientation reversing elements. More precisely,

we prove

Theorem A. For euery integer n=l there are K:K(n)=l and a positiue

integer N:N(n) with thefollowing property. Let G be a discontinuous, torsionless

group of isometries of H" not containing orientdtion rersersing elements. Then there

is a quasimeromorphic G-automorphic mapping f: H"*R". Moreouer, f is K-quasi-

meromorphic and the local topological index i(x,f\ of f is less than N for euery

x€H'.

The local topological index i(x, fl of f at x has been defined in 13, 2.61and / is

K-quasimeromorphic if it is ACII and satisfies almost everywhere tn H'the equation
(l) of [3, 1.1].

We will prove Theorem A in the course of this paper and the proof is concluded

in Section F. We remark that G is torsionless if and only if it acts without fixed
points in H', i.e. the eqriation g(x):x for some x implies g:id. The existence

of a G-automorphic mapping f: H"*Rn implies that G cannot contain orientation

reversing elements. However, the assumption that G is torsionless is unnecessarily

strong. In fact, if the hyperbolic measure of H"lG is finite, and every g€G is orien-

tation preserving, then it is known that there are quasimeromorphic G-automorphic
mappings (cf. Martio and Srebro [4]).
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Our method is an extension of the method of Alexander [1] by which one can

construct quasimeromorphic maps if M:H"IG is compact. A G-automorphic map

can be identified with a map M-Ro. One first triangulates M (in a sufficiently
regularmanner);letthesetofverticesbe ur, ...,ak.Nextonefinds points b1,...,bp€
Äo ingeneralposition.Onethenmapsanz-simplexTof M withvertices uio,...,ain,
is<...<.in, either to the simplex / of N with vertices bio, ...,br. or to the outside

of / in Ro, depending on the orientations of Z and /. The resuliing map is quasi-

meromorphic. If M is non-compact, one can construct by this method branched

coverings M-R' but they are not in general quasimeromorphic. The gist of our
method is that one can find such triangulations of M which allow the construction

of quasimeromorphic mappings by Alexander's method also if M is non-compact.

To find such triangulations, we construct in Section C triangulations of IIn whose

set ofvertices is a beforehand given discrete set l. Ifthis set I isjudiciously chosen,

we get a G-invariant triangulation of än (Theorem D) whose simplexes are not very

flat. This makes it possible to apply Alexander's method in the construction of the

quasimeromorphic map.
We have constructed such triangulations in the hyperbolic space. We could

have done it as well in the euclidean space and since in a smooth Riemannian mani-
fold every point has neighbourhoods whose metric is arbitrarily close to the euclid-

ean, it seems possible to construct such triangulations for any smooth Riemannian

manifold. Thus Theorem A should be valid in fact for any smooth Riemannian

manifold, and not only for hyperbolic ones. Perhaps we can return to it.

Notation and terminology. Hyperbolic isometries of H" are also called Möbius
transformations and groups of isometries Möbius groups. We use the words G-auto-

morphic and G-invariant synonymously for a map/defined in a G-invaiant subset

A of H" (i.e. gA:A for every g(G) such that (Al) is true for every x€A and

c€G.
We use dforthe hyperbolic metric of H" andthe euclidean distance of two points

of Äo is l*-yl We denote by d(A) and by d(x, A) both the hyperbolic and euclidean

diameter of a set and the distance of a point to a set, respeclively. If confusion is
possible, we say which metric we mean. The closed hyperbolic ball with center x
and radius r is D(r, r). The standard basis of Äo is er,..., eo.

Interior, closure and boundary are usually taken in H" and are denoted int, cl
and bd; the last one sometimes also å. If they are taken in some other space, we use

a subscript, e.g.0r.
We denote the identity map of a space by id.

B. Hyperbotic k-cells. In the next section we will construct special tessella-

tions of IIn. For this we need to know what one means by a k-cell of H". We will
now define these cells and prove what we need to know about them.

We mean by a conuex subset of H" a set which is convex with respect to the
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hyperbolic metric. lf XcH", we,let

(Bl) Co(x)

denote the smallest closed and convex subset of I/o such that XcCo(X). We say

that H is a half-space of H" if ä is the closure of a component of ä\f for some

hyperbolic (n -l)-subplane of ä'; similarly one defines half-spaces of hyperbolic
i-subplanes of H". Then we have

Lemma Bl. If T is a hyperbolic subplane of Hn and XcT, then

Co(X) - ^H(82)

where the intersection is taken ouer all such half-spaces H of
(and Co (X) - T if there are no such half-spoces).

Furthermore, if x€bdr Co(X), then there is a half-spctce

H=Co (X) and x€\rH.

