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GENERALIZED MEANS OF SUBHARMOMC
FUNCTIOI{S
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1. Introduction

This paper is concerned with means of subharmonic functions over various
bounded surfaces in Euclidean space R' (n=2). The simplest case is that of spherical
means' which have played a fundamental röle in the development of potential
theory ever since the pioneering work of F. Riesz 126l it 1926. ln particular, tåey
have convexity properties, and their limiting behaviour for large radii may be used
as a criterion for (e.g.) harmonic majcrization in R,. A number of such properties
are listed below in Theorem 11 (section l2). However, if we wish to deal with a
subharmonic function defined only in an unbounded proper subdomain of R,,
then means over spheres with a common centre and arbitrarily large radii can no
longer be considered.

In the half-space this problem was overcome by devising a .,weighted,' half-
spherical mean, the development of which can be traced through papers by Ahlfors
[], Tsuji [27], Huber [19], Dinghas [l l], Ahlfors [2], Kuran [»), [23j and Armitage
[3], [4]. A coresponding cylindrical mean in the infinite strip, studied by Heins [17]
and Brawn [8], [9], has only recently [5] been explored to an extent that
approaches the half-spherical mean, and Fugard [13] has analogously investigated
conical means in the infinite cone.

Each of these weighted means has been separately studied at some length,
and shown to behave in a manner very similar to spherical means. In this paper we
extend the work of [1a] and present a unified theory of such means, which we define
in terms of level surfaces of suitable functions. Some links may be seen here with
work by Wal29l, who considers integral means of subharmonic functions over
level curves of certain other harmonic functions in the plane. Alsc, in broad out-
Iine, there are similarities with recent work by Armitage [4] in the half-space. How-
ever, there is little in common with respect to the methods employed, as that paper
retes heavily on a passage technique (due to Huber [19] and Kuran [22]), which is
special to the half-space.
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As in [14], we shall first give the general theory, and then conclude with specific

applications (Sections 12-14). Hcwever, in view of the more difficult nature of the

work, we shall attempt to illuminate the general exposition by concurrent reference

to the two-dimensional striP.

2. The framework

Points of R' will be denoted by capital letters such as X, Y, Z, P, or Q; in
particular, O will represent the origin of co-ordinates. When appropriate, X will be

written in terms of its co-ordinates

X : (xr, ..., xn) : (X', x)
where X'€R'-l. The closure and boundary of a subset r4 of R'will be denoted by

Ä and å24 respectively, and, using lXl to replesent the Euclidean norm of X, we

define
B(X, r): {f (R': lY -xl = r\.

It will be convenient also to use l[(X) to denote the set of bounded open neigh-

bourhoods of a point X in R'.
We recall thata bounded domain cr.rcRn is called a Lipschitz domain if åco

can be covered by right circular cylinders whose bases have positive distances from

0(D, and corresponding to each cylinder L, there is a co-ordinate system (N',fr,)
with *,-axis parallel to the axis of L, a function /: R'-l*R and a real number c

such that
lf6)-f(7)1 = 'lX'-Y'l
Lnat - {Xe L: frn > f6)}

Lnlc» - {Xe L: frn: f(N)).
(The extra generality of non-tangentially accessible domains (see [21]) is unneces-

sary for the type of applications we have in mind.)
An account of the Perron-Wiener-Brelot generalized solution of the Dirichlet

problem is given in Helms' book [18, Chapter 8], and we shall adopt his notation.

Thus, if/is resolutive on the boundary of an open selW, the Dirichlet solution is

givenby H{.
Let Q be an unbounded domain in Rn such that, for each r=0, there is an

open set W'28(o,r) for which oj:14('aQ is a Lipschitz dcmain' To avoid

having to deal repeatedly with it as a special case, we shall exclude the possibility

of O:Rz. We now state a number of lemmas, whose proofs will be given in Sec-

tions 6 and 7.

Lemma l. There exist
(a) aGreenkernelGfor Q suchthat,if xQQ, then G(x, .) continuouslyuanishes

on 0Q, and

for all X', V'€R'-t,

and
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(b) at least one positiue harmonic function h in Q which continuously uanishes

on 0Q.

In view of (b) above, we define h* to be a (fixed) positive harmonic function in
O which vanishes on 0Q. We also let v be a fixed (non-zero) Borel measure with
compact support EcQ.

Lemma 2. The function G(X,Y)l{h*(X)h*(Y)} has a positiue, symmetric,
jointly continuous extension to (OXO)\«X, Y): X:YQA| (continuous in the
extended sense at points of the diagonal of QXQ), which we denote by G*(X,Y).
Further, h*(.)G*(.,Y) is harmonic,n O\{f}.

We define

o(x) : { ro* (*, z) dt,(z\ (xeollrnao),

and extend @ to be defined on O by writing

o(x) : timinfo(r) (X€EailA).

Clearly @ is lower semicontinuous (l.s.c.) on O. We also have:

Lemma 3. The function @ is positiue on Q, and h*iD is superharmonic in Q,
harmonic tn O\-E and continuously oanishes on åO\,E.

Definition 1. Let z denote the (positive, possibly infinite) infimum of @ on
E, and let g denote a (fixed) strictly decreasing mapping from (0, 1-) onto (0, z)
(which implies that E is continuous and invertible). Since @ is l.s.c. on O, there
exists (for each x=0) an open set Lyr such that

W*aA : {XQA: O(X) = E@)1.

We shall suppose that each Q*:W*nQ is a Lipschitz domain, and that, if x=y,
then O-\tr/, is the disjoint union of the closures of finitely many Lipschitz domains.
This will certainly be the case in our applications. We abbreviate the sets \Q,aQ
and fin|Q to o, and r, respectively, and denote harmonic measure with respect
to O*and XeQ, by F*,x.In viewof [24,Th6oröme25]and thefactthatacone
internal to O, with vertex at Z<|Qw is non-thin at Z (see, for example, [20, Lemma
(3.6»), it follows that \Q"nl(2\z* has lx,x-measure zeto for any X(Q*. The
Green kernel for O* will be denoted by G*.

Lemma 4.

