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l.Introiluction. In a lecture [5] given 1966 in honour of WeierstraB, Rolf
Nevanlinna treated the following problem: Let three sequences {or}, {b*}, and {cr}
be given in the complex plane C. Does there exist an entire function with exaclly
the zeros au and the ones b, or a meromorphic function with also the poles co?

Nevanlinna mentioned that, to his knowledge, no melhod for the solution of the
described problem was known.

The introduction of Picard sets by Olli Lehto in 1958 is connected with the
problem stated by Nevanlinna. A set .E contained in C is called a Picard set of entire
(respectively meromorphic) functions if any entire (respectively meromorphic) func-
tion takes in C\E all values of the extended complex plane C with at most two
exceptions. Lehto proved in [a] the existence of Picard sets for enlire as well as for
meromorphic functions. It is obvious that the problem above has no solution if the
points arand br, or respectively, ar,br, and c,,, are contained in a Picard set. Suffi-
cient criteria for Picard sets have been given after Lehto by J. M. Anderson, I. N.
Baker, J. Clunie, S. Liverpool, K. Matsumoto, S. Toppila and the author (see e.g.

lrl,l2l, [3], [6], [10], [1u, u27,u31, [4], [15]).
In [a] the author gave also sequences of points that are not contained in any

Picard set and cannot be the union of all the zeros and ones of any entire function.
ln 1973 the definition of zero-one-sets was introduced by L. A. Rubel and C. C.

Yang [9]: Each pair ({or\, {br\) of sequences of points is called a zero-one-set of
entire functions if there exists an entire function / such lhat {ar} are all the zeros

and {b} are all the ones of/.
The construction of zero-one-sets is thus a solution of the problem stated by

Nevanlinna. By the above mentioned result it is obvious that there are pairs of
sequences of points that are not zero-one-sets. Results of M. Ozawa [fl and the
author [6] explain why the construction of zero-one-sets is so very hard.

In brief, Ozawa proved: If one removes a finite number of points from a given

zero-one-set then one cannot expect that the resulling set is a zero-one-set of the
entire functions. Briefly, the author proved: If one moves some of the points of a
given zero-one-set slightly, then the resulting set ofpoint seguences is not zero-one-set
of the entire functions.
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In the proofs of these results by Ozawa and the author essential use is made of
the fact that entire functions are concerned. The aim of this paper is to extend the

result given by the author about zero-one-sets for entire functions to the case of zero-

one-infinity-sets of meromorphic functions. Here we mean by zero-one-infinily-set any

triple ({ar}, {br}, {rrD of sequences of points such that there exists some mero-

morphic function with zeros ctp) ones br, and poles cr. We will get this result under

certain conditions concerning {orl, {br\ and {cr}. In the case that these conditions

are not fulfilled we show by examples that the result for entire funclions is not trans-

ferable to meromorphic functions. In this connection we will see that such examples

do not appear for entire functions.

2. Further notations and statement of results. Throughout this paper we will use

the common notations T(r,f), m(r,f), N(r,f), N(r,fl,.... Especially we will use

the notation N(r, a):79(r,ll(f-a)) and extend its use as follows: For any sequence

{a"} introduce the notation

N (r, {o"})
n (t, {o"}) - n(0, {o"}) dt + n (0, {o"}) log r,

where n (t, {a") counts the number of au with la,l=t. (So n (t, {au}):max1o"1=r v

holds in the case larl=larl-.larl=....) With respect to the sequence {an} we apply

the definition ofthe exponent ofconvergence as

inf {zlZi, lonl-.' =-}: limsup 
log 

f-9'-{o"}) .