Proof. To prove the validity of (B2), denote the right-hand side of (B.2) by Z.
Then obviously Z=Co (X) since half-spaces are closed and convex. To prove the
reverse inclusion, we find for every x€ \Co (X) a half-space .EI such that
x{H=Co(X). If x€Z\Co(X), let !(Co(X) be a point such that d(x,y)-
d(x,Co (X)). Let Z bethe hyperbolic line passing through x and y"Let H be the
half-space such that åä intersects ,L orthogonally at y and that x(ä. We claim
that Co QöcH. If this is not the case, pick a point z€Co (X)\ä. Let S be the
open hyperbolic line segment with endpoints z and y. Then a point 7' of S near y
satisfies d(y',x)=d(y, x) as is geometrically evident and can be proved precisely

using hyperbplic trigonometry (see Beardon 12,7.lll). This is a contradiction since

ScCo (X) and hence d(y, x):d(x,Co(X))=a1r', x). Thus (B2) is true.
To get the second part of the lemma, pick x€bdrCo (X). By the first part of

the lemma, we can find a sequence ä;: Co (X) of half-spaces of 7 such that there
are xi€|Hi for which xi*x as i*-. Then we can pass to a subsequence in
such a way that Ht*H for some half-space H (the limit being taken in an obvious
topology). Then .FI=Co (X) and x(0H and the lemma is proved.

We can now define that a k-cell of äo is a set C which is of the form

C:Co(V)
for some finite, non-empty set VcH" such that the smallest hyperbolic subplane
T of H" containing Z has dimension k. We denote

int C : intT C and 0C : bdr C.

We then define that a p-face(or a face) of a ft-cell C:Co (V) asfollows. There
are no p-faces for p=6 or p>ft. If p:ft, then F is a p-face of C if and only if
F:C. lf p:k-l, then F is a p-face of C if F is a maximal p-cell of the form

T for which H)X

H of T such that

F-Co(U)
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where Uc V and such that Fnint C:0. For p-k- I the definition is recursive:

now Fis a p-face of C if and only if Fis a p-face of some (p* l)-face of C. Obviously,

a face of a face of C is again a face of C. The 0-faces of C are also called the oertices

of C.

We now give what we need to know of cells of 11" in

Lemma 82. Let C:Co (V), VcH" finite, be a k-cell of H'. Then

(a) if H is a half-space of H" such that H=V, then H>C and

(B3) 0H nC:Co (|HaV)

and \HnC isafaceof C if non-empty,
(b) if x(C, then there is a face F of C such that x(nt F.

Proof.lf H)V, then obviously H)C' We then prove (B3). Note first that
obviously DH n C:0H n Co (Z): Co (0H n V). To get the opposite inequality,

choose x€åII\Co (0H nV). Then by (B2) there is a half-space H' of 0H such that
H'>\HnY and that xqH'. Since Z is finite, we can find a half-space H" of Ho

such that H")V and that H"^H:H'. Then H")Co(V\:C and x{H"'
This implies (B3).

Suppose then that F:ilHnC*O. We must show that F is a face of C. In any

case F:Co (\HnV) is ap-cell for some O=p=-1s. If p:ls, then \H=C and

hence this case is clear. If P:k-l, then obviously FnintC:0 and if U

is a set such that V=U=\HaV, then Co(U)ntntC:A if and only if U:
0H n Y. This proves that F is a (k - l)-face of C.

Suppose now that p<.k-|. We show that there is then a half-space H' of
flo such that II')C and that 0H'nC is a 4-cell where p<q<k. This gives then

a recursive argument proving (a).

To see this let Tbe the hyperbolic k-plane containing C. Then Tn\H is a
(k-l)-plane and there is a (k-2\-plane T'in Ta\H which contains \HnC.
If a€ Z\årl, let Lo be the hyperbolic line passing through a and intersecttng T'
orthogonally (if I'is a point, let Lobe the line containing {a}v T'). Let rp,((O, nl2l
be the angle between Lo and åä. Choose a€ \åä such that go is minimal. By
the minimality of qothere is a half-space H" of T such that H" ) V and that 0H" =
T' w {a\. Note that 0H" n V is a proper subset of Z. Now let H' be any half-space

of .EI' such th at H' n T : H". Then H' = V and 0H' a C is a q-cell for some 4( (p, ft).
This proves (a). In case (b), let 7 be as above the smallest hyperbolic subplane

of Hn containing C. If x€int C, then (b) is true for F:C. Otherwise, x(0C and

now Lemma Bl implies that there is a half-space H of 7 such that H>C and

x€LH. Then case (a) implies that Fr:fl!{n C is a face of C of dimension less than

k. Tf x(int 4, we are ready. Otherwise we repeat the above process and find a face

Fror F1, F,#FL, suchthat x€Fs. Afterafinitenumberof stepswefind aface
F of C such that x<int F.
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C. Triangulations of I1o. Our proof of Theorem A is based on special trian-
gulations of H'+7 which we nowconstruct.lf A is a discrete subset of f/n+1 satisfying

a boundedness condition, then we prove that there is a triangulation of än+l whose set

of vertices is l. The construction of such a triangulation is based on a method which
is fundamentally a construction dual to the familiar construction of fundamental

domains for discrete groups of isometries of ä' when A:Gx for some x(äo
and the n-cells are

(Ct) Fo : {x€H': d(x, a) =- d(x, b) for b(Al,

a(A. However, our construction is direct and not based on the fact that {F,}"€a
is a tessellation of iln.