(a) E Sfl,''CI,;
(b) O:U,,00,;
(c) x<w=O*cll'-a§;
(d) @(X): E@) for Xeo,.
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For suitable functions/we define

Ir,,(x) : l,_f{z) au,,x(Z),

and
H r.*(x) : Hf" (E - t,,fl2) d pr. x(Z),

which are clearly harmonic in O.in1,,11, provided that the integrals are finite. It
was shown in [14, Lemma U that the quotients H1,*lh* and lx,*lh* can be con-

tinuouslydefinedonwrnä,wherey:sin{x,1}'Denotingtheseextendedfunc-
tions respectivety by fft,' and 97,", we define

"il (f, x) : ! 
"/rr,*{x) 

dv(x)

and
fi (f, x) : t, "rr,,(x) dv (x).

Let s be subharmonic in O and extend it to O by

s(Z) : lim sup s(f,) Q<Aoi,.

If, for each ZQ\Q, there is a bounded neighbourhood of Z, whose intersection ro

with O satisfies

(i) the restriction of s to åal is resolutive for o, and

(ii) s=äf; in ar,

then we say that s(99.
lf s(99, then it follows from [15, Theorem 2(i)l tbat s is resolutive for every

O, and s=H!* in Or. Hence H",*, ff,", .t/(s,x), 1",t, §",*, and '[(s,x) all
exist, and it is easy to see (cf. [14, Theorem 1]) that

(i) -il(s,x) is an increasingl), real-valued function of x.
(ii) If also s<0 on \Q,then the same is true of ,[(s,x).
(iii) If å is harmonic in o and continuous on o, then "// (h, x) is a constant

function of x.

Lemma 5. The function F,, defined on AXQ* by

F *(X, Y) : f n*(.) e* (x,.1, *(Y ) I h *(Y),

has a jointly continuous extension to §X(14*nA) suchthat h*(.)f-(., Y) is har-

monic in Q, for anY Y. Further,

G* (X,Y) : F*(X,Y) (X§W,aQ),
and

(1) G*(x,Y) : F*(X,D+e,o1i3r, nG*(P,Q)l{h,,(P)h,,(8)\
if X,yeW^§ and XtY, the limit being unnecessary if both X and Y are in Q*.

The extended function of the above lemma will also be denoted by r-.

--) lve use increasing in the wide sense.
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We conclude this section by illustrating some of our definitions.

Example 1. Consider the two-dimensional case of the strip, so that

O : (-1, 1)XR, E:I-l,l]X{0}

ilv(xr, Xz) : 8n-2 cos'z$ zx.) dxrdöo(x)
and

h*(xr, x) = 2n-tcos (i zx) cosh (f zxr),

where äo is the Dirac measure at the origin of R. The Green kernel for O is well-
known (see, for example, [7, Lemmas 3,47 and use a simple conformal mapping); in
particular,

G((xr,xr), (yr,0))

:2 Zl=rnr-lsin l**"(xr+t)] sin[r mn(yt*l)] exp (-]mn lxrl).

lf xr*O, then clearly the series converges uniformly in yr, and so we can integrate
term-by-term to obtain

iD(xr, xr) : ,l:rG((xr,x2), (y1,0))cos (i zy)/{cos(} zxr) cosh (} nxr)) ay'

: + sech(* nxr)exp (-i"l*Å)
: 8 {l +exp (z lxrl)}-,.

This remains valid for xr:O by the l.s. continuity of @. Thus z:4 and, defining

E: (0"'-)*(0' 4) by 
E@) :8{r+exp(rrx)}-',

it follows that Q,:(-1,l)X(-x,x). The assumptions of Definition I are now
easily seen to hold.

3. The generalized mean

If s is subharmonic in O, then the measure associated with s in O is given by
po:yn/s, where

yr: (2n)-r, y^: {(n-2)c,l-L (n = 3\,

c, denoting the surface area of AB(O,|), and ls is the distributional Laplacian of
s in O. The following result associates a second measure, defined on åO, with s.

Theorem l. If s(99, then there exists a unique measure ),o on 0Q such that
the least harmonic majorant of s in Q, is giuen by

@ Hlt-(y)-h*g) l"_{G*(x,y)-F,(x,y)ld},"(n.
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(We remark that, if s is subharmonic in an open set containing O, then the

least harmonic majorant of s in O, is given by H!*, and so 1" is the zero measure

on åO.)

Definition 2. Weintroduce a modified mean -y'/*(s, x) for s€99, given by

il* (s, x) : il (s, i+ Ii l'"(r) dEG),

where the latter term is a Riemann-stieltjes integral.

Example 2. Following on from Example l, we deduce from [14, Section

9l that

-// (s, x) : 2n-1 sech (f "x) t'-rcos (f, zxr) {s 1xr, x) 1 s (xr, - x)} dx1

+.;['sech' (]") f_,eosh (] zxr) {t(- t, xr)+s(l, xr)l dxrdt.

Since the derivative o,f q@) is -22 sech'Gn*), we have

il* (s, x) : 2n-L sectr (i zx) /' ,cos (f zxr) {s 1x. , x) + s (x, , - x)\ dx,

+.;['sech' (*"t) [/' ,cosh (* "*r) {t(- 
t, n2)+s(1, x)\ dx2

- 2n1"({- 1, 1} x(- t, »)l il.

The following is a generalization of Nevanlinna's first fundamental theorem for sub-

harmonic functions in Rn (see 116, p. 1271).

Theorem 2. If s(99, then

il* (s, x) : .,{ (s, D- Ii I ,"h.(z) dp,(z) dEU).

Proofs of Theorems 7 and 2 may be found in Sections 8 and 9, respectively.

4. General results

Theorem 2 is used to deduce the main results of this paper.

Theorem 3. Let s€99. Then

(i) ,&* (s, x) is increasing as a function of x and conuex as a function of E @)
on (0, +*);

(ii) if w=y=O and s is harmonic rh O.\O, then "y'd*(s,x) is alinear func-
tion of E@) on [y,wl;

(iii) ..&*(s,x) is constant on (0, +*) if and only if s is harmonic in Q.



Generalized means of subharmonic functions

Theorem 4. If s(99, then the following are equiualmt:
(i) s has a harmonic majorant in Q;

Qi) .,il*(s,x) is bounded aboue on (0,1*);
(iii) 

"fo.o, 
h*(x)o(x) dp"(x) < f o.

