GENERALIZED MEANS OF SUBHARMONIC FUNCTIONS

S. J. GARDINER

1. Introduction

This paper is concerned with means of subharmonic functions over various bounded surfaces in Euclidean space \mathbb{R}^n $(n \ge 2)$. The simplest case is that of spherical means, which have played a fundamental rôle in the development of potential theory ever since the pioneering work of F. Riesz [26] in 1926. In particular, they have convexity properties, and their limiting behaviour for large radii may be used as a criterion for (e.g.) harmonic majorization in \mathbb{R}^n . A number of such properties are listed below in Theorem 11 (Section 12). However, if we wish to deal with a subharmonic function defined only in an unbounded proper subdomain of \mathbb{R}^n , then means over spheres with a common centre and arbitrarily large radii can no longer be considered.

In the half-space this problem was overcome by devising a "weighted" halfspherical mean, the development of which can be traced through papers by Ahlfors [1], Tsuji [27], Huber [19], Dinghas [11], Ahlfors [2], Kuran [22], [23] and Armitage [3], [4]. A corresponding cylindrical mean in the infinite strip, studied by Heins [17] and Brawn [8], [9], has only recently [5] been explored to an extent that approaches the half-spherical mean, and Fugard [13] has analogously investigated conical means in the infinite cone.

Each of these weighted means has been separately studied at some length, and shown to behave in a manner very similar to spherical means. In this paper we extend the work of [14] and present a unified theory of such means, which we define in terms of level surfaces of suitable functions. Some links may be seen here with work by Wu [29], who considers integral means of subharmonic functions over level curves of certain other harmonic functions in the plane. Also, in broad outline, there are similarities with recent work by Armitage [4] in the half-space. However, there is little in common with respect to the methods employed, as that paper relies heavily on a passage technique (due to Huber [19] and Kuran [22]), which is special to the half-space.

This work was supported by a grant from the Department of Education for Northern Ireland.

As in [14], we shall first give the general theory, and then conclude with specific applications (Sections 12-14). However, in view of the more difficult nature of the work, we shall attempt to illuminate the general exposition by concurrent reference to the two-dimensional strip.

2. The framework

Points of \mathbb{R}^n will be denoted by capital letters such as X, Y, Z, P, or Q; in particular, O will represent the origin of co-ordinates. When appropriate, X will be written in terms of its co-ordinates

$$X = (x_1, ..., x_n) = (X', x_n)$$

where $X' \in \mathbb{R}^{n-1}$. The closure and boundary of a subset A of \mathbb{R}^n will be denoted by \overline{A} and ∂A respectively, and, using |X| to represent the Euclidean norm of X, we define

$$B(X, r) = \{Y \in \mathbb{R}^n : |Y - X| < r\}.$$

It will be convenient also to use N(X) to denote the set of bounded open neighbourhoods of a point X in \mathbb{R}^n .

We recall that a bounded domain $\omega \subset \mathbf{R}^n$ is called a Lipschitz domain if $\partial \omega$ can be covered by right circular cylinders whose bases have positive distances from $\partial \omega$, and corresponding to each cylinder L, there is a co-ordinate system $(\tilde{X}', \tilde{x}_n)$ with \tilde{x}_n -axis parallel to the axis of L, a function $f: \mathbb{R}^{n-1} \to \mathbb{R}$ and a real number c such that

for all
$$\tilde{X}', \tilde{Y}' \in \mathbb{R}^{n-1}$$
,
and
 $L \cap \omega = \{X \in L: \tilde{x}_n > f(\tilde{X}')\}$
 $L \cap \omega = \{X \in L: \tilde{x}_n = f(\tilde{X}')\}$

and

(The extra generality of non-tangentially accessible domains (see [21]) is unnecessary for the type of applications we have in mind.)

An account of the Perron-Wiener-Brelot generalized solution of the Dirichlet problem is given in Helms' book [18, Chapter 8], and we shall adopt his notation. Thus, if f is resolutive on the boundary of an open set W, the Dirichlet solution is given by H_f^W .

Let Ω be an unbounded domain in \mathbb{R}^n such that, for each r > 0, there is an open set $W'_r \supseteq B(O, r)$ for which $\Omega'_r = W'_r \cap \Omega$ is a Lipschitz domain. To avoid having to deal repeatedly with it as a special case, we shall exclude the possibility of $\Omega = \mathbf{R}^2$. We now state a number of lemmas, whose proofs will be given in Sections 6 and 7.

Lemma 1. There exist

(a) a Green kernel G for Ω such that, if $X \in \Omega$, then G(X, .) continuously vanishes on $\partial \Omega$, and

(b) at least one positive harmonic function h in Ω which continuously vanishes on $\partial \Omega$.

In view of (b) above, we define h_* to be a (fixed) positive harmonic function in Ω which vanishes on $\partial \Omega$. We also let v be a fixed (non-zero) Borel measure with compact support $E \subset \overline{\Omega}$.

Lemma 2. The function $G(X, Y)/\{h_*(X)h_*(Y)\}$ has a positive, symmetric, jointly continuous extension to $(\overline{\Omega} \times \overline{\Omega}) \setminus \{(X, Y) \colon X = Y \in \partial \Omega\}$ (continuous in the extended sense at points of the diagonal of $\Omega \times \Omega$), which we denote by $G^*(X, Y)$. Further, $h_*(.)G^*(., Y)$ is harmonic in $\Omega \setminus \{Y\}$.

We define

$$\Phi(X) = \int_{E} G^{*}(X, Z) \, d\nu(Z) \quad (X \in \overline{\Omega} \setminus (E \cap \partial \Omega)),$$

and extend Φ to be defined on $\overline{\Omega}$ by writing

$$\Phi(X) = \liminf_{Y \to X} \Phi(Y) \quad (X \in E \cap \partial \Omega).$$

Clearly Φ is lower semicontinuous (l.s.c.) on $\overline{\Omega}$. We also have:

Lemma 3. The function Φ is positive on $\overline{\Omega}$, and $h_*\Phi$ is superharmonic in Ω , harmonic in $\Omega \setminus E$ and continuously vanishes on $\partial \Omega \setminus E$.

Definition 1. Let \varkappa denote the (positive, possibly infinite) infimum of Φ on E, and let φ denote a (fixed) strictly decreasing mapping from $(0, +\infty)$ onto $(0, \varkappa)$ (which implies that φ is continuous and invertible). Since Φ is l.s.c. on $\overline{\Omega}$, there exists (for each x > 0) an open set W_x such that

$$W_x \cap \overline{\Omega} = \{ X \in \overline{\Omega} \colon \Phi(X) > \varphi(x) \}.$$

We shall suppose that each $\Omega_x = W_x \cap \Omega$ is a Lipschitz domain, and that, if x < w, then $\overline{\Omega}_w \setminus W_x$ is the disjoint union of the closures of finitely many Lipschitz domains. This will certainly be the case in our applications. We abbreviate the sets $\partial \Omega_x \cap \Omega$ and $W_x \cap \partial \Omega$ to σ_x and τ_x respectively, and denote harmonic measure with respect to Ω_x and $X \in \Omega_x$ by $\mu_{x,X}$. In view of [24, Théorème 25] and the fact that a cone internal to Ω_w with vertex at $Z \in \partial \Omega_w$ is non-thin at Z (see, for example, [20, Lemma (3.6)]), it follows that $\partial \Omega_x \cap \partial \Omega \setminus \tau_x$ has $\mu_{x,X}$ -measure zero for any $X \in \Omega_x$. The Green kernel for Ω_x will be denoted by G_x .

Lemma 4.

- (a) $E \subseteq \bigcap_{x>0} \overline{\Omega}_x;$
- (b) $\overline{\Omega} = \bigcup_{x>0} \overline{\Omega}_x;$
- (c) $x < w \Rightarrow \overline{\Omega}_x \subset W_w \cap \overline{\Omega};$
- (d) $\Phi(X) = \varphi(x)$ for $X \in \sigma_x$.

For suitable functions f we define

$$I_{f,x}(X) = \int_{\sigma_x} f(Z) \, d\mu_{x,X}(Z),$$

$$H_{f,x}(X) = H_{f^{x}}^{\Omega_{x}}(X) - \int_{\tau_{1}} f(Z) \, d\mu_{1,X}(Z),$$

which are clearly harmonic in $\Omega_{\min\{x,1\}}$, provided that the integrals are finite. It was shown in [14, Lemma 1] that the quotients $H_{f,x}/h_*$ and $I_{f,x}/h_*$ can be continuously defined on $W_y \cap \overline{\Omega}$, where $y = \min\{x, 1\}$. Denoting these extended functions respectively by $\mathscr{H}_{f,x}$ and $\mathscr{I}_{f,x}$, we define

$$\mathcal{M}(f, x) = \int_{E} \mathcal{H}_{f, x}(X) \, dv(X)$$

and

$$\mathcal{N}(f, x) = \int_{E} \mathscr{I}_{f, x}(X) \, dv(X).$$

Let s be subharmonic in Ω and extend it to $\overline{\Omega}$ by

$$s(Z) = \limsup_{X \to Z} s(X) \quad (Z \in \partial \Omega)$$

If, for each $Z \in \partial \Omega$, there is a bounded neighbourhood of Z, whose intersection ω with Ω satisfies

(i) the restriction of s to $\partial \omega$ is resolutive for ω , and

(ii) $s \leq H_s^{\omega}$ in ω ,

then we say that $s \in \mathscr{LD}$.

If $s \in \mathscr{LD}$, then it follows from [15, Theorem 2(i)] that s is resolutive for every Ω_x , and $s \leq H_s^{\Omega_x}$ in Ω_x . Hence $H_{s,x}$, $\mathscr{H}_{s,x}$, $\mathscr{M}(s,x)$, $I_{s,x}$, $\mathscr{I}_{s,x}$, and $\mathscr{N}(s,x)$ all exist, and it is easy to see (cf. [14, Theorem 1]) that

(i) $\mathcal{M}(s, x)$ is an increasing¹), real-valued function of x.