We have already constructed triangulations of this kind if n:2 (n a slightly
more general setting) in [6, Section 4] but for the convenience of the reader we give

the complete proof although many steps are directly parallel to those of [6].

Tessellations. Let AcHo be discrete. We first construct a tessellation of H"
by z-cells, denoted 9n, which covers Hn wder a mild condition on l. Later we will
subdivide {n into a triangulation of äo.

The first step in the construction is to define the centers of the z-cells of {o;
we denote this set by Vn. If we let Du be the closed hyperbolic disk with center u

and radius d(u, A), then we can define that o€V^ if and only if
(C2) Au: DunA:|DunA

is not contained in any proper hyperbolic subspace of H". It is not difficult to see

that Vn is discrete and obviously each l, is finite. Then, given u€V* we define

an n-cell C, of H" by
Cu: Co (A),

where Co is as in (Bl). Now we can define the family {n of n-cells of }/n by

(Ca) {a: {Cu: a€Va}.

This is the tessellation at which we have been aiming. Note that each o(Va
would be a vertex in the tessellation {{,} defined by (Cl) and so our method is

indeed dual to the construction of Dirichlet fundamental domains for discrete groups

of H". That {n is indeed a tessellation is shown by

Theorem g. ff A is a distete subset of H', then {n is a tessellation in

the sense that if C, C'({n, then

(C4) CnC'

is either empty or a commonface.

Furthermore, suppose that there is M>O such that

(C5) il(x, A) = M
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for all x(H". Then fa is a locally finite couer of H" such that for all Ce.fA,

(c6) d(c) =2M.
Proof. Let C:Cu and C':C,, where u,a'!Vn. We can assume that alu'.

Since CcDu and C'cDu,, CnC':0 if DrnDu,:Q. So we can assume that
DoaD,,+0.In this case let 7be the hyperbolic n-plane containing the (n-2)-circle
|Dun|D,, (or, if \Dun\Du,: a point, let Z be the common tangent to 0D,and
0D,,). Let H arÅ H' be the two half-spaces of I1n whose boundary is 7. In view of
(C2), we can name them in such a way that AucH and Au,cH'. Thus, by Lemma
82 (a), CcH andC'cH' and, since AunAu,:AunT:Au,nT,

CnC' : (CnT)n(C'nT) : Co (A,nT)nCo (A,,nT) : Co (AuaAu,)

is a common face.

This proves the first paragraph. We then assume that (C5) is true for some

M>0. We prove first (C6). This is an immediate consequence of (C2) and (C5).

These imply that if x€A,, then d(x,a)=M and hence

d(C,\=d(D,)<2M
and (C6) is proved.

Next we prove that gA is locally finite. Pick x<H". lf C€fA and

CnD(x,l\*0, then (C6) implies that CcD(x,2M+l). Hence the vertices of 7
are in the fin rte set A n D (x, 2M + l). It follows that the number of C € fa intersecting

with D(.x ,1) is finite and this proves the local finiteness of {a.
We must now only prove that {a covers I1n. Since every T€{n is closed

and we now know that 9a is locally finite, it follows that v {a is closed. As a
consequence, to prove that {a is a cover of H", it suffices to prove that (a) v galT
and (b) v 9o is open.

Now u 9'A*g if and only if gA*A. We can prove that fAlA as follows.
Pick first as(A. In view of (C5), there is such a6. Let Aq be a hyperbolic ray with
endpoint as. Let oi be the first point on Äo from ds such that there is ar(,4\tao)
with d(o'|, aö:d(u'o, aJ. By (C5), there is such ar.

Let now 71 be the hyperbolic line containing ao and at and let oo be the orthogo-
nal projection of ui (in hyperbolic geometry) onto [. If we set rn:d(uo,qt\-
d(uo, ar\:d(ao, A)>Q, 1l1srr

(c7) At: D(ro, ro) 
^A - \D(ro, r)nA I {or, at}.