We can now state

.Theorem L Let f be a meromorphic function of finite order q*1,2, .'., with

thezeros clLrd2,..., theones b1,brr..., andthepoles cLrcz,... wherethesezeros,

ones, and poles are suppoSed to be simple. We Suppose that with some real d=0, Some

real c>l and some real rs>O the relations

: T:

l/(r, 1 )(2.r) 0< d,<.

and
N(r, 0) + N (r, f) for all r

(2.2) l* 
^ 
- x ul =- 2 exp (- lx rl 

n*+ t'-1)) fo, x 7 r x p(. U
V:1

{on, bn, cn}

withhold. Further let three sequences {oa"), {b;} and {ri} be giuen

(2.3)

Thm there exists no meromorphic function g, g+f, with the zeros a!r, dr, ..., the

ones b'r,b;, ..., and the poles ci, ci, ... (where these zeros, ones, and poles are all
simple).

t lo"- oil

t lb,-bil : o(exp (- lb,l'o*')),
t lt"- til - O(ttP (- 

| 
cnl'n*")).
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Let us call a "triple ofpoint sequences of order g" each triple ({a"}, {å"}, {""D
of three point sequences with the property ihat the maximum of the exponents of
convergence of these three sequences is equal to g. For the linear space of all triples
of point sequences of order q with q*1,2,3, ... Theorem I gives: The zero-one-
infinity sets of meromorphic functions of order q have no accumulation point in
this space where the neighbourhoods of the triple ({a"}, {b"1, {c") are given by all
triples ({ai}, {b'"\, {cifi such that lan-alnl=rn, lbn-bil<r", lc"-c',1=rn and

Zr=tf ,<-'
From Theorem I the question arises to what extent the conditions (2.1) and

(2.2) are necessary. In the case of supposition (2.1) it is obvious that here the zeros,

ones, and poles can be arbitrarily permutated. Theorem 2 shows that the supposition

Q.2) is essentially sharp.

Theorem 2. For any real q>O there ex$ts a meromorphic function f of order
q withzeros aLrdz,..., oras brrbrr..., andpoles c!,c2,.., andwilhthefollowing
properties:

(l) All zeros, ones, and poles are simple.

(2) For all tlp

lan- a ol> exp(- lo rf*i 
n-"),

lb"- b ul

lr,-crl> exp (- 
| 
,rln*i('-t)

hold.

(3) With some d=0, r=I, /o >0

i/(r, 1)0= d=
N(r, 0) + N (r, f) for all r>ro

holds.
(4) There exist meromorphic functions g, g*f, with simple zeros d, sitnple

ones b',, simple poles cl (v:1,2,3, ...), ntd

la,- ail : O(exP (- la"lno*),

lb"- bil : O (exp (- lb"lto*),

lc,-cil: o(exp (- l""l'o*).

In view of the result on entire functions proved in [16] we will give the following
remark: Theorem 2 does not hold for entire functions of order q< -.

3. Some lemmas. To prove Theorem I and Theorem 2 we need two lemmas

which are already published in [16] and [5]. We state them here without proofs.
Lemma I gives some information about the values taken by / in small discs

if the spherical derivative is growing very strongly.

s6s

exp (- lb ul 
n*+ t"-t'),
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Lemma l. Let be f(z) a meromorphic function in C of order Q<-. IEt
zt, Zz, ... be a sequmce of points tending to infinity such that with some e>0

lrå ""p(- lznlzo+a"+ty ,*@1noy 
:*

holds. Then f takes all oalues of the extended plane in each infinite subsequmce of the

discs C ": {zllz - z 
"l = exp ( - lz"lo+")}.

Lemma 2 gives some information about the size of the spherical derivative.

Lemma 2. I'et f be meromorphic in C. Let tvvo sequmces of points at, az,'.'
and b1, b2, ... be gioen such that with two constants K, and K, one has

lf(a,)l = K' and lf@)-f(b)l =- Kr.

Then on each straight line joining an and b, there exists some point zn such that

tf'(2")l _ K,
lon-b"l # t -c./-\12 1 t tr/ , z forall v:1r2r3o....

1+ 
I J'@,)l' 1+(Kr +2Kz)

4. Proof of Theorem 1. To prove Theorem I we assume that there exists a

meromorphic function g with the zeros 4, the ones bi, and the poles ci(v:
1,2,3,...), where all zeros, ones, and poles are simple. The order of g is obviously

equal to g.

We will prove Theorem I by means of a contradiction to the assumed existence

ofg.
In the first part of the following proof we will assume additionally to (2.3) that

0 < lon-ail, 0 = lb,-bil and 0 = lt"-ril(4.1)

hold. Later on we will remove these additional assumptions stepwise. We make here

these additional assumptions to avoid the consideration of different cases. Define

e =0 by r:l*4a and for y:1,2,3, .,.