(ii) If also $s \le 0$ on $\partial \Omega$, then the same is true of $\mathcal{N}(s, x)$.

(iii) If h is harmonic in Ω and continuous on $\overline{\Omega}$, then $\mathcal{M}(h, x)$ is a constant function of x.

Lemma 5. The function F_x , defined on $\overline{\Omega} \times \Omega_x$ by

$$F_{x}(X, Y) = I_{h_{*}(\cdot)G^{*}(X, \cdot), x}(Y)/h_{*}(Y),$$

has a jointly continuous extension to $\overline{\Omega} \times (W_x \cap \overline{\Omega})$ such that $h_*(.)F_x(.,Y)$ is harmonic in Ω_x for any Y. Further,

$$G^*(X,Y) = F_x(X,Y) \quad (X \notin W_x \cap \overline{\Omega}),$$

and

(1)
$$G^*(X,Y) = F_x(X,Y) + \lim_{(P,Q) \to (X,Y)} G_x(P,Q) / \{h_*(P)h_*(Q)\}$$

if $X, Y \in W_x \cap \overline{\Omega}$ and $X \neq Y$, the limit being unnecessary if both X and Y are in Ω_x .

The extended function of the above lemma will also be denoted by F_x .

and

¹) We use increasing in the wide sense.

We conclude this section by illustrating some of our definitions.

Example 1. Consider the two-dimensional case of the strip, so that

$$\Omega = (-1, 1) \times \mathbf{R}, \quad E = [-1, 1] \times \{0\}$$
$$dv(x_1, x_2) = 8\pi^{-2} \cos^2\left(\frac{1}{2}\pi x_1\right) dx_1 d\delta_0(x_2)$$

and

$$h_*(x_1, x_2) = 2\pi^{-1} \cos\left(\frac{1}{2}\pi x_1\right) \cosh\left(\frac{1}{2}\pi x_2\right),$$

where δ_0 is the Dirac measure at the origin of **R**. The Green kernel for Ω is well-known (see, for example, [7, Lemmas 3, 4] and use a simple conformal mapping); in particular,

$$G((x_1, x_2), (y_1, 0)) = 2 \sum_{m=1}^{\infty} m^{-1} \sin\left[\frac{1}{2} m\pi(x_1+1)\right] \sin\left[\frac{1}{2} m\pi(y_1+1)\right] \exp\left(-\frac{1}{2} m\pi |x_2|\right).$$

If $x_2 \neq 0$, then clearly the series converges uniformly in y_1 , and so we can integrate term-by-term to obtain

$$\begin{split} \Phi(x_1, x_2) &= 2 \int_{-1}^{1} G((x_1, x_2), (y_1, 0)) \cos\left(\frac{1}{2} \pi y_1\right) / \left\{ \cos\left(\frac{1}{2} \pi x_1\right) \cosh\left(\frac{1}{2} \pi x_2\right) \right\} dy_1 \\ &= 4 \operatorname{sech}\left(\frac{1}{2} \pi x_2\right) \exp\left(-\frac{1}{2} \pi |x_2|\right) \\ &= 8 \left\{ 1 + \exp\left(\pi |x_2|\right) \right\}^{-1}. \end{split}$$

This remains valid for $x_2=0$ by the l.s. continuity of Φ . Thus $\varkappa=4$ and, defining $\varphi: (0, +\infty) \rightarrow (0, 4)$ by

$$\varphi(x) = 8 \{1 + \exp(\pi x)\}^{-1},$$

it follows that $\Omega_x = (-1, 1) \times (-x, x)$. The assumptions of Definition 1 are now easily seen to hold.

3. The generalized mean

If s is subharmonic in Ω , then the measure associated with s in Ω is given by $\mu_s = \gamma_n \Delta s$, where

$$\gamma_2 = (2\pi)^{-1}, \quad \gamma_n = \{(n-2)c_n\}^{-1} \quad (n \ge 3),$$

 c_n denoting the surface area of $\partial B(O, 1)$, and Δs is the distributional Laplacian of s in Ω . The following result associates a second measure, defined on $\partial \Omega$, with s.

Theorem 1. If $s \in \mathscr{LD}$, then there exists a unique measure λ_s on $\partial \Omega$ such that the least harmonic majorant of s in Ω_x is given by

(2)
$$H_{s^{n}}^{\Omega_{x}}(Y) - h_{*}(Y) \int_{\tau_{x}} \{G^{*}(X,Y) - F_{x}(X,Y)\} d\lambda_{s}(X).$$

(We remark that, if s is subharmonic in an open set containing $\overline{\Omega}$, then the least harmonic majorant of s in Ω_x is given by $H_s^{\Omega_x}$, and so λ_s is the zero measure on $\partial \Omega$.)

Definition 2. We introduce a modified mean $\mathcal{M}^*(s, x)$ for $s \in \mathcal{LD}$, given by

$$\mathscr{M}^*(s, x) = \mathscr{M}(s, x) + \int_1^x \lambda_s(\tau_t) \, d\varphi(t),$$

where the latter term is a Riemann-Stieltjes integral.

Example 2. Following on from Example 1, we deduce from [14, Section 9] that

$$\mathcal{M}(s, x) = 2\pi^{-1} \operatorname{sech}\left(\frac{1}{2}\pi x\right) \int_{-1}^{1} \cos\left(\frac{1}{2}\pi x_{1}\right) \left\{s(x_{1}, x) + s(x_{1}, -x)\right\} dx_{1}$$
$$+ \int_{1}^{x} \operatorname{sech}^{2}\left(\frac{1}{2}\pi t\right) \int_{-t}^{t} \cosh\left(\frac{1}{2}\pi x_{2}\right) \left\{s(-1, x_{2}) + s(1, x_{2})\right\} dx_{2} dt.$$

Since the derivative of $\varphi(x)$ is $-2\pi \operatorname{sech}^2(\frac{1}{\sqrt{2}}\pi x)$, we have

$$\mathcal{M}^{*}(s, x) = 2\pi^{-1} \operatorname{sech}\left(\frac{1}{2}\pi x\right) \int_{-1}^{1} \cos\left(\frac{1}{2}\pi x_{1}\right) \left\{s(x_{1}, x) + s(x_{1}, -x)\right\} dx_{1}$$
$$+ \int_{1}^{x} \operatorname{sech}^{2}\left(\frac{1}{2}\pi t\right) \left[\int_{-t}^{t} \cosh\left(\frac{1}{2}\pi x_{2}\right) \left\{s(-1, x_{2}) + s(1, x_{2})\right\} dx_{2}$$
$$- 2\pi\lambda_{s}\left(\{-1, 1\} \times (-t, t)\right)\right] dt.$$

The following is a generalization of Nevanlinna's first fundamental theorem for subharmonic functions in \mathbb{R}^n (see [16, p. 127]).

Theorem 2. If $s \in \mathscr{LD}$, then

$$\mathscr{M}^*(s, x) = \mathscr{N}(s, 1) - \int_1^x \int_{\Omega_t} h_*(Z) \, d\mu_s(Z) \, d\varphi(t).$$

Proofs of Theorems 1 and 2 may be found in Sections 8 and 9, respectively.

4. General results

Theorem 2 is used to deduce the main results of this paper.

Theorem 3. Let $s \in \mathcal{LD}$. Then

(i) $\mathcal{M}^*(s, x)$ is increasing as a function of x and convex as a function of $\varphi(x)$ on $(0, +\infty)$;

(ii) if w > y > 0 and s is harmonic in $\Omega_w \setminus \overline{\Omega}_y$, then $\mathcal{M}^*(s, x)$ is a linear function of $\varphi(x)$ on [y, w];

(iii) $\mathcal{M}^*(s, x)$ is constant on $(0, +\infty)$ if and only if s is harmonic in Ω .

- (i) s has a harmonic majorant in Ω ;
- (ii) $\mathcal{M}^*(s, x)$ is bounded above on $(0, +\infty)$;
- (iii) $\int_{\Omega \setminus \Omega_1} h_*(X) \Phi(X) d\mu_s(X) < +\infty.$

Theorems 3 and 4 show that $\mathcal{M}^*(s, x)$ has "ideal" properties; that is, it behaves exactly like the ordinary spherical mean of subharmonic functions in \mathbb{R}^n (of which it is a generalization). The major disadvantage of this mean is that λ_s has to be defined in a rather indirect fashion. Thus there is a case for discussing also the (slightly less satisfactory) properties of $\mathcal{M}(s, x)$, some of which have already been given in [14].

Theorem 5. (i) If $s \in \mathscr{LD}$ and $\mathscr{M}(s, \mathbf{x})$ is bounded above on $(0, +\infty)$, then s has a harmonic majorant in Ω .

(ii) Let s be subharmonic in an open set W containing $\overline{\Omega}$. Then s has a harmonic majorant in Ω if and only if $\mathcal{M}(s, x)$ is bounded above on $(0, +\infty)$.

Part (i) holds since $\mathcal{M}^*(s, x) \leq \mathcal{M}(s, x)$ (see Definition 2; φ is decreasing), and generalizes [14, Theorem 2]. Part (ii) is identical to [14, Theorem 3] and is immediate since, in this case $\lambda_s \equiv 0$.

Convexity results for $\mathcal{M}(s, x)$ were not considered in [14], but are now also easily derived.

Theorem 6. (i) If $s \in \mathcal{LD}$, then $\mathcal{M}(s, x)$ is increasing as a function of x, and convex as a function of $\varphi(x)$ on $(0, +\infty)$.

(ii) If also $s \le 0$ on $\partial \Omega$, then $\mathcal{N}(s, x)$ is increasing as a function of x, and convex as a function of $\varphi(x)$ on $(0, +\infty)$.