We can now repeat the above process. Let Är be a hyperbolic ray with endpoint
uo and which is orthogonal to Tr. Let ui be the first point on "R, such that there is
a2€A\At forwhich d(ui,ar):d(u'r,b) for b€At. We nowlet Trbethe hyper-
bolic i-plane (t>2) containing A1u {a2} and let u, be the orthogonal projection

of ui onto 72. It is clear that in this manner we finally find a:up€.Hn, p>0, z
finite set Au:AocHn which is not contained in any proper hyperbolic subplane of



Automorphic quasimeromorphic mappings for torsionless hyperbolic groups

fln such that if r:d(a,,4)=0, then

Au: D(u, r)aA : |D(a, r)nA'

It follows that o(Y^ andthat Cu:Qs(A,)(.ga+0.
The final step is to prove that u {a is open. If x€ u {n, then by Lemma

B2 (b), x€int F for some k-face of {a, k=n, (i.e. F is a k-face of some C€f).
We prove by descending induction on ft, beginning from k:n, that if x€int ,F
for some k-face of fn, then

(c8)
contains a neighbourhood of x.

vfe

This is clear if k:n. Suppose then that k:n- l. Then x(tnt F for some

f' which is an (n -l)-face of söme C,({a, uCVe. Then there is a half-space H of
än such that H= C, and that 0H= F. Let L be thehyperbolic line passing through

u which is orthogonalto 0H. Let RcL be the ray with endpoint u such that RnH
is compact. If now u(R, u*u, and if r is so chosen that \D(u,r)=FoA, then

(ce) D(u, r)n Au: FnA,.

In view of (C9) and (C5), there is a first point u on R\{u} such that for some

å€r\1,,
d(u, b) : d(u, a)

for a€FaA,. It follows that z€V,E, Cu has face Fand that Cuv Cu contains a

neighbourhood ofx.
Suppose then.that x(int .F for some p-face of {a, P<n-I, and that (C8)

is true for k>p. Since {a is locally finite, we can find r>0 such that if F' is a
face of some C(fo and D(x,r\aF'#0, then x(F'. Let D':D(x,r)\F which

is a connected set sincep=n - 1. Our assumption on r implies that if y€D' a(v {^\,
then y€int F' for some fr-face F' of fa, k>p. Hence the inductive assumption

implies that D' n(w 9) is open in D'. Since it is also closed in D' and evidently

non-empty, we have the result that D'c v {a. lt follows that D(x, r)c u 9a. Hence
(C8) is true also forp. We have proved that v {a is open. Our theorem is now com-
pletely proved.

Triangulations. So we now have a method to construct tessellations of H".
We now make a triangulation out of the tessellation {n. A ft-cell S of Iln is a (hyper-

bolic\ k-simplex if it is of the form

S : Co ({as, ..., a*})

for some ai(H". A family ff of n-simplexes of H" is a tiangulation of ä' if it is a

locally finite cover of Ho and if for all S, S'€ff the intersection

551
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is either empty or a common face. Note that faces of a simplex are also simplexes.

We say that S is a k-simplex of ff if it is a k-face of some z-simplex of {; uertices

of ./d are O-simplexes of ;/.
We now give a condition when we can form a triangulation ,/d of fln whose

set of vertices is a given set and which is, furthermore, G-invariant for some discrete
Möbius group G (i.". s(nef if T(/d and g6G).

Theorem C2. Let G be s discrete group of hyperbolic isometries of H" and
let AcHo be a G-inuariant set such that A satisfies (C5) for some M>0. Further-
more, suppose that if T is a cell of the tessellation {a of TheoremCl and C€G\{id},
then

(C11) Tng(T): g.

Then there is a G-inuariant triangulation ff o.f H" whose set of uertices is A
such thqt if Te/{ has uertices eo,...,an, then there is a(H" for which

(CI2) d(u,ao\:...: dQt,a)= d(u,a)

when a€A.

Proof. Since ,4 satisfi.es (C5), fAis a locally finife tessellation of I1'. Obviously,
the set Vnis G-rnvariant if A is and obviously then As@1:g(A) and Cs@:g(C)
for g€G. It follows that 9a is also G-invariant. Hence we need only to subdivide

the cells of {a tnto simplexes in such a way that the number of vertices is not in-
creased.

We first define a complete order = in AIG; in view of countability of G this is
easily done. If a€A, we denote

c- : class of a in AlG.

Finally, we denote by {o the set of k-cells of {a.
The construction of ,/d is indtctive. We subdivide each {y into k-simplexes,

beginning from k:0, and then extend this subdivision to 4*t. We denote by
lfk the subdivision fy which we have obtained.

To obtain fo and 4. we need do nothing: we simply set /dr:{o and
trt:ft. Suppose then that we have constructed t* for some k>1. We now
constrt& ffi*r. Pick T(.{*+r. Let u,,...,u, be its vertices. By (Cll), we can

denote them in such a way that

(c13) D1<...<fi,.

Let /dr:{S(tro: ^ScZ and ur{S} and let the elements of tr, be ,Sr,..., Sn.

Let
Si: Co(s,u{rt}).