Theorems 3 and 4 show that il* (t, x) has "ideal" properties; that is, it behaves

exactly like the ordinary spherical mean of subharmonic functions in R' (of which
it is a generalization). The major disadvantage of this mean is that )." has to be

defined in a rather indirect fashion. Thus there is a case for discussing also the
(slightly less satisfactory) properties of ,.il (s, x), some of which have already been

given in [14].

Theorem 5. (i) If s€99 and ,fr(s,x) is bounded aboue on (0,4-), then

s has a harmonic majorafi in A.
(ii) Let s be subharmonic in an open set I4 containing Q. Then s has a harmonic

majorant in A if and only if "//(s,x) is bounded aboue on (0,4*).

Part (i) holds since tr* (t, x)=-/./ (s, x) (see Definition 2; E is decreasing), and
generalizes [14, Theorem 21. Part (ii) is identical to f14, Theorem 3] and is immediate
since, in this case 1":0.

Convexity results for ,,//(s,x) were not considered in [14], but are now also

easily derived.

Theorem 6. (i) If s€99, then "/{(s,x) is increasing as afunction of x, and
conaex as a ftmction of E@) on (0, I -1.

(iD ff also s<0 on 0Q, then Jr(s,x) is inueasW as a function of x, and
conuex as a ftmction of E@) on (0, a *).

Theorems 3, 4 and 6 are proved in Section 10.

5. Variant means

Analogous results for variants of the mean ,,,1 (s, x) are now given.

Theorem 7. If s is a non-negatie*e subharmonicfunclion in I which continuously
oanishes on 0Q, and l=p<a*, then the mean

Ir(s, x) : {"'f (hl*-nsn, x)\Lto

is real-ualued, conuex as a function o"f E(x), and increasing as a function of x>0.

Theorem 8. If u is a positiue superharmonic fttnction in Q, and p((- -, 0)u
(0, 1), then r$(u,x) is real-ualued, concaae as afunction of E@), and decreasing

as afunction of x>0.
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Theorem 9. If s€99 and s=0 on 0Q, then the "mean"

,lr*(s,x): sup {s(nlh.(n: X€o*}

is real-ualued, conuex as a fwtction of E@), and increasing as a ftmction of x=0.

Theorem 10. If s(99 and s=0 on 0Q, then the mean

.|r"(s, x) : log,r{(h*exp (s/å*), x)

is real-aalued, conuex as a function of g@), and increasing as a ftmction of x>0.

The proofs of these theorems are closely related, and are based on a technique

of Fugard 112, Chapter 2l (or see [5, Theorems 7 and 8). We shall illustrate this
by giving the proof of Theorem 10 in Section 11. Theorem 9 is a generalization

of Hadamard's Three Circles Theorem, and can equivalently be stated in terms of
the infimum of ulh* over o* for suitable superharmonic functions u. It is a little
easier to prove, and the maximum principle can be used to establish the monotonicity
part of the result.

6. Proofs of Lemmas 1-4

6.1. We shall make use of the following results.

Theorem A. (Boundary Harnack principle.) Let Q' be a bounded Lipschitz

domain of which P is a fixed point, A be a relatiaely open subset of 0Q', and W' be a

subdomain of Q' satisfy@ 0Q'n0W'9A. Then there is a constant c such that, if
h, and h, are two positiue harmonic functions in Q' oanishing on A and hr(P):hr1p1,
then hr(X)=chr(X) for all X<W'.

Theorem B. If hL and h, are positiue harmonic functions on a bounded Lip-
schitz domain Q' aanishing on a relatiuely open subset A of 0Q', then hrlh, can be

continuously extended to a strictly positiuefunction defined on Q'vA.

For Theorem A we refer to either Dahlberg [10, Theorem 4] or Wu [30,
Theorem 1]. If the set I is empty, then the result reduces to the usual Harnack
inequality [18, Theorem 2.16]. Alternative proofs for Theorem B can be found in

l2l, (7.9)j and [6, Theorem 2].

6.2, To prove Lemma l, first note that O has a Green kernel. lf n>3, this is
immediate; if n:2, choose r such that I4('^åO is non-empty. Since Oi is Lip-
schitz,there exist I and e=0 such that B(Y, e)EWi'\O, whence OgR'z\B(f, €)

and so Q has a Green kernel.

Denoting this kernel by G and letting X(Q, we show that G(X, .) vanishes

on0d2. Fix r such that XQQi,letGibe the Green kernel for Qi, and define fi on
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l0iby setting it equal to G(X, .) on \AinQ and 0 elsewhere. Then the function

s(r) : 
{G 

(x' Y) -Gi$' Y) - Hf;V) 
.gå3(r,

is easily seen to be a non-negative subharmonic minorant of G(X, f) in O (since

Oj is regular) and so is identically zero. Since G:(X, .) and Hf;vanish on Wi'a\Q,
so does G(X, .), and since r may be arbitrarily large, pafi (a) is proved.

To prove (b), let Qbe a fixed point in O and (I,) be an unbounded sequence

of points in O. By choosing a suitable subsequence if necessary (compactness argu-

ment), we may assume Lbat (Y*\ converges to a Martin boundary point of O. If
åO is empty, the lemma is trivially true. Otherwise, let r and R be such that A:cW;
and Q(Q'*, and such tlntl4('n0Q is non-empty. Fix P€O\O;. From Theo-

rem A there is a constant c such that

whence
G(Y*, X)|G(Y*, Q) = cG(P, X)|G(P, Q) $(Oi.)

h(X) : Jrg G(Y*, X)|G(Y*, Q) s c'G(P, X) (XeQ;).

Thus ft is a positive harmonic function in Oi which vanishes on Wi'n|Q. Since r
may be arbitrarily large, (b) is proved.

6.3. We now prove Lemma 2. Let Xo, Yo(CI. Joint continuity clearly holds

at (Xr,Io) unless at least one of Xr, Yo is in åO. We shall consider the case where

both X6 and Is are in 0Q and Xo*Yo, the case where only one of Xo, Yo is in åO
being similar and easier. It is clearly sufrcient to show that G*(X,I) has a limit
as (X,I) tends to (Xo,Io) from within OXO.