Theorems 3, 4 and 6 are proved in Section 10.

5. Variant means

Analogous results for variants of the mean $\mathcal{N}(s, x)$ are now given.

Theorem 7. If s is a non-negative subharmonic function in Ω which continuously vanishes on $\partial\Omega$, and $1 \le p < +\infty$, then the mean

$$\mathcal{N}_{p}(s, x) = \{\mathcal{N}(h_{*}^{1-p}s^{p}, x)\}^{1/p}$$

is real-valued, convex as a function of $\varphi(x)$, and increasing as a function of x>0.

Theorem 8. If u is a positive superharmonic function in Ω , and $p \in (-\infty, 0) \cup (0, 1)$, then $\mathcal{N}_p(u, x)$ is real-valued, concave as a function of $\varphi(x)$, and decreasing as a function of x > 0.

Theorem 9. If $s \in \mathcal{LD}$ and $s \leq 0$ on $\partial \Omega$, then the "mean"

 $\mathcal{N}_{\infty}(s, x) = \sup \left\{ s(X) / h_*(X) \colon X \in \sigma_x \right\}$

is real-valued, convex as a function of $\varphi(x)$, and increasing as a function of x>0.

Theorem 10. If $s \in \mathscr{LD}$ and $s \leq 0$ on $\partial \Omega$, then the mean

$$\mathcal{N}_E(s, x) = \log \mathcal{N}(h_* \exp(s/h_*), x)$$

is real-valued, convex as a function of $\varphi(x)$, and increasing as a function of x > 0.

The proofs of these theorems are closely related, and are based on a technique of Fugard [12, Chapter 2] (or see [5, Theorems 7 and 8]). We shall illustrate this by giving the proof of Theorem 10 in Section 11. Theorem 9 is a generalization of Hadamard's Three Circles Theorem, and can equivalently be stated in terms of the infimum of u/h_* over σ_x for suitable superharmonic functions u. It is a little easier to prove, and the maximum principle can be used to establish the monotonicity part of the result.

6. Proofs of Lemmas 1-4

6.1. We shall make use of the following results.

Theorem A. (Boundary Harnack principle.) Let Ω' be a bounded Lipschitz domain of which P is a fixed point, A be a relatively open subset of $\partial \Omega'$, and W' be a subdomain of Ω' satisfying $\partial \Omega' \cap \partial W' \subseteq A$. Then there is a constant c such that, if h_1 and h_2 are two positive harmonic functions in Ω' vanishing on A and $h_1(P) = h_2(P)$, then $h_1(X) \leq ch_2(X)$ for all $X \in W'$.

Theorem B. If h_1 and h_2 are positive harmonic functions on a bounded Lipschitz domain Ω' vanishing on a relatively open subset A of $\partial \Omega'$, then h_1/h_2 can be continuously extended to a strictly positive function defined on $\Omega' \cup A$.

For Theorem A we refer to either Dahlberg [10, Theorem 4] or Wu [30, Theorem 1]. If the set A is empty, then the result reduces to the usual Harnack inequality [18, Theorem 2.16]. Alternative proofs for Theorem B can be found in [21, (7.9)] and [6, Theorem 2].

6.2. To prove Lemma 1, first note that Ω has a Green kernel. If $n \ge 3$, this is immediate; if n=2, choose r such that $W'_r \cap \partial \Omega$ is non-empty. Since Ω'_r is Lipschitz, there exist Y and $\varepsilon > 0$ such that $\overline{B}(Y, \varepsilon) \subseteq W'_r \setminus \overline{\Omega}$, whence $\Omega \subseteq \mathbb{R}^2 \setminus \overline{B}(Y, \varepsilon)$ and so Ω has a Green kernel.

Denoting this kernel by G and letting $X \in \Omega$, we show that G(X, .) vanishes on $\partial \Omega$. Fix r such that $X \in \Omega'_r$, let G'_r be the Green kernel for Ω'_r , and define f_X on $\partial \Omega'_r$ by setting it equal to G(X, .) on $\partial \Omega'_r \cap \Omega$ and 0 elsewhere. Then the function

$$s(Y) = \begin{cases} G(X, Y) - G'_r(X, Y) - H^{\Omega'_r}_{f_X}(Y) & (Y \in \Omega'_r) \\ 0 & (Y \in \Omega \setminus \Omega'_r) \end{cases}$$

is easily seen to be a non-negative subharmonic minorant of G(X, Y) in Ω (since Ω'_r is regular) and so is identically zero. Since $G'_r(X, .)$ and $H^{\Omega'_r}_{f_X}$ vanish on $W'_r \cap \partial \Omega$, so does G(X, .), and since r may be arbitrarily large, part (a) is proved.

To prove (b), let Q be a fixed point in Ω and (Y_m) be an unbounded sequence of points in Ω . By choosing a suitable subsequence if necessary (compactness argument), we may assume that (Y_m) converges to a Martin boundary point of Ω . If $\partial \Omega$ is empty, the lemma is trivially true. Otherwise, let r and R be such that $\overline{\Omega}'_r \subset W'_R$ and $Q \in \Omega'_R$, and such that $W'_r \cap \partial \Omega$ is non-empty. Fix $P \in \Omega \setminus \overline{\Omega}'_R$. From Theorem A there is a constant c such that

$$G(Y_m, X)/G(Y_m, Q) \leq cG(P, X)/G(P, Q) \quad (X \in \Omega'_r)$$

whence

$$h(X) = \lim_{m \to \infty} G(Y_m, X) / G(Y_m, Q) \leq c' G(P, X) \quad (X \in \Omega'_r).$$

Thus h is a positive harmonic function in Ω'_r , which vanishes on $W'_r \cap \partial \Omega$. Since r may be arbitrarily large, (b) is proved.

6.3. We now prove Lemma 2. Let $X_0, Y_0 \in \overline{\Omega}$. Joint continuity clearly holds at (X_0, Y_0) unless at least one of X_0, Y_0 is in $\partial \Omega$. We shall consider the case where both X_0 and Y_0 are in $\partial \Omega$ and $X_0 \neq Y_0$, the case where only one of X_0, Y_0 is in $\partial \Omega$ being similar and easier. It is clearly sufficient to show that $G^*(X, Y)$ has a limit as (X, Y) tends to (X_0, Y_0) from within $\Omega \times \Omega$.

- Let $U_i \in N(X_0)$ and $V_i \in N(Y_0)$ (i=1, 2, 3) be such that
- (i) $\overline{U}_3 \subset U_2 \subset \overline{U}_2 \subset U_1$ and similarly for V_i ;
- (ii) $\overline{U}_1 \cap \overline{V}_1 = \emptyset$;

(iii) the sets $U'_i = U_i \cap \Omega$ and $V'_i = V_i \cap \Omega$ are Lipschitz domains (this is possible because $X_0, Y_0 \in W'_r$ for sufficiently large r). We denote harmonic measure for U'_i and $X \in U'_i$ by $\lambda_{i,X}$, and for V'_i and $Y \in V'_i$ by $v_{i,Y}$.

In view of (ii), G(X, Y) is bounded above, by c say, for (X, Y) in $U'_1 \times V'_1$. From Theorem A

$$G(X, Y) = \int_{\partial U_1 \cap \Omega} G(Z, Y) \, d\lambda_{1, X}(Z)$$
$$\leq c\lambda_{1, X}(\partial U_1 \cap \Omega) \leq c^i h_*(X)$$

for $X \in U_2'$ and $Y \in V_1'$. Repeating this argument, we obtain

(3)
$$G(X,Y)/h_*(X) = \int_{\partial V_1 \cap \Omega} G(X,Z)/h_*(X) \, dv_{1,Y}(Z) \leq c^{ii} h_*(Y)$$

for $X \in U'_2$ and $Y \in V'_2$.

Let $\varepsilon' > 0$. It follows from (3) and the joint continuity of G in $\Omega \times \Omega$ that there exists $\delta > 0$ such that

$$|G(X_1,Y) - G(X_2,Y)| < \varepsilon' \quad (Y \in \partial V_2 \cap \Omega)$$

for $X_1, X_2 \in \partial U_2 \cap \Omega$ satisfying $|X_1 - X_2| < \delta$. Again using Theorem A

(4)
$$|G(X_1,Y) - G(X_2,Y)| \leq \varepsilon' v_{2,Y} (\partial V_2 \cap \Omega) < c^{iii} \varepsilon' h_*(Y) \quad (Y \in V_3').$$

From Theorem B, the functions

$$\{G(X, .)/h_*(.): X \in \partial U_2 \cap \Omega\}$$

have continuous extensions to V'_3 . Hence, from (3), (4) and the fact that $\partial U_2 \cap \Omega$ is relatively compact, we can apply the Arzelà—Ascoli theorem to see that they are equicontinuous on $\overline{V'_3}$.

Let $\varepsilon > 0$. Then there exists $V_{\varepsilon} \in N(Y_0)$ such that $\overline{V}_{\varepsilon} \subset V_3$ and

$$|G(X, Y_1)/h_*(Y_1) - G(X, Y_2)/h_*(Y_2)| < \varepsilon \quad (X \in \partial U_2 \cap \Omega)$$

for $Y_1, Y_2 \in V_{\varepsilon}' = V_{\varepsilon} \cap \Omega$, and so

$$|G(X, Y_1)/h_*(Y_1) - G(X, Y_2)/h_*(Y_2)| \le \varepsilon \lambda_{2, X}(\partial U_2 \cap \Omega) < c^{iv} \varepsilon h_*(X)$$

for $X \in U'_3$. Thus we have

$$|G^*(X,Y_1) - G^*(X,Y_2)| < c^{iv}\varepsilon \quad (X \in U_3'; Y_1, Y_2 \in V_{\varepsilon}').$$

Correspondingly, we obtain U'_{ε} such that

$$|G^*(X_1,Y)-G^*(X_2,Y)| < c^{\nu}\varepsilon \quad (X_1,X_2\in U'_{\varepsilon}; Y\in V'_3),$$

and so

$$|G^*(X_1,Y_1)-G^*(X_2,Y_2)| < (c^{iv}+c^v)\varepsilon \quad (X_1,X_2\in U'_{\varepsilon};\ Y_1,Y_2\in V'_{\varepsilon}),$$

where $c^{i\nu}$ and c^{ν} are independent of ε . A completeness argument now shows that $G^*(X, Y)$ has a limit as $(X, Y) \rightarrow (X_0, Y_0)$.