Then 
^Si, 

... S; it a subdivision of Z into simplexes which extends the subdivision
of å2. We do this for all T€f**t.
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In the (z*l)th step we have /dn:36' It is a locally finite cover of I/n since

9o is. Using (C4) one easily sees that ff satisfies (C10). Hence tr is a triangulation

of 11' which is G-invariant by construction since the order in (Cl3) is preserved if
7 is replaced by sQ) and u; by s(u,) for g(G. Since we have not increased the

number of vertices during the construction, the set of vertices of ff is l. Finally,

in view of (C2) and (C3), we have (C12).

D. Triangulations with bounded flatness. In this section we construct trian-

gulations of än whose simplexes cannot be very flat. For this we need a'measure for

the flatness of a simplex. We will now give such a measure which may not be the

most natural but is the ntost convenient one for this paper.

If a:(ao,...,ao\<.(H1k+1, let V{a) be the hyperbolic subplane of H" of
minimal dimension containing the points cto, -.., a;-1 and set

ö(a): pgo@',t1@)).

If the points a, are the vertices of a hyperbolic k-simplex 7, we denote

(D0) r: T(a);

obviously this happens if and only if ö(a)>0. Thus if ä(a)=0, then also

6(oo1J\,...,aoei)>o for any permutation o of the numbers 0,'..,k' Thus setting

(D1) F(T) - mdin d(T)lö(ao,,o>, ..., ao(D),

the minimum taken over all permutations o of 0,...,k, we get a number

F(n€u, -) and it seems evident that the bigger .F(7) is, the flatter ?" is. So we call

F(T) the flatness of T.

We define the flatness tr'(f) in the same manner also for euclidean simplexes

Z. We also denote T:T(a) as in (D0) if the (k+l)-tuple of the vertices of 7is
d:(ao, ,.., at). If confusion is possible we say whether we mean euclidean or hyper-

bolic simplexes.

So we will now construct triangulations whose simplexes are of bounded flat-

ness. Furthermore, the triangulations will be G-invariant under the action of a tor-

sionless Möbius group G of H". Given such a G we define

(D2) s(x) - inf {a(*, g(x)) : s€G\{id}} = 0, and

p(x) : min (q(x), 1),

if x(H" (if C:{id}, we set q(}):p(x):l for all x(H"). Since Gis torsionless,

p(x)=O always. We observe the following relations for p:

p(x)-zd(x, y) = p(y) = tt(x)+zd(x, y)
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for all x, y€Hn, implying

(D3) +tr(x)= 11(y) = +rt(x)
if x,y(H" and d(x,y)=-p(x)lc, c=0.

Now we construct a G-invariant set AcHn such that every xeH" is not very
far from a point of l, measured with the number p(x), but that if q, b(A are dis-
tinct, then d(a,b) cannot be very small in comparison with p(a) or p(b). Then we
will get a G-invariant triangulation of än by the theorem of the preceding section
and if we are careful in the construction of l, this will be the desired triangulation.

Let D(x,r) be the closed hyperbolic disk with center x(H' and radius r>0.
If a1,...,dpC.Ho, let V(a1,...,ao) be the hyperbolic plane of minimal dimension
containing the points a;.

When picking elements of A, we must make sure that the simplexes obtained
by Theorem C2 are not very flat. This is accomplished by

Lemma Dl. Let x(H" and let BcD(x, p(*)13) be a set such that d(a,b)>
p@)lal for all distinct a,b(B. Then

(a) B contains at most q pointsfor some q:q(n), and
(b\ there is an integer p:p(n) such that if r>0 is giuen, there is !(D(x,r)

for which

(D4) d(t,V(br ..., b)) =- rlry

for all br,...,bi€.B such that the dimension of V(b1,...,b) is less than n.

Proof of (a). By (D3), p(b)>-p(x)/3 for all b€8. Th:us d(a,b)>p(x)1120
for all a,b(8, a+b, and thus, if zt is the z-dimensional hyperbolic measure,

(Ds) Z, €B m (o (U, p(x)1240))) = yn (o (*,p (x))).

There are positive constants c and c' (depending on z) such that m(D(z, r))qlcr", c'rnl
if z(H" and r<1. Since p(x)=l, it follows that in Bthere are at most 240oc,fc
points, proving (a).

