Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 10, 1985, 561-562

A REMARK ON 1-QUASICONFORMAL MAPS

P. TUKIA and J. VÄISÄLÄ

1. Introduction. It is well known that if $n \ge 3$, every 1-quasiconformal map of a domain $D \subset \mathbb{R}^n$ is the restriction of a Möbius transformation. For \mathbb{C}^3 -maps this was already proved by Liouville in 1850. The general result is due to Gehring [Ge₁] and Rešetnjak [Re]. Their proofs are very deep; a more elementary proof has recently been given by Bojarski and Iwaniec [BI]. Mostow [Mo, (12.2)] pointed out that the case $D = \mathbb{R}^n$ is much easier; another proof for this case has been given by Gehring [Ge₂]. The purpose of this note is to give a new and simple proof for this special case. It is based on the compactness properties of quasiconformal maps and on the fact that the 1-quasiconformal maps of \mathbb{R}^n form a group. It is also valid for n=2.

2. Notation. For $x \in \mathbb{R}^n$ and r > 0 we let S(x, r) denote the sphere $\{y \in \mathbb{R}^n : |y-x|=r\}$.

3. Lemma. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a homeomorphism such that the image of each sphere S(x, r) is a sphere $S(f(x), r_x)$. Then f is a similarity.

Proof. Let $x, y \in \mathbb{R}^n$ with |x-y|=2r>0, and let z=(x+y)/2. Consider the sphere S_0 of radius r/2 which touches the spheres $S_1=S(x,r)$ and $S_2=S(x,2r)$ at z and y. Since fS_0 touches fS_1 and fS_2 , f(z) lies on the line segment f(x)f(y). Since fS(z, r) is a sphere centered at f(z), f(z)=(f(x)+f(y))/2. Hence f preserves the midpoint of every line segment. By iteration and continuity, this implies that f is affine on every line. For each line L, there is thus a number $\lambda_L > 0$ such that $|f(a)-f(b)|=\lambda_L|a-b|$ for all $a, b\in L$. Moreover, if the lines L and M intersect, $\lambda_L=\lambda_M$. It follows that $\lambda_L=\lambda$ is independent of L. \Box

4. Theorem. Let $n \ge 2$ and let $f: \mathbb{R}^n \to \mathbb{R}^n$ be 1-quasiconformal. Then f is a similarity.

Proof. By the preceding lemma, it suffices to show that f maps every sphere S(x, r) onto a sphere centered at f(x). With the aid of auxiliary similarity maps, we may assume that x=0=f(x), that r=1, that $f(e_1)=e_1$, and that the open unit ball B^n is contained in fB^n . Let W be the family of all 1-quasiconformal maps $g: \mathbb{R}^n \to \mathbb{R}^n$ such that $g(0)=0, g(e_1)=e_1$, and $B^n \subset gB^n$. Since W is a closed nonempty normal family [Vä, 19.4, 21.3, 37.4], there is $h \in W$ for which

$$m(h\overline{B}^n) = \max \{m(g\overline{B}^n): g\in W\} = M < \infty.$$

It suffices to show that $M=m(\overline{B}^n)$. If $M>m(\overline{B}^n)$, \overline{B}^n is a proper subset of $h\overline{B}^n$, and hence $h\overline{B}^n$ is a proper subset of $hh\overline{B}^n$, which implies $m(hh\overline{B}^n)>M$. Since $hh\in W$, this is a contradiction. \Box

5. Remark. The preceding theorem is also trivially true for n=1, if we, as usual, interpret the K-quasisymmetric functions $f: \mathbb{R}^1 \to \mathbb{R}^1$ as one-dimensional K-quasiconformal maps. On the other hand, the same proof gives the following more general result, which is nontrivial also for n=1. We allow the possibility that a quasiconformal map is sense-reversing.

6. Theorem. Let $n \ge 1$, let $K \ge 1$, and let G be a group of K-quasiconformal maps of \mathbb{R}^n such that G contains all similarity maps. Then G is precisely the group of all similarity maps of \mathbb{R}^n .

In the proof, we may assume that G is closed, replacing it by \overline{G} . \Box

Actually, it is sufficient to assume that G contains a group S of similarities such that for each pair of distinct points $x, y \in \mathbb{R}^n$ there is $g \in S$ such that g(0)=x, $g(e_1)=y$. The proof shows that every element of G is then a similarity.

References

- [BI] BOJARSKI, B., and T. IWANIEC: Another approach to Liouville theorem. Math. Nachr. 107, 1982, 253-262.
- [Ge₁] GEHRING, F. W.: Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc. 103, 1962, 353–393.
- [Ge₂] GEHRING, F. W.: Quasiconformal mappings. Complex analysis and its applications, vol. 2. International Atomic Energy Agency, Vienna, 1976, 213–268.

[Mo] Mosrow, G. D.: Quasi-conformal mappings in *n*-space and the rigidity of hyperbolic space forms. - Inst. Hautes Études Sci. Publ. Math. 34, 1968, 53-104.

[Re] REŠETNJAK, JU. G.: Stability of conformal mappings in multi-dimensional spaces. - Sibirsk. Mat. Ž. 8, 1967, 91—114 (Russian).

[Vä] Väisälä, J.: Lectures on n-dimensional quasiconformal mappings. - Lecture Notes in Mathematics 229. Springer-Verlag, Berlin—Heidelberg—New York, 1971.

University of Helsinki Department of Mathematics SF--00100 Helsinki 10 Finland

Received 31 October 1983