A REMARK ON 1-QUASICONFORMAL MAPS

P. TUKIA and J. VäISÄLÄ

1. Introduction. It is well known that if \(n \geq 3 \), every 1-quasiconformal map of a domain \(D \subset \mathbb{R}^n \) is the restriction of a Möbius transformation. For \(C^3 \)-maps this was already proved by Liouville in 1850. The general result is due to Gehring [Ge₁] and Rešetnjak [Re]. Their proofs are very deep; a more elementary proof has recently been given by Bojarski and Iwaniec [BI]. Mostow [Mo, (12.2)] pointed out that the case \(D = \mathbb{R}^n \) is much easier; another proof for this case has been given by Gehring [Ge₂]. The purpose of this note is to give a new and simple proof for this special case. It is based on the compactness properties of quasiconformal maps and on the fact that the 1-quasiconformal maps of \(\mathbb{R}^n \) form a group. It is also valid for \(n = 2 \).

2. Notation. For \(x \in \mathbb{R}^n \) and \(r > 0 \) we let \(S(x, r) \) denote the sphere \(\{ y \in \mathbb{R}^n : |y - x| = r \} \).

3. Lemma. Let \(f: \mathbb{R}^n \to \mathbb{R}^n \) be a homeomorphism such that the image of each sphere \(S(x, r) \) is a sphere \(S(f(x), r) \). Then \(f \) is a similarity.

Proof. Let \(x, y \in \mathbb{R}^n \) with \(|x - y| = 2r > 0 \), and let \(z = (x + y)/2 \). Consider the sphere \(S_0 \) of radius \(r/2 \) which touches the spheres \(S_1 = S(x, r) \) and \(S_2 = S(x, 2r) \) at \(z \) and \(y \). Since \(fS_0 \) touches \(fS_1 \) and \(fS_2 \), \(f(z) \) lies on the line segment \(f(x)f(y) \). Since \(fS(z, r) \) is a sphere centered at \(f(z) \), \(f(z) = (f(x) + f(y))/2 \). Hence \(f \) preserves the midpoint of every line segment. By iteration and continuity, this implies that \(f \) is affine on every line. For each line \(L \), there is thus a number \(\lambda_L > 0 \) such that \(|f(a) - f(b)| = \lambda_L |a - b| \) for all \(a, b \in L \). Moreover, if the lines \(L \) and \(M \) intersect, \(\lambda_L = \lambda_M \). It follows that \(\lambda_L = \lambda \) is independent of \(L \).

4. Theorem. Let \(n \geq 2 \) and let \(f: \mathbb{R}^n \to \mathbb{R}^n \) be 1-quasiconformal. Then \(f \) is a similarity.

Proof. By the preceding lemma, it suffices to show that \(f \) maps every sphere \(S(x, r) \) onto a sphere centered at \(f(x) \). With the aid of auxiliary similarity maps, we may assume that \(x = 0 = f(x) \), that \(r = 1 \), that \(f(e_1) = e_1 \), and that the open unit ball \(B^n \) is contained in \(fB^n \). Let \(W \) be the family of all 1-quasiconformal maps \(g: \mathbb{R}^n \to \mathbb{R}^n \) such that \(g(0) = 0, g(e_1) = e_1 \), and \(B^n \subset gB^n \). Since \(W \) is a closed nonempty normal family [Vä, 19.4, 21.3, 37.4], there is \(h \in W \) for which

\[
\text{m}(hB^n) = \max \{ \text{m}(gB^n) : g \in W \} = M < \infty.
\]

It suffices to show that $M = m(\overline{B}^n)$. If $M > m(\overline{B}^n)$, \overline{B}^n is a proper subset of $h\overline{B}^n$, and hence $h\overline{B}^n$ is a proper subset of $hh\overline{B}^n$, which implies $m(hh\overline{B}^n) > M$. Since $hh \subseteq W$, this is a contradiction. □

5. Remark. The preceding theorem is also trivially true for $n=1$, if we, as usual, interpret the K-quasisymmetric functions $f: R^1 \rightarrow R^1$ as one-dimensional K-quasiconformal maps. On the other hand, the same proof gives the following more general result, which is nontrivial also for $n=1$. We allow the possibility that a quasiconformal map is sense-reversing.

6. Theorem. Let $n \geq 1$, let $K \geq 1$, and let G be a group of K-quasiconformal maps of R^n such that G contains all similarity maps. Then G is precisely the group of all similarity maps of R^n.

In the proof, we may assume that G is closed, replacing it by \overline{G}. □

Actually, it is sufficient to assume that G contains a group S of similarities such that for each pair of distinct points $x, y \in R^n$ there is $g \in S$ such that $g(0) = x$, $g(e_i) = y$. The proof shows that every element of G is then a similarity.

References

University of Helsinki
Department of Mathematics
SF—00100 Helsinki 10
Finland

Received 31 October 1983