Let now Vr, ..., V1, be the hyperbolic planes which are of dimension <n and
which are of the form V(br, ..., b), b j€8. Then, by (a), k=2q and thus the lemma
is true fo.r p:2a if we can show that, given z(H", 

^f 
>0 and i<k, then there is

!(D(z,s) such that d(y,V)=-sl4i if i=i.
We show this by induction on i. Obviously it is true for i:0. Assume that it

is true for i-1. We prove it then for i. By the inductive assumption, there is
w(D(z,rl2) snch that d(w,V)=rl2.4t-1 if j=i-L. We can find y(D(w,rl4\
such that d(y,V)=rl4t. But then d(y,V)>d(y,LD(w,rl2.4t-1))=rl4t if i=i-1.
Since y€D(2, r), (b) follows.
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Now we can prove

Lemma D2. Let G and p be as aboue. Then there is a discrete set AcHn
such that

(a\ gA:A for euery gQG,

(b) d(x,A)<p(x)lt}=tltD for x(Ho,
(c) d(a,b)>p(a)la0 for distinct a,b€A, and

(d) there is a constant M:M(n)=l such that i.f ao,.'.,a1,€A, k<n, andif
d(ai,a)=p(a)14, i,i=k, then ao,...,e1, at€theaerticesof ahyperbolick-simplex

T for which theflatness F(n=M.

Proof. Let X:{*r.,xr,...\cH" be a countable set which is dense in äo. We

define inductively sets Ao, Ar,... satisfying
(a') Ar:1r-, or Ai:Ar-tvGai for some ai<D(xr,1t(xt)120) (A-r:0),
(b') {xr, ..., xi}c v {D(a, p(a)ll}): a(Ai\,
(c'\ d(a,b)>p(dlaD fordistinct a,b(Ai, and
(d') there is c:c(n\=0 such that if a€l;!r-r and a1,...2a11€.

Ar-rnD(a, p(dla), k=n, then d(a,V(ar, ..., q)) = cp(a).

We set lo:0 which obviously satisfies conditions (u')-(d'). Assume that

,4;-1 satisfying these conditions has been constructed' If d(xi, a)=P(a)ll0 for some

a(Ai_t, we set Ai:Ai_r. Obviously (a'){d') are valid in this case. otherwise

there is by Lemma Dl and (D3) aieD(x1, p@)120) such that (d') is true if a:ali
for some c:c(n). We set Ai:Ai-1uGai. Conditions (a'), (b') and (d') are now

easily seen to be true using (D3) and the factthat Gan:rr.rt D(a, p(a)):{a}. To show

that tt satisfies (c), we can reason as follows.
It suffices to show that if aCAi-r, then
(i) d(a, ai)> p(a) 130, and
(ii) d(a, a)= p(a)140,

since the other cases follow from these, from the inductive assumption and from the

G-invariance of p.

Assume that (i) is not true. Then by (D3), p(a)<321t(a)130. Similarly, since

d(xi, ai)< p(x)120, p(x,)=20p(a)lt8' Thus p(x)= 6a0 p@)15a0:32 p(a)127. Now,

d(a, x)=d(a, ai)+d(ai, x)< p(a)130+ p(x)120=(U30+321540\ p(a):(l13*16127).
p(a)ll0<p(a)110, a contradiction since d(a,x1)=p(a)110. Thus (i) istrue.

This implies then (ii), since if d(a,ai)=p(ai)140, we get by (D3), p(a)<.
a0 p@)138. Thus d(a, ai)=p(a)la0-a0 p@\138.40<p(a)138, a contradiction

with (i) and we have also (ii).
Thus we have sets AocArc... and we set A:Ur=, Ai. We show that Lemma

D2 is true with this l. Cases (a) and (c) are obvious by (u) and (c'). Then (c) together

with (D3) implies that A is discrete. To prove (b), observe that the discreteness 'of

,4 implies that {D(a, p(a)ll}): a€A\ is locally finite. Thus

x' :, {D (o, p(a)/lo): aeA\
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is closed. Stnce X'=X and X is dense in H", we must have X':Ho. This implies
(b) since, in addition, p(.r)=1.

Finally, we prove (d). Let ao,...,ao be as in (d). Stnce d(at,a)=p(a)14,
no two points in the sequence ase...1ak can be G-equivalent by the definition of
p. Thus if j(i) is the number such that afAilir\litD-r, then all the numbers
in the sequence 7(0), ...,j(k) are distinct. Let o be the permutation of the numbers
0,...,k such that the sequence f("(0)), ...,i("(k\) is increasing. Let bi:ai61i11.
Then, by (d'),

d(bbv(bo; ..., b,-r)) > cp(b) > o

for all i>0. Thus bo,...,b1, are the vertices of a ft-simplex 7. We have d(T)=
p(bJl2. By (D3), p(b)=-p(b)/2. Thus the flatness F(T)=-t and the lemma is
proved.

We now need only to apply Theorem A b the set I constructed above to get

the theorem on triangulations at which we have been aiming:

Theorem D. Let G be a torsionless liscrete Möbius group of H". Then there

is a G-inaariant triangulation ff of H" such that
(a) d(t)=r for all T€{,
(U) g(4 nT:0 for all c€c\{id} and TU,
(c) there is a number M:M(n)=l such that for euery T€tr the flatness

("/.(D1))
F(T) < M, and

(d) there is an integer N:,l/(n) such that the number of simplexes of ld with
a common uertex does not exceed N.