Let U$N(X») and I|(N(Y) (i:1,2,3) be such that

Q) UrcUrcArc(\ and similarly for\;
(il ArnVr:g;
(iii) the sets Uj:UiaQ arrd 4':VraQ are Lipschitz domains (this is pos-

sible because Xo,Ys€W;' for sufrciently large r). We denote harmonic measure

for (Ii and X€(Iiby ).1,y, and for \' and Y(l(' by vi,r.
Inviewof (ii), G(X,Y) isboundedabove,by csay, for (X,Y)in Uixfi'.

From TheoremA
G (X, Y) : f uu,noc 

(2, Y) il\,x(Z)

= d.r,r(|t)1n O) = ,'h*(n

for X(Ui and Y€Vr'. Repeating this argument, we obtain

(3) G(X,Y)lhx(n : r un,nrc(X,Z)lh*(X) dvr,r(Z) = ciih*(Y)

for X(U[ ar.d Y€.V2'.

11
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Let e'>0. It follows from (3) and the joint continuity of G in OX Q that there

exists ä =0 such that

lG(Xr,Y)-G(Xz,Y)l < e' (Y e|VrnA\

for Xr,X2(|UrnQ satisfying IXL-Xzl<ö. Again using TheoremA

(4) lG(Xr,Y)-G(Xz,Y)l = e' vr,y(|VrnQ) - ciii e' h*(Y) (Y <V;).

From Theorem B, the functions

{G (X, .)l h,,(.) : X€0 Urna\

have continuous extensions to Zr'. Hence, from (3), (4) and the fact that \UraQ
is relatively compact, we can apply the Arzelä-Ascoli theorem to see that they are

equicontinuous on 7j.
Let e =0. Then there exists Z,€N(Io) such that V"cV, and

lG (x,Yr)l h*(Y) - G (X, Y)l h*(Y)l - e (Xe\ UraA)

for Ir, Y2(l(':[(nO, and so

lG (X, Y) I h * (Yr) - G (X, Y r) I h * (Y )l < e )"2, y (0 (I 2n O) < cb eh * (X)

for X(Uj. Thus we have

lG*(X,Y)-G*(X,Yr)l = ci'e (X<Ui; Yr,Yr(V!).

Correspondingly, we obtain Uj such that

lG* (Xr,Y) - G* (Xz,Y)l < cu e (XL, Xze U! ; Y €fil,
and so

lG*(Xr,Y)-G"(xz,Yr)l = (ci'+cu)e (Xr, XrCU!; Yr,Yr(V!),

where c" and c' are independent of e. A completeness argument now shows that
G*(X,Y) has a limit as (X,Y)*(X,,Y).

The harmonicity of h*(.)G*(.,Y) in O\{f} is clear if YcO. lf Y<AQ,
let (Y-) be a sequence of points in O, converging to I. In view of tåe joint con-
tinuity of G*o the functions å*(.)G+(.,Y-\ are locally uniformly bounded in O

and so their limit is harmonic in Q (see [8; Theorem 2.18]).
The positivity of G+ is a consequence of Theorem B, and the symmetry is

obvious from the symmetry of G.

6,4. ln Lemma 3, since G* is positive and y is non-zero, the positivity of @

need be checked only at points Z of Ea\Q. To do this, we choose r such that
EcW' and apply l24,Thöoröme 7'-161and Theorem B to see that

o(z) : {tim$f h*(x)o(x)lci.6,O}{!}gc',(x,Q)lh*(x)} = 0,

where Q is an arbitrary point of Ai.
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Let v1 and v, be the restrictions of v to \QnE and QnE respectively, and

define
dvr(Y) : {h* (D}-1 dvr(Y).

In view of Lemma 2, h,,A is clearly finite on O\E, and so the function Gvu is a
potential in g. It is immediate also from Lemma 2 that ft* @ vanishes on åO\E,
and so it remains only to show that

I ,onro*{.)G* 
(. , Y\ dvr(Y)

is harmonic in O. In fact, Lemma 2 ensures that this function is continuous in g
and Fubini's theorem shows that the mean-value equality holds for all sufficiently
small spheres centred at any X€Q.

6.5. Lemma 4 is straightforward to establish. Since, for each x, rp(x)=x, it
follows that

E ?W*aQ C 8,,

and so (a) holds. Part (b) is true because @ is positive in O. Since @ is continuous
in Ol1A', we have iL(X)>q(x) for X(Q*, and so

x < w - E(x) = E(w) + Q* c W-oA,

proving (c). Part (d) follows from the continuity of <D at points of o,.

7. Proof of Lemma 5

Once the joint continuity of F, is established, the harmonicity of h*(.)F*(., Y)
follows easily as in Lemma 2. Let

& : (0\Q)XQ,, ,s, : o,Xo*
and

(&, %)(Ox(tv.a0)'

We sball show that, as (X, I) tends to (Xo,Ie) from within Sru,Sr, the function
F*(X,Y) tends to a limit, which equals F,(Xo,%) if Yr<Q,. Our proof falls
naturally into three parts.

CaseI: Xre O\O-. For X(O\O*, the function h,,(.)G"(X,.) is harmonic
in d),, continuous in CI* and valued zero on r, (see Lemma 2). Thus, if (X, y)€,Sl,

then
F*(X, Y) : h*(Y) G" (X, Y)l h*(Y\ : G* (X, Y).

As (X,Y)*(Xn,Ys), we have F*(X,Y)*Q*(X,,Y,), and if Yo€d)*, then

G*(Xo,Ys):F*(Xr, %) as required.

13
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Case II: Xs(Q*wr*:Wn8. Let e >0. From the joint continuity of G* there

exists U"€Nffi) such that U"cW* and

lG* (xr, z) - G* (x2, z)l < e

for X, and Xrir U,aQ and Z in o,. Hence

lF,(xr,Y) - F,(Xz,y)l = e

for X, and Xrin U"nA and I€o*. Since

(5) G(X,Y): re(x,.1.*(Y)+G*7X,r1 (X,Y€Q),

itisclear that F*is symmetricin O,XO, and so there also exists %€N(%) such

thzt V"cW* and
lF,(x,YL\-F*(X,Y)I < e

for X in O* and Ir and Y, in l(,ofJ. If we let Xr(U"nO, then

lF*(Xr,Y)-F"(xz,Yr)l=-lF*(Xr,Y)-F,(&,Yr)l
lF*(Xr, Yr) - F,(Xs, Yz)l + lF"(Xs, Y) - F*(Xz, Y)l

<3e

for X, and X, in (J,nA and Yr,Yr(I(nQ. A completeness argument shows

that F, has a limit as (X,Y)*(Xr, %). If Yo(Q*, then choose (X2,Y):(Xs,Ys)
to see that the limit is, in fact, F*(Xo, Yo). Also, (1) now follows from (5) and

Lemma 2.