The harmonicity of $h_*(.)G^*(., Y)$ in $\Omega \setminus \{Y\}$ is clear if $Y \in \Omega$. If $Y \in \partial \Omega$, let (Y_m) be a sequence of points in Ω , converging to Y. In view of the joint continuity of G^* , the functions $h_*(.)G^*(., Y_m)$ are locally uniformly bounded in Ω and so their limit is harmonic in Ω (see [18; Theorem 2.18]).

The positivity of G^* is a consequence of Theorem B, and the symmetry is obvious from the symmetry of G.

6.4. In Lemma 3, since G^* is positive and v is non-zero, the positivity of Φ need be checked only at points Z of $E \cap \partial \Omega$. To do this, we choose r such that $E \subset W'_r$ and apply [24, Théorème 7'-16] and Theorem B to see that

$$\Phi(Z) = \left\{ \liminf_{X \to Z} h_*(X) \Phi(X) / G'_r(X, Q) \right\} \left\{ \lim_{X \to Z} G'_r(X, Q) / h_*(X) \right\} > 0,$$

where Q is an arbitrary point of Ω'_r .

Let v_1 and v_2 be the restrictions of v to $\partial \Omega \cap E$ and $\Omega \cap E$ respectively, and define

$$dv_3(Y) = \{h_*(Y)\}^{-1} dv_2(Y).$$

In view of Lemma 2, $h_* \Phi$ is clearly finite on $\Omega \setminus E$, and so the function Gv_3 is a potential in Ω . It is immediate also from Lemma 2 that $h_* \Phi$ vanishes on $\partial \Omega \setminus E$, and so it remains only to show that

$$\int_{\partial\Omega\cap E}h_*(.)G^*(.,Y)\,d\nu_1(Y)$$

is harmonic in Ω . In fact, Lemma 2 ensures that this function is continuous in Ω and Fubini's theorem shows that the mean-value equality holds for all sufficiently small spheres centred at any $X \in \Omega$.

6.5. Lemma 4 is straightforward to establish. Since, for each x, $\varphi(x) < \varkappa$, it follows that

$$E \subseteq W_x \cap \overline{\Omega} \subseteq \overline{\Omega}_x,$$

and so (a) holds. Part (b) is true because Φ is positive in $\overline{\Omega}$. Since Φ is continuous in $\overline{\Omega} \setminus E$, we have $\Phi(X) \ge \varphi(x)$ for $X \in \overline{\Omega}_x$, and so

$$x < w \Rightarrow \varphi(x) > \varphi(w) \Rightarrow \overline{\Omega}_x \subset W_w \cap \overline{\Omega},$$

proving (c). Part (d) follows from the continuity of Φ at points of σ_x .

7. Proof of Lemma 5

Once the joint continuity of F_x is established, the harmonicity of $h_*(.)F_x(., Y)$ follows easily as in Lemma 2. Let

$$S_1 = (\Omega \setminus \overline{\Omega}_x) \times \Omega_x, \quad S_2 = \Omega_x \times \Omega_x$$

$$(X_0, Y_0) \in \overline{\Omega} \times (W_x \cap \overline{\Omega}).$$

We shall show that, as (X, Y) tends to (X_0, Y_0) from within $S_1 \cup S_2$, the function $F_x(X, Y)$ tends to a limit, which equals $F_x(X_0, Y_0)$ if $Y_0 \in \Omega_x$. Our proof falls naturally into three parts.

Case I: $X_0 \in \overline{\Omega} \setminus \overline{\Omega}_x$. For $X \in \Omega \setminus \overline{\Omega}_x$, the function $h_*(.)G^*(X,.)$ is harmonic in Ω_x , continuous in $\overline{\Omega}_x$ and valued zero on τ_x (see Lemma 2). Thus, if $(X, Y) \in S_1$, then

$$F_x(X,Y) = h_*(Y) G^*(X,Y) / h_*(Y) = G^*(X,Y).$$

As $(X, Y) \rightarrow (X_0, Y_0)$, we have $F_x(X, Y) \rightarrow G^*(X_0, Y_0)$, and if $Y_0 \in \Omega_x$, then $G^*(X_0, Y_0) = F_x(X_0, Y_0)$ as required.

Case II: $X_0 \in \Omega_x \cup \tau_x = W_x \cap \overline{\Omega}$. Let $\varepsilon > 0$. From the joint continuity of G^* there exists $U_{\varepsilon} \in N(X_0)$ such that $\overline{U}_{\varepsilon} \subset W_x$ and

$$|G^*(X_1,Z)-G^*(X_2,Z)|<\varepsilon$$

for X_1 and X_2 in $U_{\varepsilon} \cap \overline{\Omega}$ and Z in σ_x . Hence

$$|F_x(X_1,Y) - F_x(X_2,Y)| < \varepsilon$$

for X_1 and X_2 in $U_{\varepsilon} \cap \overline{\Omega}$ and $Y \in \Omega_x$. Since

(5)
$$G(X,Y) = I_{G(X,\cdot),x}(Y) + G_x(X,Y) \quad (X,Y \in \Omega_x),$$

it is clear that F_x is symmetric in $\Omega_x \times \Omega_x$ and so there also exists $V_{\epsilon} \in N(Y_0)$ such that $\overline{V}_{\epsilon} \subset W_x$ and

$$|F_x(X,Y_1) - F_x(X,Y_2)| < \varepsilon$$

for X in Ω_x and Y_1 and Y_2 in $V_{\epsilon} \cap \Omega$. If we let $X_3 \in U_{\epsilon} \cap \Omega$, then

$$|F_x(X_1, Y_1) - F_x(X_2, Y_2)| \le |F_x(X_1, Y_1) - F_x(X_3, Y_1)| + |F_x(X_3, Y_1) - F_x(X_3, Y_2)| + |F_x(X_3, Y_2) - F_x(X_2, Y_2)| < 3\varepsilon$$

for X_1 and X_2 in $U_e \cap \overline{\Omega}$ and $Y_1, Y_2 \in V_e \cap \Omega$. A completeness argument shows that F_x has a limit as $(X, Y) \rightarrow (X_0, Y_0)$. If $Y_0 \in \Omega_x$, then choose $(X_2, Y_2) = (X_0, Y_0)$ to see that the limit is, in fact, $F_x(X_0, Y_0)$. Also, (1) now follows from (5) and Lemma 2.

Case III: $X_0 \in \overline{\Omega}_x \setminus W_x$. This is the most difficult case to prove. Let $Q, Y \in \Omega_x$. If w > x, then, as has already been observed in Section 2, $\Omega_w \setminus \overline{\Omega}_x$ is non-thin at X_0 in the minimal fine topology for Ω_w , whence

$$\int_{\sigma_x} \lim_{X \to X_0} G_w(X, Z) / G_w(X, Q) \, d\mu_{x, Y}(Z) = \lim_{X \to X_0} G_w(X, Y) / G_w(X, Q),$$

or, in view of Theorem B,

(6)
$$\int_{\sigma_x} \lim_{X \to X_0} G_w(X, Z) / h_*(X) \, d\mu_{x, Y}(Z) = \lim_{X \to X_0} G_w(X, Y) / h_*(X).$$

Also, from II, F_w is jointly continuous in $(W_w \cap \overline{\Omega}) \times (W_w \cap \overline{\Omega})$ and $h_*(.)F_w(X_0,.)$ is harmonic in Ω_w , and so

(7)
$$\int_{\sigma_x} h_*(Z) F_w(X_0, Z) \, d\mu_{x, Y}(Z) = h_*(Y) \, F_w(X_0, Y).$$

Thus, from (1), (6) and (7),

$$F_{x}(X_{0},Y) = \int_{\sigma_{x}} h_{*}(Z) G^{*}(X_{0},Z) d\mu_{x,Y}(Z) / h_{*}(Y) = G^{*}(X_{0},Y) \quad (Y \in \Omega_{x}).$$

The lemma will follow if we show that

$$F_x(X,Y) \to G^*(X_0,Y_0) \quad ((X,Y) \to (X_0,Y_0); \ (X,Y) \in S_1 \cup S_2).$$

This is clearly true as (X, Y) tends to (X_0, Y_0) from within S_1 , since $F_x = G^*$ there. If $(X, Y) \in S_2$, then it follows from (1) that we need only prove

(8)
$$G_x(X,Y)/\{h_*(X)h_*(Y)\} \to 0 \quad ((X,Y) \to (X_0,Y_0)).$$

We use the non-thinness of $\Omega_w \setminus \overline{\Omega}_x$ at X_0 and [24, Théorème 11] to observe that

$$G_x(X,Q)/G_w(X,Q) \to 0 \quad (X \to X_0; X \in \Omega_x)$$

and so, since $G_w(X, Q)/h_*(X)$ has a positive finite limit at X_0 (see Theorem B when $X_0 \in \partial \Omega$),

(9)
$$G_x(X,Q)/h_*(X) \to 0 \quad (X \to X_0; X \in \Omega_x).$$

Now, since $Y_0 \in W_x \cap \overline{\Omega}$ and $Q \in \Omega_x$, we can choose z < y < x such that Y_0 is in $W_z \cap \overline{\Omega}$ and $Q \in \Omega_y$. Thus we may apply Theorem A with $\Omega = \Omega_y$ and $\Omega_0 = \Omega_z$ to obtain the existence of a positive constant c such that

 $G_x(X,Y)/G_x(X,Q) \le ch_*(Y)/h_*(Q)$

and so

(10)
$$G_x(X,Y)/\{h_*(X)h_*(Y)\} \le c' G_x(X,Q)/h_*(X)$$

for $X \in \Omega_x \setminus \Omega_y$ and $Y \in \Omega_z$. Combining (9) and (10) yields (8) as required.