Proof. Let AcHo be a discrete G-invariant set as in Lemma D2. Let { be

the trianpulation of äo whose set of vertices is I which is given by TheoremC2.
We claim that.f satisfies conditions (a)-(d).

Let T(.{ be a simplex which has vertices ao,...,ay(A. By Theorem C2,
there arc a€IIn and r>0 such that d(u, a1):r for all i and that d(u, a)>r for
all aQA. Since d(x, A)<p(x\llD for all x€Ho by Lemma D2 (b), we have r<
p(0)110. Hence

(D6) dQ) = 2p(u)lID = I

and we have (a). By the definition of p, then d(f,sg))=-p(u)-2r>0.8p(u)>O
for all C€G\{id}, which implies (b).

By (D3), p(a)>(t0l8)p(o). Hence if i+j, d(ai,a)<(21t0)p(u)=p(Qla.
Then Lemma D2 (d) implies that indeed F(7")<-M:M(n) and (c) is true. Finally,
(d) follows from Lemma Dl (a) and the theorem is proved.

Remark. Actually, if x(T€tr, we have the following, more precisen estimate
for d(fi
(D7) p(x)l8o = d(T\ = p(x)la.
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Indeed, since d(x, u)= p(u)110, (D3) and (D6) imply the second inequality and then

it, (D3) and Lemma D2 (c) imply the first one.

E. A canonical map between simplexes. We now define a canonical map be-

tween two z-simplexes 7 and S. The simplexes may be either hyperbolic or euclidean

(independently) and the map depends on a given order of vertices. If both simplexes

are euclidean, then the map will be affine.

Let T:T(a) and S:Z(å), d:(ao,...,do), b:(bo, ...,b) be two n-simplexes

where the notation is as in (D0). We will now define a map h:ho6: 7*,S which

extends the map ai-bi of vertices. Let To and Sp be the union of k-simplexes of
Z and S, respectively. We define the map inductively: first in Ts, then in Tt, etc-

We define h in Tobv
h(a): bi'

Suppose then that å has been defined in Tp4. We extend h to Tp as follows. Let

T':T(aio,...,ar), is<...<.i*, be aft-subfaceof T andlet T"bethe (ft-l)-subface

of T' opposit e to- aro. Then h is already defined in T" . If y(7", let s, be the (hyper-

bolic or euclidean) iegment joining aroand y; similarly, let si be the segment joining

h(y\ and bro:h(ar). We now defne h rn T' by the requirements that

ft(s) : 5'

and that åls, is an affine stretch in the metrics involved (which may be hyperbolic

or euclidean independently).
We record here some properties of the map ho6.If the (n*l)-tuples a andb

are as above, let a':(aio, ...,aru) and b':(bio, ..',bi) be ft-subfaces of 7(a)

and T(b) where ro< ...=i*. Then obviously

ho,6, : houlT(a').

Also, if c is another (n *l)-tuple, we have the following composition rule:

(82) ho": h6"oho6.

Finally, if a and B are euclidean similarities or hyperbolic isometries (depending on

whether the simplexes are euclidean or hyperbolic), then

(83) ha(a)n(b) : Fohou"(o -llT(a(o))).

We also need to know that åou is always a fairly regular map. It is always quasi-

conformal, even bilipschttz;for explicit calculations in case n:2, see [5, Lemma 4.1].

We now show that if the simplexes 7: T(a) and ,S: T(å) vary in such a way

that they satisfy a boundedness condition involving flatness (see the preceding

section), then the maps houare uniformly K-quasiconformal for some K.

Lemma E. Let n>2 snd M>1. Thenthereis K:K(n,M) withthefollowing
property. Let T:T(a) and S:T(b\ be two (hyperbolic or euclidean) simplexes

such that F(r)=M and F(s)=M. I.f T or S is hyperbolic, assume in addition

(E1)
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that d(fl=M or d(S)<M, respectiaely. Then the map h*:Z*S rs K-quasi-
conformal.

Proof. Suppose

which the lemma is

oi:(ato , ain) and

(E4)

first that both T and S are euclidean. If there is no such K for
true, we can find sequences Tr:T(or) and S;: T(br), where
br:(bro) ..., brn), of euclidean n-simplexes such that

F(7,) =- tu and f(S,) = l,[
and such that the maps ht:l1op, have dilatation Ki-- as i*-. Composing
with auxiliary similarity maps, cf. (E3), which change neither flatness nor dilatation,
we can assume that aro:$ro:Q and that d(T):d(^S):1. In view of this normal-
ization, we can pass to a subsequence in such a way that, as i*-,

(Es)
aij a;€R and

bij * bi€R".