Case III: &€CI,\%. This is the most difficult case to prove. Let Q,Y(Q*.
lf w>x, then, as has already been observed in Section 2, g.\O* is non-thin at
Xo in the minimal fine topology for Qn, whence

{ ,- }*"G*(x, z)lG*(x, Q) itp".r(Z\ : JU G*(x, Y)lG.(x, Q),

or, in view of Theorem B,

(6) I,_]i*"G,(X,Z)lh*(X)dp*,y(Z) : JII, G*(X,Y)|h,,(x).

Also, from lI, F* is jointly continuous in (W*aA)X(Wa$ and h*(.)F*(Xr,.)
is harmonic in O*, and so

(7) I,*o*{r1r*(xo,Z)dp.,r(Z): h*(Y) F.(xo,Y).

Thus, from (1), (6) and (7),

F,(xo, y) : I,*h *(Z) G* (xo, Z) d 1t,, y (Z)l h.(Y) : G* (xo, Y) (Y €o).

The lemma will follow if we show that

F*(X,y) * G*(Xo,Io) (6,Y) * (Xo, Y); (X,n€^9luSJ.
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This is clearly true as (X,Y) tends to (Xo,Yr) from within ,Sr, since F*:G*
there. If (X,Y)<S', then it follows from (1) that we need only prove

(8) G*(x,Y)l{h*(x)h*1r11 * s ((x,v) * (xo, rJ).

We use the non-thinness of O^.O, at Xo and [24, Thdoröme t 1] to observe that

G*(X,Q)|G*(X,Q)* 0 (X*Xo; X(Q)
and so, since G,(X, Q)lh*1X1 has a positive finite limit at Xo (see Theorem B
when )t068121,

(9) G*(X,8)lh*(X) * 0 (X * Xs; X<A).

Now, since Yo(W*n§ and QQQ, we can choose z<y<x such that Io is in
tllnO and QqQr. Thus we may apply Theorem A with 8:Q, and d)o:Q,
to obtain the existence of a positive constant c such that

15

and so

(10)

for x€oÅq

G *(X, Y) I G.(X, Q) = th *(Y) I h *(O)

G *(X, y) 
I {h *(X) h *(r)} 4 c' G *(X, Q) I h*(X)

and Y(Q,. Combining (9) and (10) yields (8) as required.

8. ProofofTheorem I

8.1. We recall (see [20, Theorem (4.2)l) that, if O' is a Lipschitz domain, then
every Martin boundary point of O' is minimal, and the set ./, of Martin boundary
points of Q' c,an be put into one-to-one correspondence with 0Q' in such a way
that the Martin topology on Q'vÅ, is equivalent to the Euclidean topology on 8'.

Lemma 6. Let h be a non-negatiue harmonic function in a Lipschitz domain
d2', and let p be the measure on 0Q' associated with it in the Martin representation.
If A is a relatiuely open subset of 0Q', then h uanishes continuously on A if and only
if p(A):a.

The "only if" part follows from [30, Lemma 10]. The "if" part is trivial if ,4

is empty. Otherwise, let Z€A and choose W€N(Z) such that {)":Wnd)' is
a domain and |Q"n\Q'cA. Let p€O\Q" and P€9'. For a small positive
value of e, we can now apply Theorem A with Q' replaced by O'\B(Q, e) to
deduce that

(1 1) K(Y, X) = cK(Y, P) G',(Q, X)lG',(Q, P)

the Martin kernel on |Q'XQ' (by the Poincarö-Zaremba cone criterion [18,
Theorem 8.271, G(8,.) vanishes on0Q', and it is shown in [20] that K(Y,.) van-
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ishes on åO'\{f}). Integrating both sides of (11) with respect to dp(Y), it fol-
lows that

h(X) = c'h(P)G'(Q, X) 6€A\
and so fu vanishes at Z as required.

Lemma 7. If ). and p are measures on r* such that, for all Y€Q*, we haue

.f 
" 
* {o* t*, y\ - F *(x, y)\ d 1 (x) : f 

" 
_{G* 

(x, Y ) - F,(x, Y)} d p (x),

then ).: F.

Let
h^(I) :

and define A' on zr by

Y) - F*(X, n) dA(X),

dt'(x\ : {LryG*(Z, e)|h,,(z)l il.(x),

where Q is a fixed point of O, (see Theorem B). From Lemmas 2 and 5, h^ is lta,r'
monic in g" and, from (1),

(12) h^(Y): I,.L*G,(Z,Y)lh*(Z)il"(x)
: I,J* G 

"(2, 
Y)l G 

"(2, e) iil; (x).

Defining h, and p' in a similar manner, we obtain an equation analogouc to (12).

Since h^:fu,, by hypothesis, it follows from the uniqueness of the Martin representa-

tion for h^in Q*that 1':lt', whence ,1.:p.

8.2. The proof of Theorem I will now be given. Let s(99 and w=x=0.
From [5, Theorem2(i)], the restriction of s to åO. is resolutive and ]1f;--5 i.
non-negative and superharmonic in O,. It follows from the Riesz-Martin decom-

position and Theorem B that there is a measure )." ot r- such that

(13)

ä3-(r)-§(y) : h(y)+ f o*o*t*,Y) dp"(x)* I,J:*G.(Z,Y)lh+(z) dl"(x),

where å is non-negative and harmonic in O. and continuously vanishes on r. (see

Lemma 6). For afly y<.w, let 0€O.\0, and apply Theorem A to show that
there is a positive constant c such that

h*(Y) f {G* (x,
dt

It follows

(14)

f oo = { n"t)on *(Q, x) dp,(x) > c I o"uo"h*(x) dp,(x).

that we can define a measure vs on the Borel subsets A of {Z*vr* by

v,(A) : I ona*h*(z) 
dp,(z)*2, (Anr*).
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This and (1) enable us to rewrite (13) as

(15) äf*(f -s(fl : h(D+ I o*u"*h*(y){G*(x,y)- F-(x,y\} dv"(x).