8. Proof of Theorem 1

8.1. We recall (see [20, Theorem (4.2)]) that, if Ω' is a Lipschitz domain, then every Martin boundary point of Ω' is minimal, and the set Δ_1 of Martin boundary points of Ω' can be put into one-to-one correspondence with $\partial \Omega'$ in such a way that the Martin topology on $\Omega' \cup \Delta_1$ is equivalent to the Euclidean topology on $\overline{\Omega'}$.

Lemma 6. Let h be a non-negative harmonic function in a Lipschitz domain Ω' , and let μ be the measure on $\partial \Omega'$ associated with it in the Martin representation. If A is a relatively open subset of $\partial \Omega'$, then h vanishes continuously on A if and only if $\mu(A)=0$.

The "only if" part follows from [30, Lemma 10]. The "if" part is trivial if A is empty. Otherwise, let $Z \in A$ and choose $W \in N(Z)$ such that $\Omega'' = W \cap \Omega'$ is a domain and $\partial \Omega'' \cap \partial \Omega' \subset A$. Let $Q \in \Omega' \setminus \overline{\Omega}''$ and $P \in \Omega''$. For a small positive value of ε , we can now apply Theorem A with Ω' replaced by $\Omega' \setminus \overline{B}(Q, \varepsilon)$ to deduce that

(11)
$$K(Y, X) \leq cK(Y, P) G'(Q, X)/G'(Q, P)$$

for $Y \in \partial \Omega' \setminus A$ and $X \in \Omega''$, where G' is the Green kernel for Ω' and K(.,.) denotes the Martin kernel on $\partial \Omega' \times \Omega'$ (by the Poincaré—Zaremba cone criterion [18, Theorem 8.27], G(Q,.) vanishes on $\partial \Omega'$, and it is shown in [20] that K(Y,.) vanishes on $\partial \Omega' \{Y\}$). Integrating both sides of (11) with respect to $d\mu(Y)$, it follows that

$$h(X) \le c' h(P) G'(Q, X) \quad (X \in \Omega'')$$

and so h vanishes at Z as required.

Lemma 7. If λ and μ are measures on τ_x such that, for all $Y \in \Omega_x$, we have

$$\int_{\tau_x} \{G^*(X, Y) - F_x(X, Y)\} d\lambda(X) = \int_{\tau_x} \{G^*(X, Y) - F_x(X, Y)\} d\mu(X),$$

then $\lambda = \mu$.

Let

$$h_{\lambda}(Y) = h_{*}(Y) \int_{\tau_{x}} \left\{ G^{*}(X, Y) - F_{x}(X, Y) \right\} d\lambda(X),$$

and define λ' on τ_x by

$$d\lambda'(X) = \left\{\lim_{Z \to X} G_x(Z, Q) / h_*(Z)\right\} d\lambda(X),$$

where Q is a fixed point of Ω_x (see Theorem B). From Lemmas 2 and 5, h_{λ} is harmonic in Ω_x and, from (1),

(12)
$$h_{\lambda}(Y) = \int_{\tau_x} \lim_{Z \to X} G_x(Z, Y) / h_*(Z) \, d\lambda(X)$$
$$= \int_{\tau_x} \lim_{Z \to X} G_x(Z, Y) / G_x(Z, Q) \, d\lambda'(X).$$

Defining h_{μ} and μ' in a similar manner, we obtain an equation analogous to (12). Since $h_{\lambda} = h_{\mu}$ by hypothesis, it follows from the uniqueness of the Martin representation for h_{λ} in Ω_x that $\lambda' = \mu'$, whence $\lambda = \mu$.

8.2. The proof of Theorem 1 will now be given. Let $s \in \mathscr{LD}$ and w > x > 0. From [15, Theorem 2(i)], the restriction of s to $\partial \Omega_w$ is resolutive and $H_s^{\Omega_w} - s$ is non-negative and superharmonic in Ω_w . It follows from the Riesz—Martin decomposition and Theorem B that there is a measure λ_s on τ_w such that

(13)

$$H_{s}^{\Omega_{w}}(Y) - s(Y) = h(Y) + \int_{\Omega_{w}} G_{w}(X, Y) \, d\mu_{s}(X) + \int_{\tau_{w}} \lim_{Z \to X} G_{w}(Z, Y) / h_{*}(Z) \, d\lambda_{s}(X),$$

where *h* is non-negative and harmonic in Ω_w and continuously vanishes on τ_w (see Lemma 6). For any y < w, let $Q \in \Omega_w \setminus \overline{\Omega}_y$ and apply Theorem A to show that there is a positive constant *c* such that

$$+\infty > \int_{\Omega_{\mathcal{Y}}\cup\sigma_{\mathcal{Y}}} G_{w}(Q, X) \, d\mu_{s}(X) \geq c \int_{\Omega_{\mathcal{Y}}\cup\sigma_{\mathcal{Y}}} h_{*}(X) \, d\mu_{s}(X).$$

It follows that we can define a measure v_s on the Borel subsets A of $\Omega_w \cup \tau_w$ by

(14)
$$v_s(A) = \int_{A \cap \Omega_w} h_*(Z) \, d\mu_s(Z) + \lambda_s(A \cap \tau_w).$$

This and (1) enable us to rewrite (13) as

(15)
$$H_{s^{\omega}}^{\Omega_{w}}(Y) - s(Y) = h(Y) + \int_{\Omega_{w} \cup \tau_{w}} h_{*}(Y) \{G^{*}(X, Y) - F_{w}(X, Y)\} dv_{s}(X).$$

Now observe that

$$\int_{\sigma_x} H^{\Omega_w}_s(Z) \, d\mu_{x,Y}(Z) = H^{\Omega_w}_s(Y) - \int_{\tau_x} s(Z) \, d\mu_{x,Y}(Z).$$

Also, since $h_*(\cdot)F_w(X, \cdot)$ is harmonic in Ω_w and continuously vanishes on τ_w (see Lemma 5),

$$\int_{\sigma_{x}} h_{*}(Z) F_{w}(X, Z) \, d\mu_{x, Y}(Z) = h_{*}(Y) F_{w}(X, Y).$$

It now follows that, if we integrate (15) with respect to harmonic measure on σ_x (relative to Ω_x) and use Lemma 5, we obtain

(16)
$$H_{s^{\Omega_{w}}}^{\Omega_{w}}(Y) - H_{s^{\alpha_{x}}}^{\Omega_{x}}(Y) = h(Y) + \int_{(W_{w} \setminus W_{x}) \cap \overline{\Omega}} h_{*}(Y) \{ G^{*}(X, Y) - F_{w}(X, Y) \} dv_{s}(X) + \int_{W_{x} \cap \overline{\Omega}} h_{*}(Y) \{ F_{x}(X, Y) - F_{w}(X, Y) \} dv_{s}(X).$$

Subtracting (16) from (15) yields

(17)
$$H_{s^{\infty}}^{\Omega_{x}}(Y) - s(Y) = \int_{W_{x} \cap \overline{\Omega}} h_{*}(Y) \{ G^{*}(X, Y) - F_{x}(X, Y) \} dv_{s}(X),$$

and so (2) holds for x < w and λ_s is uniquely (by Lemma 7) defined on τ_w . Since w may be arbitrarily large, λ_s can be defined on all of $\partial \Omega$ (see Lemma 4 (b)).

9. Proof of Theorem 2

9.1. We require the following lemma.

Lemma 8. The function

$$\Phi_x(X) = \int_E F_x(X, Y) \, dv(Y)$$

has the constant value $\varphi(x)$ on $\overline{\Omega}_x$.

From Lemma 5, Φ_x is continuous on $\overline{\Omega}_x$ and, if $X \in \sigma_x$, then

$$\Phi_x(X) = \int_E G^*(X, Y) \, d\nu(Y) = \Phi(X) = \varphi(X)$$

(see Lemma 4(d)). Further, by Fubini's theorem and Lemma 5, $h_* \Phi_x$ satisfies the mean-value equality for balls whose closures are contained in Ω_x . Thus

$$h^*(\cdot)\left\{\Phi_x(\cdot)-\varphi(x)\right\}$$

is harmonic in Ω_x , continuously vanishing on $\partial \Omega_x$, and so it is identically zero in $\overline{\Omega}_x$. Hence $\Phi_x(\cdot) = \varphi(x)$ in $\overline{\Omega}_x \cap \Omega$ and so also in $\overline{\Omega}_x$ by the continuity of Φ_x . 9.2. To prove Theorem 2, we suppose x>1, the case x<1 being similar and the case x=1 being trivial. Let v_s be defined on $W_x \cap \overline{\Omega}$ by (14) (with w=x). Subtracting (17) when x=1 from (17) as it stands yields

$$\begin{aligned} H^{\Omega_{x}}_{s}(Y) - H^{\Omega_{1}}_{s}(Y) &= h_{*}(Y) \int_{(W_{x} \setminus W_{1}) \cap \bar{\Omega}} \left\{ G^{*}(X, Y) - F_{x}(X, Y) \right\} dv_{s}(X) \\ &+ h_{*}(Y) \int_{W_{1} \cap \bar{\Omega}} \left\{ F_{1}(X, Y) - F_{x}(X, Y) \right\} dv_{s}(X), \end{aligned}$$

whence, by the joint continuity of G^* , F_x and F_1 (see Lemmas 2 and 5),

$$\begin{aligned} \mathscr{H}_{s,x}(Y) - \mathscr{I}_{s,1}(Y) &= \int_{(W_x \setminus W_1) \cap \overline{\Omega}} \left\{ G^*(X,Y) - F_x(X,Y) \right\} dv_s(X) \\ &+ \int_{W_1 \cap \overline{\Omega}} \left\{ F_1(X,Y) - F_x(X,Y) \right\} dv_s(X) \end{aligned}$$

for $Y \in E$. If we now integrate this equation with respect to v and apply Fubini's theorem (recall that the integrands are jointly continuous and non-negative on the range of double integration), we obtain

.