First we now claim that

c:,: {zllz - avl - 2exp (-la"l'n*t+n')},

cl,: {zllz-bnl = 2exp (- lb,l'n+l+n)},

C:,: {zllz- cvl < 2exp(-lc"l'n*t+n')}.

(4.2) 0 - lim Sup lfV>-lllrccl,) - lg Sup lf e>llre c:,)

-lys Sup {åVec:}
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and

(4.3)

l'*Sup ili-rlv,
Because of f(a,) - S @i): 0,

sees that the function

, g g-l":7-F
takes the values wl and w, with lwrl=2 and lwrl=3 in all the discs C|", C{ and

C"l"forall v:1,2,3,.... If we nowfollow for h and glf the argumentsusedto
pröve (4.2) we see that å takes all values of the extended complex plane for almost

all v in each of the discs Cr and glf in the discs Co and C6 with

c,": {zllz-dnl * exp(-lo"lo*')},

cu": {zllr-bnl = exp (- lb"lo*")},

9"": {zllz-cnl = exp (- l""lo*)}.

Therefore in almost all of these discs Cu there exists one zero of

h(z\: Z- s=-l : -[=- - l-slf\z):7- hr - f(f_t): H .

From the preceding follows, because of (2.2), that there exists at least one one-point

of Slf inalmost all of the discs Co", Cr"and C,". For the rest of the proof of Theorem I

: 1g sup il#- t 
l 
Ve cl,""',) - 0.

n):s (b)-I and llf!)-lls(ci)-0, one now

0 - }g sup {ls/)-1lizect"} - lg Sup {ls@ll'ec:"}

:Jn*'{l#lr ,ecN.

Assume that (4.2) does not hold. Without any restriction of generality we suppose

in this case 0llimn*_Sup {lf@)ll "Q"\.Because 
there is one zero of/in each

of the discs Co1 , Lemma 2 thus gives a sequence 21; 22;2s2... +6 wtth zrcCln*

and

2 exp (- lan*l2o+t+a", ## = ö = 0

with some fixed ö. Hence it follows

JIl."p (-lon*l'o*'*\ ffir :-.
Now by Lemma I /takes all values of the extended complex plane in the discs

{zllz-zul=exp(-lan..ln*')}. But this is contradictory to the supposition (2.2).

Therefore (4.2) is truö. Because of (2.3) the same argument gives (4.3)'

From (4.2) and (4.3) it follows

cil)

f(b



(4.6)
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we use only this fact. But this is also true if we give up the additional supposition
O=lb"-bil in (a.1). So we can replace (a.l) by

(4.4)

and have

0 < lo"- oil and 0 < lt"- cil

(4.5) almost all discs Co", Cu" and C". contain at least one one-point of Clf.
In connection with (4.5) we point out that because of (2.2)

c.u"[(g 
:'".)"(!, ',,)"(,!,r-)] 

- s,

cu""[p, r'.)"(p 
".)"F,r".)) 

:o,

c,n A[(,Q,, ".)" (,v, c,)" (p r"")) - a

holds for all v.

We will use (4.5) and (4.6) later on.
Next we will look at glf. For all zlan, cl

lr-oi I _ lG - a,)+(a,- a) 
| = 1 * la, - a'ii

lz-a"l I z-d, I lz-q"l
and

| "-c. l _l?-ci)+ki-c,) | = 1* l'"-"ill4l:l z:4- | tz_q,t

hold. From this it follows that, if (2.3) holds, one has for almost all v and for zg
Couu C"" with two constants Kr and K the relations

l4l = t*"r"- la'yl2c+rel.elc+c 
=!+Ke-l,"l2e+"

and

l-+l =- I + Kle-l"vl2e+t elc,le+E s I q [(s-lc"lzo*..
I z-tn,

Because the order of/is equal to q and since e=0, the product

nz,ftnz,ft
converges in z(C*:[_,1- r(C,"wC") uniformly to a meromorphic function å,
with order gr<B and