Now observe that

I, _, P * Q) it p*, y (z) : H P * (Y ) - r,,, (Z) d p*,, (Z).

Also, since h*(.)F.(X,.)is harmonic in O, and continuously vanishes on r, (see
Lemma 5),

f hx(z) F*(x, Z) dp.,y(Z) : h*(y) F*(X,y).J6x

It now follows that, if we integrate (15) with respect to harmonic measure on or
(relative to O,) and use Lemma 5, we obtain

(l o H :' - (Y) - H P - v) : h (Y ) +/,*_.r*, 
n o 

h *(y) {G* (x, y) - F* (x, y)) h 
"(x)

+ r * *noh*(y){F,(x, 
y) - F*(x, y)} dv"(x).

Subtracting (16) from (15) yields

(t7) g"o*(y)-s(y) : r*_noh*(y){G*(x,y)- F*(x,y)) dv"(x),

and so (2) holds for x<w and ,1" is uniquely (by Lemma 7) defined on 2.. since
w may be arbitrarily large, ,1," can be defined on all of åO (see Lemma 4 (b)).

9. Proof of Theorem 2

9.1. We require the following lemma.

Lemma 8. The function

o"(x) : .[uF,1x,y) dv(y)

has the constent ualue E(x) on 4,.

From Lemma5, (D* is continuous on O-, and, if X€o", then

@,(n : f 
"G* 

(x,y) dv(y) : @(X) : E@)

(see Lemma a(d)). Further, by Fubini's theorem and Lemma 5, h*<D* satisfies the
mean-value equality for balls whose closures are contained in O*. Thus

1,.(.){@,(.)-E(x)}

is harmonic in d2*, continuously vanishing on 0Q, and so it is identically zero
in O,. Hence A,():E@) in O,nO and so also in O, by the continuity of iD*.

17
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9.2. To prove Theorem 2, we suppose x=1, the case 1< 1 being similar and

the case x:l being trivial. Let v" be defined on W*nA by (14) (with lr:x)- Sub-

tracting (17) when x:l from (17) as it stands yields

H ! - (Y) - H ltr (f ) : ft - ( r) /,r_. w ) n a {G* (x, Y) - F * (X, Y)} dv 
"(X)

+h *(Y) I n,n1r{FJX, 
Y) - F*(X, Y)} dv 

"(X),

whence, by the joint continuity of G+, F, and F. (see Lemmas 2 and 5),

33,, * (Y) -'g ",, 
(Y) : /,r^r,, n o {G* (x, Y) - F * (x' Y )l dv 

"(x)

* I n,no{Fr(x,Y)* F"(x,Y)} dv"(x)

for Y€8. If we now integrate this equation with respect to y and apply Fubini's

theorem (recall that the integrands are jointly continuous and non-negative on the

range of double integration), we obtain

(18) -&(s,x)-"'{(s,l)

: .[r,1r,, n a {o (n - o - (x)l dv'(x) * f *,na to r(D - o -(x)} d'v 
"(x)

: /,r*.r,, n o {o (x) - «o @)} dv 
" 
(x) * {E ( I ) - E (x)) v 

"(w,a 
Q),

the second equality being a consequence of Lemma 8.

we now define 
a,(/) : v"(wrn§) (r€[, x]),

which allows (18) to be rewritten as

,d/ (s, x) -l{ (s, 1) : I i o {t) da"(t) - E @)a" (x) + 9 (1) a" (1),

since E is continuous and decreasing, and a" is of bounded variation on [1, x].

Integrating by parts, this Yields

,t/ (s, x)-.1r (s, 1) : - tiu"(t) dE(t)

_ - {. t,(r,) dE(r) - I: I ,,h*(z) d{,,(z) dE Q),

and the result follows from the definition of //* (s, x).
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10. Proofs ofTheorems 3, 4 and 6

10.1. To prove Theorem 3, we observe from Theorem 2 that

(19) tr* (t, x) : ,f (s, D - Ii I o"h.(z) dp"(Z) dq (t).

since g is decreasing, the double integral is decreasing, and so il* (t,x) is increasing.
Next note that the integrand

I o,l'*(z) dP'(Z)

is right continuous with respect to EQ), so that the double integral in (19) is right
differentiable with respect to g(x), and

(20) o*)':',*' :-fdE(x) 1o*h*(Z)dP"(Z)

holds on (0, + -1 if the derivative is understood as a right derivative. Since the
right hand side of (20) increases as E(x) increases, it follows that ,{/*(s,r) is con-
vex as a function of g@) on (0, *-), proving (i).

Further, if s is harmonic in O-\4, th"r, p,(O,\CIr) is zero, and it follows
from (19) that "/{*(s,x) is a linearfunction of E(x) of,(!,wf, and so on [y,w]
by the continuity of ,,//*(s,x) on (0, +-).

Finally, ft*(s,x) is constant if and only if p"(Q*) is zero for all x, which is
equivalent to s being harmonic in O.

10.2. To prove Theorem 4, we begin by obtaining some inequalities. Let y>l
and 0€OÅOr. Since s€.99, it follows that s has a harmonic majorant in O,
(for example, H!") and so, using Theorem A to compare G(Q, .) with Gr(e, .)
in Or, we have

QD Io,o{Q,x)dp,(x) = "'f o,Gr1q,Edp"(X) < *-.
Let P(Qr. Using Theorem A again, there is a positive constant c such that

c-rh*(Y)lh*(P) =- c(x,Y)lG(x, P) = ch*(Y)lh.(P)

for X€O\O1 and Y€Qttz, and so, from Lemma 2,

c" G(X, P) = h*(nG*(X,Y) = c"'G(X, P),

for X€Q\Q1 and YQQrtz, whence

Q2) c"y(E)G(X, P) = h*(X)A(n = c"'v(E)G(X, p)

for X€O\O'.

t9
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We now show that (i) and (iii) are equivalent. The function s has a harmonic

majorant in O if and only if Gp" is a potential in O. From (21) this is equivalent to

-fnao, 
G(x' P)dP'(x) < *-'

which, in turn, is equivalent to (iii) because of (»).
It remains to show that (ii) and (iii) are equivalent. Let x=1. From (18) and

the integration by parts employed at the end of the proof of Theorem 2, we c,an

write

Q3) tr* (s, x) : .ff (s,1) + {E (1) - e @)} I o,h*(x) dp"(X\

* /o^o, to (x) - E @)l h *(n d p"(x)

=,tf (s, r) + E (D I n,h *(x] d p"(x)*/n,ao, a q) h *(n d p,(X).