(18)

$$\begin{aligned}
\mathscr{M}(s, x) - \mathscr{N}(s, 1) \\
= \int_{(W_x \setminus W_1) \cap \overline{\Omega}} \{ \Phi(X) - \Phi_x(X) \} dv_x(X) + \int_{W_1 \cap \overline{\Omega}} \{ \Phi_1(X) - \Phi_x(X) \} dv_s(X) \\
= \int_{(W_x \setminus W_1) \cap \overline{\Omega}} \{ \Phi(X) - \varphi(x) \} dv_s(X) + \{ \varphi(1) - \varphi(x) \} v_s(W_1 \cap \overline{\Omega}),
\end{aligned}$$

the second equality being a consequence of Lemma 8.

We now define

$$\alpha_s(t) = v_s(W_t \cap \overline{\Omega}) \quad (t \in [1, x]),$$

which allows (18) to be rewritten as

$$\mathcal{M}(s, x) - \mathcal{N}(s, 1) = \int_{1}^{x} \varphi(t) \, d\alpha_{s}(t) - \varphi(x) \, \alpha_{s}(x) + \varphi(1) \, \alpha_{s}(1),$$

since φ is continuous and decreasing, and α_s is of bounded variation on [1, x]. Integrating by parts, this yields

$$\mathcal{M}(s, x) - \mathcal{N}(s, 1) = -\int_{1}^{x} \alpha_{s}(t) \, d\varphi(t)$$
$$= -\int_{1}^{x} \lambda_{s}(\tau_{t}) \, d\varphi(t) - \int_{1}^{x} \int_{\Omega_{t}} h_{*}(Z) \, d\mu_{s}(Z) \, d\varphi(t)$$

and the result follows from the definition of $\mathcal{M}^*(s, x)$.

10. Proofs of Theorems 3, 4 and 6

10.1. To prove Theorem 3, we observe from Theorem 2 that

(19)
$$\mathcal{M}^*(s,x) = \mathcal{N}(s,1) - \int_1^x \int_{\Omega_t} h_*(Z) \, d\mu_s(Z) \, d\varphi(t).$$

Since φ is decreasing, the double integral is decreasing, and so $\mathcal{M}^*(s, x)$ is increasing. Next note that the integrand

$$\int_{\Omega_t} h_*(Z) \, d\mu_s(Z)$$

is right continuous with respect to $\varphi(t)$, so that the double integral in (19) is right differentiable with respect to $\varphi(x)$, and

(20)
$$\frac{d\mathscr{M}^*(s,x)}{d\varphi(x)} = -\int_{\Omega_x} h_*(Z) d\mu_s(Z)$$

holds on $(0, +\infty)$ if the derivative is understood as a right derivative. Since the right hand side of (20) increases as $\varphi(x)$ increases, it follows that $\mathcal{M}^*(s, x)$ is convex as a function of $\varphi(x)$ on $(0, +\infty)$, proving (i).

Further, if s is harmonic in $\Omega_w \setminus \overline{\Omega}_y$, then $\mu_s(\Omega_w \setminus \overline{\Omega}_y)$ is zero, and it follows from (19) that $\mathcal{M}^*(s, x)$ is a linear function of $\varphi(x)$ on (y, w], and so on [y, w]by the continuity of $\mathcal{M}^*(s, x)$ on $(0, +\infty)$.

Finally, $\mathcal{M}^*(s, x)$ is constant if and only if $\mu_s(\Omega_x)$ is zero for all x, which is equivalent to s being harmonic in Ω .

10.2. To prove Theorem 4, we begin by obtaining some inequalities. Let y>1 and $Q \in \Omega_y \setminus \overline{\Omega}_1$. Since $s \in \mathscr{LD}$, it follows that s has a harmonic majorant in Ω_y (for example, $H_s^{\Omega_y}$) and so, using Theorem A to compare $G(Q, \cdot)$ with $G_y(Q, \cdot)$ in Ω_1 , we have

(21)
$$\int_{\Omega_1} G(Q, X) d\mu_s(X) \leq c' \int_{\Omega_1} G_y(Q, X) d\mu_s(X) < +\infty.$$

Let $P \in \Omega_1$. Using Theorem A again, there is a positive constant c such that

$$c^{-1}h_*(Y)/h_*(P) \leq G(X,Y)/G(X,P) \leq ch_*(Y)/h_*(P)$$

for $X \in \Omega \setminus \Omega_1$ and $Y \in \Omega_{1/2}$, and so, from Lemma 2,

$$c''G(X,P) \leq h_*(X)G^*(X,Y) \leq c'''G(X,P),$$

for $X \in \Omega \setminus \Omega_1$ and $Y \in \overline{\Omega}_{1/2}$, whence

(22)
$$c''v(E)G(X,P) \leq h_*(X)\Phi(X) \leq c'''v(E)G(X,P)$$

for $X \in \Omega \setminus \Omega_1$.

We now show that (i) and (iii) are equivalent. The function s has a harmonic majorant in Ω if and only if $G\mu_s$ is a potential in Ω . From (21) this is equivalent to

$$\int_{\Omega \setminus \Omega_1} G(X, P) \, d\mu_s(X) < +\infty,$$

which, in turn, is equivalent to (iii) because of (22).

It remains to show that (ii) and (iii) are equivalent. Let x>1. From (18) and the integration by parts employed at the end of the proof of Theorem 2, we can write

(23)

$$\mathcal{M}^{*}(s, x) = \mathcal{N}(s, 1) + \{\varphi(1) - \varphi(x)\} \int_{\Omega_{1}} h_{*}(X) d\mu_{s}(X) + \int_{\Omega_{x} \setminus \Omega_{1}} \{\Phi(X) - \varphi(x)\} h_{*}(X) d\mu_{s}(X)$$

$$\leq \mathcal{N}(s, 1) + \varphi(1) \int_{\Omega_{1}} h_{*}(X) d\mu_{s}(X) + \int_{\Omega_{x} \setminus \Omega_{1}} \Phi(X) h_{*}(X) d\mu_{s}(X).$$

Thus (iii) implies (ii). On the other hand, the function

$$\psi(x) = \varphi^{-1}(2\varphi(x))$$

is defined for all sufficiently large x, and

$$\int_{\Omega_x \setminus \Omega_1} \left\{ \Phi(X) - \varphi(x) \right\} h_*(X) \, d\mu_s(X) \ge \frac{1}{2} \int_{\Omega_{\psi(x)} \setminus \Omega_1} \Phi(X) \, h_*(X) \, d\mu_s(X),$$

since $\Phi(X) > \phi(\psi(x))$ on $\Omega_{\psi(x)}$. Therefore, from (23),

$$\mathscr{M}^*(s, x) \cong \mathscr{N}(s, 1) + \frac{1}{2} \int_{\Omega_{\psi(x)} \setminus \Omega_1} \Phi(X) h_*(X) d\mu_s(X),$$

and so (ii) implies (iii).

10.3. It is now straightforward to deduce Theorem 6. To show (i), we recall that

$$\mathscr{M}(s, x) - \mathscr{M}^*(s, x) = -\int_1^x \lambda_s(\tau_t) \, d\varphi(t).$$

Since φ is decreasing, the right hand side is increasing as a function of x. Further, its right derivative with respect to $\varphi(x)$ increases as $\varphi(x)$ increases, so that it is convex with respect to $\varphi(x)$. The result now follows from Theorem 3 (i).

In the case of (ii), $I_{s,x}$ is a harmonic majorant of s in Ω_x , and as in Theorem 1, there exists a measure λ'_s on $\partial\Omega$ such that the least harmonic majorant of s in Ω_x is given by

$$I_{s,x}(Y) - h_*(Y) \int_{\tau_x} \{ G^*(X,Y) - F_x(X,Y) \} d\lambda'_s(X).$$

The argument of Theorem 2 now yields that

$$\mathcal{N}(s, x) = \mathcal{N}(s, 1) - \int_{1}^{x} \left\{ \lambda'_{s}(\tau_{t}) + \int_{\Omega_{t}} h_{*}(Z) \, d\mu_{s}(Z) \right\} d\varphi(t),$$

and the result follows as in Theorem 3(i).

11. Proof of Theorem 10

11.1. The following lemma is required.

Lemma 9. Let 0 < a < z and S be a function which is non-negative and subharmonic in $\Omega_z \setminus \overline{\Omega}_a$, and vanishes continuously on $\tau_z \setminus \tau_a$. Then the mean $\mathcal{N}(S, x)$ is real-valued and convex as a function of $\varphi(x)$ for $x \in (a, z)$.