.tim ht(z): 1.
lzl-6
zqC*

I

t
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Now

h.f,c

is a meromorphic function of order gr=q without zeros and poles. Therefore with
some polynomial p of degree k< q we have

i: o'"0'

By this and (4.6), for some sequence of reals r tending to - and some function

c(r) tending to I with r*- because of p#1,2.3,... and (2.3)

(4.7) ,(r,i)= cQ)m(r,"o1r*(r, j)**e, rl

: c(r)m(r, 
"n)+ 

N(n, j)**<r,n+o(w(r,g)

: 
["(" ])* *t,n) ['*, ("(', ])*"(",n)1.

Because of Nevanlinna's first fundamental theorem it follo-ws from (4.5) and

(4.6) that

(4.8) r(,, i) : r(,, *Å+o(r) = N(r, n + *(,, #)* t(" 
+)

holds. Hence, because of (2.1) one must have for some sequence of reals r tending

to infinity

(4.e) ["('+)*"r",r) ['*,("(", ])n"r',n))

=["(",})**<,,tl)['-'tffi]=["('})*,o,r>)r,*,1'

This includes a contradiction because of d=0. Hence Theorem 1 is proved with
the additional supposition (4.4).

We now consider the case that (4.4) is not fulfilled. In that case we have to

replace the functions f,llf, Slfby f",llf*, g*l/*, respectively in (4.7),(4.8) and (4.9)'

where these functions are constructed by removing from / and g all common zeros

and poles. Obviously

N (r,fl+N(r, i)= *r,,.rf +r,'(", !
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and therefore instead of (2.1)

,nfrl)
o<d=a,= *ffi$.

Hence the contradiction in (4.9) exists also in the case that (4.4) is not fulfilled.
Consequently, Theorem I is proved in all parts.

5. Proof of Theorem 2. Let some real q= - be given. Now to prove Theorem 2
choose some real z > 1 and some sequence of points a!, az, . .. with monotonic in-
creasing modules, with q as the exponent of convergence and with sufficiently big
latl as well as

(5.1) lan*r-anl = 8 exp (- lo"lo*å 
t'-t').

Then take a second sequence of points br., br,... with

lo" - b,l = exp (- lo,lno*").
Because of (5.1)

(5.2) lb,*r-b,l> 4exp(- la,ln**t"-t)
holds. Thus

f(z) :2II; Z-Qu
't z-bu

is a meromorphic function with
(5.3) liyfe) : z,

z qC+

where C*:!*arC" and

6": {zllz-anl = exp(- lo"lto*")}.

This follows immediately if one applies the construction used in the proof of Theo-
rem 1 substituting åt with f. Because of (5.3) and since larl was chosen sufrciently
big, there is in each disc C" exactly one one-point cn from f(z) whtle outside C*
there is no solution of f(z):I. Hence especially

(5.4) 
lcn *, - cn I > 2 exp(- 1"" ln*+ 

n-')

holds. Thus / fultrls the conditions (1) and (2) of Theorem 2. Again the construc-
tion of the zeros, ones and poles of/gives obviously (3) of rheorem 2 because all
these zeros, ones and poles are very close togelher in relation to their exponent of
convergence. If one now chooses two sequences of points 4, o!r, . .. and bi,, b;, .. .

with
O * la"-ail -< exp (- la"l-k*')
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and

o * lb"-bil < exp (- lonl-nn*"),
then the function

g(z):2 II:=,+
will obviously satisfy the assertion (4) of Theorem 2. Hence Theorem 2 has been

proved.
As it was announced in the introduction of this paper, we can now easily see

that such examples as we just conslructed to prove Theorem 2 do not exist in the case

of entire functions: We are able to prove Theorem 2 by choosing the zeros and

poles of the function so close togelher that the suppositions of Lemma I are fulfilled.

From Lemma 1 we see that the function f has to take al1 values of the extended

complex plane and therefore especially the value one. But just this melhod cannot

be applied to entire functions, because every entire function has naturally one excep-

tional value. In other words: there exists.no entire function of prescribed order

where zeros and ones are as close together as in the case ofTheotem2.
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