Thus (iii) implies (ii). On the other hand, the function

,L(x): E-rQE@))

is defined for all sufficiently large x, and

/o^o, {o (x) - E @)} h *(x) d p 
"(x) = * /o*,-,. o,ao 

(x1 h *1v) d p 
"(x),

since @(X)=E(t@)) on O,21,y.Therefore, from (23),

fi* (r, x) > .tf (s, t) **/o*,_,..o ,@(x)h*(X) 
dp"(x),

and so (ii) implies (iii).

10.3. It is now straightforward to deduce Theorem 6. To show (i), we recall that

,.& (s,x)-,//*(s, x) : -li^"fd dEG).

Since g is decreasing, the right hand side is increasing as a function of x. Further,

its right derivative with respect to q(x) increases as g(x) increases, so that it is con-

vex with respect to E@\ The result now follows from Theorem 3 (i).

In the case of (ii), 1",* is a harmonic majorant of s in (2,, and as in Theorem 1,

there exists a measure ),!" on 0A such that the least harmcnic majorant of s in O*

is given by
r,,*(Y)-h*(Y) {,_{G" (X,Y)- F*(X,Y)} dL!(X).

The argument of Theorem 2 now yields that

,{ (s, x) : .tr (s, D- I:{L!k)+l r,h*(z) dp"Q)} dEQ),

and the result follows as in Theorem 3 (i).
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11. Proofoflheorem 10

11.1. The following lemma is required.

Lemma 9. Let O<a<z and S be a function which is non-negatiue and sub-
harmonic in O,\Q, and aanishes continuously on r,\t,. Then the mean .,{(5, x)
is real-ualued and conuex as a function o.f E@) for x((a, z).

To see this, let a<b<c<d<y<z and define

sr(x)

Clearly Soe 99, and from Theorem A there is a positive constant c' such that

S(X) = Iff,\ou(X) S c',So(,Y) (X€Od\O"),

the first inequality being a consequence of [15, Theorem2(i)] and the fact that
OÅru is the disjoint union of the closures of finitely many Lipschitz domains (see

Definition l). Hence the function

s'(x) - { "so(x) 
if x(4"

- lmax {c',So(X), S(X)} if X€(W,nO]\O,

is subharmonic in Q,, equal to .S in O\CIy, ard satisfies

lim slp.S'(X) : S'(Z) =- c' (Z€r,).

Now suppose that z>1. lf x€(y,z), then

(24) fr(S', x): l{(5, x)+"fi(Sr, x).

Since §o:0 in (LV,nO)\dr, it follows from Theorem3(ii) that "{,{*(So,x) is a
linear function of E(x) on (!,2). Further, it is easily seen from Lemma 6 and the
proof of Theorem I that

l."o(r,\r) : 0,

and so fi(So, x) is also a linear function of E@) on (./, z) (see Definition 2).
In addition, Theorem 6(i) shows lhat ..//(S',x) is a convex function of g(;r) on
(0, z) (the fact that 

^S' 
is not defined on all of ,0 is immaterial). Hence, from Q4),

-,{(5, x) is a convex function of q(x) on (.},, z), and so on (a, z) since l€(a, z)
is arbitrary.

Finally, we point out that, if z=1, then we could define

H,,*(X) : H!* (X) - f 
",,,s 

(Z) d p,p,y(Z)

and corresponding means ..y'/,(s, x) and -/f (s, x) to avoid the problem of s' and
l.s. not being defined on zr.

[un,xb) if x€Qy

-{ I if x€io
t 0 elsewhere in A.
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11.2. We now prove Theorem 10. Routine differentiation yields that

/ {h*er,p (s/ft*)} > 0

in O if seCz(A). lf X€Q, take a decreasing sequence (s-) of C2 subharmonic

functions, and it follows easily that h*exp(s/å*) is u.s.c. in O and satisfies the

mean-value inequality for balls whose closures are contained in O.

Let z>y>Q. Using the fact that s=0 on 0Q and Theorem A, there is a posi-

tive constant c such that

s(x) = I"*,,(8 = ch*(x) (x€Qy),

whence h*exp(s/ft*) vanishes continuously on xy, alr.d so (y being arbitrary) on

all of 0Q.It follows from Theorem 6 (i) that

tf (h*exp(Vh*), x)

is increasing as a function of x, and so the same is true of ,[s(s' x).

l*t O<a<y<w, and note that (see Lemma 3) the function

where 
.§: h* exP {ko+slh*\,

(25) 1i: {",{"(s,w)-.,fn(s,y)\llE0)-E(w)},
is subharmonic in o\4 and vanishes continuously on åo\o. From Lemma 9,

-,{(5, x) is real-valued and convex as a function of E@) on (a, a -). Using Lemma

4(d), if x€(y,w), then

exp{kE(x)}exp {,1,(r,r» = {ffi,grdexp {ke(y)}exp {fr,(r, v)}

.lm) exp {/re (w)} exp P[ (s, w)]

which, upon rearranging, using (25) and taking logs, yields

,{,(s, x) = {ffi\ nr,, ». {m} n{,, r)
as required.

12. Äpplications to the whole space

In this and subsequent sections, when (n-l)-dimensional surface area meas-

ure on the boundary of a domain exists, it will be denoted by o. Thus, in particular,

the spherical mean of a suitably defined function / is given by

I (f: X,r) : c;Lr'-n t ,rr*,rftZ) do(Z)'

where c, denotes the surface area of 0B(O,l).
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Let g:R' (n=3) and h*:1. First consider E:{O}, and v to be the Dirac
measure at the origin. Clearly A(X):lX1z-" so that x:** and, if we take

E(x):xl-", tben Q*:B(o, x) for all x, and

tr* (t, x) : ./t (s, x) : t{ (s, x) : l(B(o'x) (O) : I (s: O, x).