To see this, let a < b < c < d < y < z and define

$$S_0(X) = \begin{cases} \mu_{y, X}(\tau_a) & \text{if } X \in \Omega_y \\ 1 & \text{if } X \in \overline{\tau}_a \\ 0 & \text{elsewhere in } \overline{\Omega}. \end{cases}$$

Clearly $S_0 \in \mathscr{LD}$, and from Theorem A there is a positive constant c' such that

$$S(X) \leq H_{S^{\nu}}^{\Omega_{\nu} \setminus \overline{\Omega}_{b}}(X) \leq c' S_{0}(X) \quad (X \in \Omega_{d} \setminus \overline{\Omega}_{c}),$$

the first inequality being a consequence of [15, Theorem 2(i)] and the fact that $\overline{\Omega}_{y} \setminus W_{b}$ is the disjoint union of the closures of finitely many Lipschitz domains (see Definition 1). Hence the function

$$S'(X) = \begin{cases} c'S_0(X) & \text{if } X \in \overline{\Omega}_c \\ \max \left\{ c'S_0(X), S(X) \right\} & \text{if } X \in (W_z \cap \overline{\Omega}) \setminus \overline{\Omega}_c \end{cases}$$

is subharmonic in Ω_z , equal to S in $\Omega_z \setminus \overline{\Omega}_y$, and satisfies

$$\limsup_{X \to Z} S'(X) = S'(Z) \le c' \quad (Z \in \tau_z).$$

Now suppose that z > 1. If $x \in (y, z)$, then

(24)
$$\mathcal{M}(S', x) = \mathcal{N}(S, x) + \mathcal{M}(S_0, x).$$

Since $S_0 \equiv 0$ in $(W_z \cap \overline{\Omega}) \setminus \overline{\Omega}_y$, it follows from Theorem 3 (ii) that $\mathcal{M}^*(S_0, x)$ is a linear function of $\varphi(x)$ on (y, z). Further, it is easily seen from Lemma 6 and the proof of Theorem 1 that

$$\lambda_{S_0}(\tau_z \smallsetminus \tau_y) = 0,$$

and so $\mathcal{M}(S_0, x)$ is also a linear function of $\varphi(x)$ on (y, z) (see Definition 2). In addition, Theorem 6(i) shows that $\mathcal{M}(S', x)$ is a convex function of $\varphi(x)$ on (0, z) (the fact that S' is not defined on all of $\overline{\Omega}$ is immaterial). Hence, from (24), $\mathcal{N}(S, x)$ is a convex function of $\varphi(x)$ on (y, z), and so on (a, z) since $y \in (a, z)$ is arbitrary.

Finally, we point out that, if $z \leq 1$, then we could define

$$H_{s,x}(X) = H_{s,x}^{\Omega_x}(X) - \int_{\tau_{z/2}} s(Z) \, d\mu_{z/2,X}(Z)$$

and corresponding means $\mathcal{M}_z(s, x)$ and $\mathcal{M}_z^*(s, x)$ to avoid the problem of S' and $\lambda_{S'}$ not being defined on τ_1 .

11.2. We now prove Theorem 10. Routine differentiation yields that

 $\Delta \{h_* \exp\left(s/h_*\right)\} \ge 0$

in Ω if $s \in C^2(\Omega)$. If $X \in \Omega$, take a decreasing sequence (s_m) of C^2 subharmonic functions, and it follows easily that $h_* \exp(s/h_*)$ is u.s.c. in Ω and satisfies the mean-value inequality for balls whose closures are contained in Ω .

Let z > y > 0. Using the fact that $s \le 0$ on $\partial \Omega$ and Theorem A, there is a positive constant c such that

$$s(X) \leq I_{s^+,z}(X) \leq ch_*(X) \quad (X \in \Omega_y),$$

whence $h_* \exp(s/h_*)$ vanishes continuously on τ_y , and so (y being arbitrary) on all of $\partial \Omega$. It follows from Theorem 6 (i) that

$$\mathcal{N}(h_* \exp(s/h_*), x)$$

is increasing as a function of x, and so the same is true of $\mathcal{N}_{E}(s, x)$.

Let 0 < a < y < w, and note that (see Lemma 3) the function

$$S = h_* \exp \left\{ k\Phi + s/h_* \right\}_{s=1}^{s}$$

where

(25)
$$k = \left\{ \mathcal{N}_E(s, w) - \mathcal{N}_E(s, y) \right\} / \left\{ \varphi(y) - \varphi(w) \right\},$$

is subharmonic in $\Omega \setminus \overline{\Omega}_a$ and vanishes continuously on $\partial \Omega \setminus \tau_a$. From Lemma 9, $\mathcal{N}(S, x)$ is real-valued and convex as a function of $\varphi(x)$ on $(a, +\infty)$. Using Lemma 4 (d), if $x \in (y, w)$, then

$$\exp\{k\varphi(x)\}\exp\{\mathscr{N}_{E}(s,x)\} \leq \left\{\frac{\varphi(x)-\varphi(w)}{\varphi(y)-\varphi(w)}\right\}\exp\{k\varphi(y)\}\exp\{\mathscr{N}_{E}(s,y)\}$$
$$+\left\{\frac{\varphi(y)-\varphi(x)}{\varphi(y)-\varphi(w)}\right\}\exp\{k\varphi(w)\}\exp\{\mathscr{N}_{E}(s,w)\}$$

which, upon rearranging, using (25) and taking logs, yields

$$\mathcal{N}_{E}(s, x) \leq \left\{ \frac{\varphi(x) - \varphi(w)}{\varphi(y) - \varphi(w)} \right\} \mathcal{N}_{E}(s, y) + \left\{ \frac{\varphi(y) - \varphi(x)}{\varphi(y) - \varphi(w)} \right\} \mathcal{N}_{E}(s, w)$$

as required.

12. Applications to the whole space

In this and subsequent sections, when (n-1)-dimensional surface area measure on the boundary of a domain exists, it will be denoted by σ . Thus, in particular, the spherical mean of a suitably defined function f is given by

$$\mathscr{L}(f; X, r) = c_n^{-1} r^{1-n} \int_{\partial B(X, r)} f(Z) \, d\sigma(Z),$$

where c_n denotes the surface area of $\partial B(O, 1)$.

Let $\Omega = \mathbb{R}^n$ $(n \ge 3)$ and $h_* \equiv 1$. First consider $E = \{O\}$, and ν to be the Dirac measure at the origin. Clearly $\Phi(X) = |X|^{2-n}$ so that $\varkappa = +\infty$ and, if we take $\varphi(X) = x^{2-n}$, then $\Omega_X = B(O, X)$ for all X, and

$$\mathscr{M}^*(s, x) = \mathscr{M}(s, x) = \mathscr{N}(s, x) = H^{B(O, x)}_s(O) = \mathscr{L}(s; O, x).$$

The following well-known results are now seen to be special cases of the results in Sections 4 and 5.

Theorem 11. Let s be subharmonic in \mathbb{R}^n $(n \ge 3)$ and u be positive and superharmonic. Then

(i) $\mathscr{L}(s; O, r)$ is convex as a function of r^{2-n} and increasing as a function of r;

(ii) if $R_2 > R_1 > 0$ and s is harmonic in $B(O, R_2) \setminus \overline{B}(O, R_1)$, then $\mathcal{L}(s: O, r)$ is a linear function of r^{2-n} on $[R_1, R_2]$;

(iii) s has a harmonic majorant in \mathbb{R}^n if and only if $\mathcal{L}(s: 0, r)$ is bounded above for r>0, which in turn is equivalent to

$$\int_{\mathbf{R}^n} (1+|X|)^{2-n} \, d\mu_s(X) < +\infty;$$

(iv) the expressions

$$\sup \{s(X): |X| = r\}$$

and

$$\log \mathscr{L}(\exp s: O, r)$$

are convex as functions of r^{2-n} and increasing as functions of r>0;

(v) if $s \ge 0$ and $p \ge 1$, then the same is true of

$${\mathscr{L}(s^p: O, r)}^{1/p};$$

(vi) if $p \in (-\infty, 0) \cup (0, 1)$, then

 ${\mathscr{L}(u^p: O, r)}^{1/p}$

is concave as a function of r^{2-n} and decreasing as a function of r>0.

It is natural to ask what results could be obtained for different choices of E and v. The simplest cases to consider would be when E is an *m*-dimensional ball, where $0 < m \le n-1$, and v is symmetrically distributed on E. In order to simplify the discussion, we shall restrict ourselves to the case $\Omega = \mathbb{R}^3$, and again let $h_x \equiv 1$.

Example 3. (i) Fix c > 0 and let

$$E = \{X \in \mathbb{R}^3 : x_1 = x_2 = 0 \text{ and } |x_3| \le c\}$$

It will be convenient to work in prolate spheroidal polar co-ordinates, so that

$$x_1 = c \sinh \eta \sin \theta \cos \psi,$$

$$x_2 = c \sinh \eta \sin \theta \sin \psi,$$

$$x_3 = c \cosh \eta \cos \theta,$$

where

$$0 \leq \eta < +\infty, \quad 0 \leq \theta \leq \pi, \quad 0 \leq \psi < 2\pi.$$

Choosing $\varphi(x) = \log \coth\left(\frac{1}{2}x\right)$, it is routine to deduce that Ω_x is the region bounded by the prolate spheroid

$$x_{3}^{2}/\cosh^{2} x + (x_{1}^{2} + x_{2}^{2})/\sinh^{2} x = c^{2}$$

and that

$$\mathscr{M}(s, x) = \mathscr{N}(s, x) = (4\pi)^{-1} c \int_0^{\pi} \int_0^{2\pi} s(x, \theta, \psi) \sin \theta \, d\psi \, d\theta.$$

A theorem analogous to Theorem 11 can now be written down for the prolate spheroidal mean $\mathcal{M}(s, x)$; convexity is in terms of log coth $(\frac{1}{2}x)$.

(ii) If similar calculations are performed for

$$E = \{X \in \mathbf{R}^3: x_1^2 + x_2^2 \le c^2 \text{ and } x_3 = 0\},\$$

analogous results for an oblate spheroidal mean are obtained. Details are left to the reader.