Condition (E4) implies that a':(alo,...,ai) and b':(bi,...,bi) are the vertices
of non-degenerate n-simplexes T':T(a') and S':T(b') (with flatness =M).Let Kbe the dilatation of h':ho,t,. Now the maps h' and h, are affne maps. Hence
we must have by (E5) that Ki*K=.6, a contradiction.

Suppose then that one (or both) ofthe simplexes are hyperbolic. Suppose, say,
that Zis hyperbolic and S euclidean. If the lemma is not true, we can find sequences

Tt and ^S; as above. We cannot now normalize to have d(fr7:1 but we can still
have that ais:er:(0,...,0, 1). Again, we can pass to a subsequence in such a
way that (E5) is true and that d:limF*d(Tt)<10, -) exists. If d>Q, we obtain
a contradiction as above. lf d:0, we obtain a contradiction using the fact that
hyperbolic geometry is infinitesimally euclidean. This means that, taking account
of the bounded flatness, there is a non-degenerate euclidean simplex T':T'(a')
such that the maps ho,o, are K;-quasiconformal where Ki-|. Since the map ho,o,

is K-quasiconformal for some K<*, a contradiction follows (cf. (eZ).

F. The proof of the main theorem. We now apply the preceding results and
construct the G-automorphic mapping whose existence was claimed in Theorem A.

Let t be the G-invariant triangulation of .FIn whose set of vertices is I and
which is grven by Theorem D. We then choose points ai€A, i<ft=-, such that
every orbit Ga, a(A, contains exactly one point a,.

Then let the integer N be as in Theorem D (d). Let BcI3 be a set containing
nN*l points in general position, i.e. any distinct z*1 points bo,...,bneB are
the vertices of a non-degenerate euclidean z-simplex.

The first step in the construction of the G-automorphic map f is to find a G-
invariant map E: A*B which is injective on the vertices of a triangle:

Lemma F. There is a G-inoariant map cp:A*B such that if a,beA, alb,
are uertices in a simplex of tr, then E@)+E(b).
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Proof.It suffices to define E atthe points a;. Set E(ar):b where å is an arbi-
trary point of .8. Assume then that E(a) has been defined for i=p-|. Let br,...,
bo(A be the points of I such that biand anare vertices in a simplex of i{ andsach
that bi:gi(a.x,r) for some g;(G and i(i)<.p. By Theorem D(d), 4=ni[. Thus
there is å€,8\{9(aj 1t): i=Q}. We set E@):b. This defines a unique G-invariant
map E: A-B which is the required map. Note that by Theorem D (b), a ad g(a)
are not vertices in a simplex T€.t for a(A and g€G\{id}.

Let B':{(å0, ... ,bn)<B"+r: å; distinct}. Then every b€B' is the (n*l)-tuple
of a euclidean n-simplex Tt:T(b), using the notation of (D0). We fix for every

b<B' a quasiconformal reflection ro: Rn*Rn on 0Tr, i.e. ro is an orientation re-

versing quasiconformal map interchanging the components of R'\åZa such that

(F1) rul|Tu: i6.

Note that 7i depends only on the set tå0,...,bnj and we can assume that this is
true ofru, too.

We can now define a G-invariant map f: Hn-R" as follows. If T€ld is an

n-simplex, let a[, ..., al be the vertices of Z, enumerated in such a way that al:
ST@j() for some gf6G and i(i)>l such that i(0)<....<j(n). By Theorem
D(b), all the numbers j(i) in the sequence are indeed distinct. Then we set, if
a:(a[, ..., 4) and E@):(cp(a}, ..., E@)),

(F2)

where ho,p(o): T*TE@'' is
tation preserving. If this

(F3)

"flT 
: hoE@),

the map defined in Section E, provided that hoq(o) is orien-
is not the case, we set

J lT : rE@\o h o,p(o,t .

By (F1) and (El), we get a well-defined continuous map f: H"tR". Thus /lT is

always orientation preserving.

We show that f is G-invariant. Let T€tr be as above and pick C(G. Let
S:g(Z). Then {:ggT@io) and hence (E3) implies that (/lS)ogJlZ since

every g(G is orientation preserving.

Next we show that g is K-quasimeromorphic for some K:K(n). Observe

first that the set B'is a finite set depending only on n. Thus the maps rr,b€B', are

Kr-quasiconformal for some Kr:Kr(n). For the same reason, the flatness F(T)=
M, for some Mr:Mr(n) rf b(B'. Now Theorem D(c) and Lemma E imply that
the maps horrorin (F2) and (F3) are K2-quasiconformal for some 6r:Kr(n). Thus,

lf K:KtKa:K(n), flf is K-quasiconformal for every T€/{. It follows that f
is ACL', and since flT is orientation preserving by the above definition for every

T<{, it follows that f is K-quasimeromorphic.
Finally, Theorem D (d) impliesthat i(x,f)=N for some i[:l[(n). Theorem A

is proved.
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