The following well-known results are now seen to be special cases of the results in
Sections 4 and 5.

Theorem ll. Let s be subharmonic in R' (n >3) and u be positiue and. super-
harmonic. Then

(i) 9 (s: O, r) is conaex as a fmction o.f r2-" mtd increasing as a function of r;
(ii) if Ä2>.R1>0 and s is harmonic in B(O,Ra)\B(O, R), then 9(s: O,r)

is a linear function of r2-" on IR , Rl;
(iii) s has a harmonic majorant in R" i.f and only if 9(s: O,r) is bounded

abouefor r=0, which in turn is equiualent to

I *(t + lx D'-" dp,(x) < * ooi

sup {r(x): lX I - r}
and

log I (exp s: O,r)

are conuex as functions o.f r'-" and increasing as functions of r>O;
(v) if s>0 and p>1, then the same is true of

{9(se: O,r)\ttt'

(vi) if P((-*,0)u(0, l), then

{9 (ue: O,r)\'tn

is concaue as afunction of r2-" and decreasing as afunction of r>Q.

It is natural to ask what results could be obtained for different choices of E
and v. The simplest cases to consider would be when .E is an rn-dimensional ball,
where 0<rn=n-1, and v is symmetrically distributed on.E In order to simplify
the discussion, we shall restrict ourselves to the case O:R3, and again let h*=1.

Example 3. (i) Fix c>0 and let

E: {X(R8: xr: xz:0 and lxrl = c}.

It will be convenient to work in prolate spheroidal polar co-ordinates, so that

xL : c sinh 11 sin 0 eos rlr,

xz : c sinh ,? sin 0 sin r!,

xB: ccosh qcos0,

(iv) the expressions
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where
0=4<+@, 0=0=n, 0=t! <2n.

Choosing E@):logcoth $ x), it is routine to deduce that Q* is the region bounded

by the prolate spheroid

x!/coshz x +(rc? +Iå)/sinhz x : c2,

and that

.& (s, x) : fr (s, x) : (4n)-t c I: I:" s (x, 0, ry') sin 0 d{t d0.

A theorem analogous to Theorem 11 can now be written down for the prolate

spheroidal mean fr(s,x); convexity is in terms of logcoth (ix).
(ii) If similar calculations are performed for

,E: {X6R8: x?.+x\= cz and xs :0},
analogous results for an oblate spheroidal mean are obtained. Details are left to
the reader.

13. Applications to the half-space

Let O:R,-1X(0, + *) (n>2), let E:{O} and v be the mass cnlQn) at O,

a:nd h*(X):x, in Q. From [25, Lemma 1],

2y ;t c;t xn y n l(X', - x,) -Y l-' = G (X, Y) = 2y; t c;t xny,lx -Y l-',
where y, is as defined in Section 3. Hence

iD (X) : c^(2n)-L G* (X, O) : y;l n-l lX l-".

Thus z:*- and, defining cp(x):y,Ln-1x-n for x€(0, +-), it follows that
Q*:B(O,x)n0. It now follows from [14, Section 8] that

,tlrg,x) - x-"-'f o*%s(n do(Y),

and

,// (s, x) : ..,{ (s, x)+ t* ;'-t I,,t(Y) ito(Y) itt.

In this context, Theorems 2-6 are improvements of the main results of [a].

14. Applications to the infinite cylinder

Instead of deducing known results concerning the infinite strip, [5], and infinite
cone, [13], we follow the pattern of [4] and derive previously unpublished results

for the infinite cylinder.
Let Q:{(X',x,): lX'l<l), (n=-2). We shall employ the Bessel function

l6-q1z defined in Watson [28, pp. 4H21, the least positive zero of which will be
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denoted by a,. We write

and 
,lr(t) : t@-")tzJb_s»h(a,t) (r = 0)

b,: anl6_rrtz(ar\ - 0,

(see[28, p.a5$) and p. 479 §15.»1). Recalling (see [14, Lemma3]) that the func-
tions rtr(lX'l)exp(ta,x,) are positive and harmonic in g and vanish on åO, we
can define

E : (X', x): lX'l = l, I, : 0),

dt (x) : 2 {rl, (lx'D}' dx' döo(x,) (x€ E),
and

h*(X) : {t(lX'D cosh (anxn),

where äo denotes the Dirac measure at the origin of R.
Next we determine iD, and hence O*. Clearly the function

u(x) : cn-1 exp (- alx"l)rlr (lx'l) (xeo)

is positive and superharmonic in O, harmonic in O\d bounded above on O, and
continuously vanishing on 0Q. From a result of Bouligand [18, Corollary 9.20],
the greatest harmonic minorant of a in Q is zero, and so u is the potential whose
measure is given by p: -ynÅu. If we now let Y be a C- function with compact
support in O, it follows from Green's theorem (as in [4, Section 9]) that

(/u)QD : -2 r g1-rrv {X" 0)1x,1{t-">12 J6_q1z(a,lx,l) dx,,
whence

d p (x) : 2y nlX' lG - 
n) t' J 6 - 11 1 r(a,lX' l) d X' d ö o (x),

and so

y;r u (X) : I rc (x, y\l h*(y) itv (y ) : h*(x) o (x).

Hence, dividing through by h*(X),

O(X) : y;'a;L exp(-a,la) sech (a,x),

: y;La;L {l -tanh (a,lxÅ)\,

and so x:yi'ar-,. If we define

it forows that 
E(x) : y;r a;L {1 -tanh (a'x)}'

Q*: {X(Q: lx,l = x},
and so, from [14, Section 9],

il(s,x) : sech (o,i f ,*L/(lX'l)s(X) do(X),



26 S. J. GaRorNrn

and

-4 (s, x) :,f (s, x) + b * f* s*h' (a g f ,,s 
(x) cosh (a o x,) do (x) dt.

The results of Sections 4 and 5 may now be applied to subharmonic functions in
the inflnite cylinder, and convexity as a function of E@) can clearly be equivalently
stated as convexity as a function of tanh(anx).
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