13. Applications to the half-space

Let $\Omega = \mathbb{R}^{n-1} \times (0, +\infty)$ $(n \ge 2)$, let $E = \{O\}$ and v be the mass $c_n/(2n)$ at O, and $h_*(X) = x_n$ in Ω . From [25, Lemma 1],

$$2\gamma_n^{-1}c_n^{-1}x_n y_n | (X', -x_n) - Y|^{-n} \leq G(X, Y) \leq 2\gamma_n^{-1}c_n^{-1}x_n y_n | X - Y|^{-n},$$

where γ_n is as defined in Section 3. Hence

$$\Phi(X) = c_n(2n)^{-1} G^*(X, O) = \gamma_n^{-1} n^{-1} |X|^{-n}.$$

Thus $\varkappa = +\infty$ and, defining $\varphi(x) = \gamma_n^{-1} n^{-1} x^{-n}$ for $x \in (0, +\infty)$, it follows that $\Omega_x = B(0, x) \cap \Omega$. It now follows from [14, Section 8] that

$$\mathcal{N}(s, x) = x^{-n-1} \int_{\sigma_x} y_n s(Y) \, d\sigma(Y),$$

and

$$\mathscr{M}(s, x) = \mathscr{N}(s, x) + \int_{1}^{x} t^{-n-1} \int_{\tau_{t}} s(Y) \, d\sigma(Y) \, dt.$$

In this context, Theorems 2-6 are improvements of the main results of [4].

14. Applications to the infinite cylinder

Instead of deducing known results concerning the infinite strip, [5], and infinite cone, [13], we follow the pattern of [14] and derive previously unpublished results for the infinite cylinder.

Let $\Omega = \{(X', x_n): |X'| < 1\}$, $(n \ge 2)$. We shall employ the Bessel function $J_{(n-3)/2}$ defined in Watson [28, pp. 40—42], the least positive zero of which will be

denoted by a_n . We write

and

and

$$\psi(t) = t^{(3-n)/2} J_{(n-3)/2}(a_n t) \quad (t > 0)$$
$$b_n = a_n J_{(n-1)/2}(a_n) > 0,$$

(see [28, p. 45 (4) and p. 479 § 15.22]). Recalling (see [14, Lemma 3]) that the functions $\psi(|X'|) \exp(\pm a_n x_n)$ are positive and harmonic in Ω and vanish on $\partial \Omega$, we can define

$$E = (X', x_n): |X'| < 1, x_n = 0\},$$

$$dv(X) = 2 \{ \psi(|X'|) \}^2 dX' d\delta_0(x_n) \quad (X \in E),$$

$$h_*(X) = \psi(|X'|) \cosh(a_n x_n),$$

where δ_0 denotes the Dirac measure at the origin of **R**.

Next we determine Φ , and hence Ω_x . Clearly the function

$$v(X) = a_n^{-1} \exp(-a_n |x_n|) \psi(|X'|) \quad (X \in \Omega)$$

is positive and superharmonic in Ω , harmonic in $\Omega \setminus E$, bounded above on $\overline{\Omega}$, and continuously vanishing on $\partial\Omega$. From a result of Bouligand [18, Corollary 9.20], the greatest harmonic minorant of v in Ω is zero, and so v is the potential whose measure is given by $\mu = -\gamma_n \Delta v$. If we now let Ψ be a C^{∞} function with compact support in Ω , it follows from Green's theorem (as in [14, Section 9]) that

$$(\Delta v)(\psi) = -2 \int_{\{|X'|<1\}} \Psi(X',0) \, |X'|^{(3-n)/2} J_{(n-3)/2}(a_n|X'|) \, dX'$$

whence

$$d\mu(X) = 2\gamma_n |X'|^{(3-n)/2} J_{(n-3)/2}(a_n |X'|) \, dX' \, d\delta_0(x_n),$$

$$\gamma_n^{-1}v(X) = \int_E G(X, Y) / h_*(Y) \, dv(Y) = h_*(X) \, \Phi(X).$$

Hence, dividing through by $h_*(X)$,

$$\Phi(X) = \gamma_n^{-1} a_n^{-1} \exp(-a_n |x_n|) \operatorname{sech} (a_n x_n),$$

= $\gamma_n^{-1} a_n^{-1} \{1 - \tanh(a_n |x_n|)\},$

and so $\varkappa = \gamma_n^{-1} a_n^{-1}$. If we define

$$\varphi(x) = \gamma_n^{-1} a_n^{-1} \{1 - \tanh(a_n x)\},\$$

it follows that

$$\Omega_x = \{X \in \Omega \colon |x_n| < x\},\$$

and so, from [14, Section 9],

$$\mathcal{N}(s, x) = \operatorname{sech}(a_n x) \int_{\sigma_x} \psi(|X'|) s(X) \, d\sigma(X),$$

and

$$\mathcal{M}(s, x) = \mathcal{N}(s, x) + b_n \int_1^x \operatorname{sech}^2(a_n t) \int_{\tau_t} s(X) \cosh(a_n x_n) d\sigma(X) dt.$$

The results of Sections 4 and 5 may now be applied to subharmonic functions in the infinite cylinder, and convexity as a function of $\varphi(x)$ can clearly be equivalently stated as convexity as a function of $tanh(a_n x)$.

References

- AHLFORS, L. V.: On Phragmén—Lindelöf's principle. Trans. Amer. Math. Soc. 41, 1937, 1—8.
- [2] AHLFORS, L. V.: Remarks on Carleman's formula for functions in a half-plane. SIAM J. Numer. Anal. 3, 1966, 183—187.
- [3] ARMITAGE, D. H.: Half-spherical means and harmonic majorization in half-spaces. J. London Math. Soc. (2) 19, 1979, 457-464.
- [4] ARMITAGE, D. H.: A Nevanlinna theorem for superharmonic functions in half-spaces, with applications. - J. London Math. Soc. (2) 23, 1981, 137—157.
- [5] ARMITAGE, D. H., and T. B. FUGARD: Subharmonic functions in strips. J. Math. Anal. Appl. 89, 1982, 1–27.
- [6] ARMITAGE, D. H., and S. J. GARDINER: Some Phragmén—Lindelöf and harmonic majorization theorems for subharmonic functions. - J. Math. Anal. Appl. 102, 1984, 156–174.
- [7] BRAWN, F. T.: The Green and Poisson kernels for the strip $\mathbb{R}^n \times]0, 1[. J.$ London Math. Soc. (2) 2, 1970, 439-454.
- [8] BRAWN, F. T.: Mean value and Phragmén—Lindelöf theorems for subharmonic functions in strips. - J. London Math. Soc. (2) 3, 1971, 689—698.
- [9] BRAWN, F. T.: Positive harmonic majorization of subharmonic functions in strips. Proc. London Math. Soc. (3) 27, 1973, 261—289.
- [10] DAHLBERG, B. E. J.: Estimates of harmonic measure. Arch. Rational Mech. Anal. 65, 1977, 275-288.
- [11] DINGHAS, A.: Über einige Konvexitätsätze für die Mittelwerte von subharmonischen Funktionen. - J. Math. Pures Appl. 44, 1965, 223–247.
- [12] FUGARD, T. B.: Growth and convexity properties of harmonic and subharmonic functions. -M. Sc. Thesis, The Queen's University of Belfast, 1979.
- [13] FUGARD, T. B.: Harmonic and subharmonic functions in cones and half-spaces. Ph. D. Thesis, The Queen's University of Belfast, 1981.
- [14] GARDINER, S. J.: Harmonic majorization of subharmonic functions in unbounded domains. -Ann. Acad. Sci. Fenn. Ser. A I Math. 8, 1983, 43–54.
- [15] GARDINER, S. J.: Local and global majorization of subharmonic functions. J. Analyse Math. 42, 1983, 175—184.
- [16] HAYMAN, W. K., and P. B. KENNEDY: Subharmonic functions, Vol. I. London Mathematical Society Monographs, No. 9, Academic Press, London-New York-San Francisco, 1976.
- [17] HEINS, M.: On some theorems associated with the Phragmén—Lindelöf principle Ann. Acad. Sci. Fenn. Ser. A I Math. 46, 1948, 1—10.
- [18] HELMS, L. L.: Introduction to potential theory. Wiley-Interscience, a division of John Wiley & Sons, New York—London—Sydney—Toronto, 1969.
- [19] HUBER, A.: On functions subharmonic in a half-space. Trans. Amer. Math. Soc. 82, 1956, 147–159.

- [20] HUNT, R. A., and R. L. WHEEDEN: Positive harmonic functions on Lipschitz domains. Trans. Amer. Math. Soc. 147, 1970, 507-527.
- [21] JERISON, D. S., and C. E. KENIG: Boundary behavior of harmonic functions in non-tangentially accessible domains. - Adv. in Math. 46, 1982, 80—147.
- [22] KURAN, Ü.: Study of superharmonic functions in $\mathbb{R}^n \times (0, +\infty)$ by a passage to \mathbb{R}^{n+3} . Proc. London Math. Soc. (3) 20, 1970, 276—302.
- [23] KURAN, Ü.: On half-spherical means of subharmonic functions in half-spaces. J. London Math. Soc. (2) 2, 1970, 305–317.
- [24] NAïM, L.: Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel. Ann. Inst. Fourier (Grenoble) 7, 1957, 183–281.
- [25] NUALTARANEE, S.: On least harmonic majorants in half-spaces. Proc. London Math. Soc. (3) 27, 1973, 243—260.
- [26] RIESZ, F.: Sur les fonctions subharmoniques et leur rapport à la théorie du potentiel. Acta Math. 48, 1926, 329-343.
- [27] TSUJI, M.: On a positive harmonic function in a half-plane. Japan J. Math. 15, 1939, 277-285.
- [28] WATSON, G. N.: A treatise on the theory of Bessel functions (2nd edition). Cambridge University Press, London, 1944.
- [29] WU, J.-M. G.: Convexity of integral means of subharmonic functions. Proc. Amer. Math. Soc. 60, 1976, 225-230.
- [30] WU, J.-M. G.: Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains. Ann. Inst. Fourier (Grenoble) 28, 1978, 147-167.

Mrs. Marjatta Lappalainen

14 January 1986

The Queen's University of Belfast Department of Pure Mathematics Belfast BT7 1NN Northern Ireland Present adress University College Department of Mathematics Belfield, Dublin 4 Republic of Ireland

Received 9 February 1984