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GENERALIZED MEANS OF SUBHARMONIC
FUNCTIONS

S. J. GARDINER

1. Introduction

This paper is concerned with means of subharmonic functions over various
bounded surfaces in Euclidean space R” (n=2). The simplest case is that of spherical
means, which have played a fundamental réle in the development of potential
theory ever since the pioneering work of F. Riesz [26] in 1926. In particular, they
have convexity properties, and their limiting behaviour for large radii may be used
as a criterion for (e.g.) harmonic majorization in R”. A number of such properties
are listed below in Theorem 11 (Section 12). However, if we wish to deal with a
subharmonic function defined only in an unbounded proper subdomain of R”,
then means over spheres with a common centre and arbitrarily large radii can no
longer be considered.

In the half-space this problem was overcome by devising a “weighted” half-
spherical mean, the development of which can be traced through papers by Ahlfors
[1], Tsuji [27], Huber [19], Dinghas [11], Ahlfors [2], Kuran [22], [23] and Armitage
[3], [4]. A corresponding cylindrical mean in the infinite strip, studied by Heins [17]
and Brawn [8], [9], has only recently [S] been explored to an extent that
approaches the half-spherical mean, and Fugard [13] has analogously investigated
conical means in the infinite cone.

Each of these weighted means has been separately studied at some length,
and shown to behave in a manner very similar to spherical means. In this paper we
extend the work of [14] and present a unified theory of such means, which we define
in terms of level surfaces of suitable functions. Some links may be seen hers with
work by Wu [29], who considers integral means of subharmonic functions over
level curves of certain other harmonic functions in the plane. Also, in broad out-
line, there are similarities with recent work by Armitage [4] in the half-space. How-
ever, there is little in common with respect to the methods employed, as that paper
relies heavily on a passage technique (due to Huber [19] and Kuran [22]), which is
special to the half-space.
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As in [14], we shall first give the general theory, and then conclude with specific
applications (Sections 12—14). However, in view of the more difficult nature of the
work, we shall attempt to illuminate the general exposition by concurrent reference
to the two-dimensional strip.

2. The framework

Points of R” will be denoted by capital letters such as X, ¥, Z, P, or Q; in
particular, O will represent the origin of co-ordinates. When appropriate, X will be
written in terms of its co-ordinates

X = (xl’ L] xn) = (X,s xn)
where X’€R"%. The closure and boundary of a subset 4 of R" will be denoted by
A and 94 respectively, and, using |X| to represent the Euclidean norm of X, we

define
B(X,r)={YER" [Y—-X|<r}.

It will be convenient also to use N(X) to denote the set of bounded open neigh-
bourhoods of a point X in R".

We recall that a bounded domain wcR" is called a Lipschitz domain if dw
can be covered by right circular cylinders whose bases have positive distances from
dw, and corresponding to each cylinder L, there is a co-ordinate system X', x,)
with %,-axis parallel to the axis of L, a function f: R" 'R and a real number ¢
such that

IfE)—f(F)| = c|X' -7
for all X7, ¥’eR"2,
Loo = {X¢L: %, > (X))}
and
Lndo = {XcL: %, =fX)}
(The extra generality of non-tangentially accessible domains (see [21]) is unneces-
sary for the type of applications we have in mind.)

An account of the Perron—Wiener—Brelot generalized solution of the Dirichlet
problem is given in Helms’ book [18, Chapter 8], and we shall adopt his notation.
Thus, if £ is resolutive on the boundary of an open set ¥, the Dirichlet solution is
given by HY.

Let Q be an unbounded domain in R” such that, for each r=0, there is an
open set W/ 2B(0,r) for which Q =W'nQ is a Lipschitz domain. To avoid
having to deal repeatedly with it as a special case, we shall exclude the possibility
of ©=R2. We now state a number of lemmas, whose proofs will be given in Sec-
tions 6 and 7.

Lemma 1. There exist
(a) a Green kernel G for Q such that,if X¢Q, then G(X, .) continuously vanishes
on 09, and
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(b) at least one positive harmonic function h in Q which continuously vanishes
on 0.

In view of (b) above, we define h, to be a (fixed) positive harmonic function in
Q which vanishes on 9Q2. We also let v be a fixed (non-zero) Borel measure with
compact support EC Q.

Lemma 2. The function G(X,Y)/{h (X)h (Y)} has a positive, symmetric,
Jjointly continuous extension to (QXQN\{(X,Y): X=Y€0Q} (continuous in the
extended sense at points of the diagonal of QX Q), which we denote by G*(X, Y).
Further, h (.)G*(.,Y) is harmonic in Q\{Y}.

We define
O(X) = fE G*(X,Z)dv(Z) (XeQ\(EnIQ)),

and extend @ to be defined on @ by writing
d(X)= lign anfQ(Y) (XEENOQ).

Clearly @ is lower semicontinuous (l.s.c.) on Q. We also have:

Lemma 3. The function ® is positive on Q, and h, @ is superharmonic in Q,
harmonic in Q\E and continuously vanishes on dQ\E.

Definition 1. Let x denote the (positive, possibly infinite) infimum of @ on
E, and let ¢ denote a (fixed) strictly decreasing mapping from (0, 4 <) onto (0, )
(which implies that ¢ is continuous and invertible). Since @ is l.s.c. on @, there
exists (for each x=0) an open set W, such that

W,.nQ = {XeQ: &(X) > o(x)}.

We shall suppose that each Q.=W,nQ is a Lipschitz domain, and that, if x<w,
then @ \J¥, is the disjoint union of the closures of finitely many Lipschitz domains.
This will certainly be the case in our applications. We abbreviate the sets 0Q,NQ
and W;ndQ to o, and 7, respectively, and denote harmonic measure with respect
to Q. and X€Q, by u, y. In view of [24, Théoréme 25] and the fact that a cone
internal to Q,, with vertex at Z€9Q,, is non-thin at Z (see, for example, [20, Lemma
(3.6)]), it follows that 9Q,NdQ\r, has p, y-measure zero for any X€Q.. The
Green kernel for Q, will be denoted by G,.

Lemma 4.
(a) E gﬂ»ch;
) Q=U:0Q;;
© x<=w=Q,cW,ng;
d 2X)=o9(x for Xco,.
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For suitable functions f we define

1,0 = [ f(Z)dp,x(2),
and *
Hy, o (X) = Hf=(0 = [ f(Z) dps,x(2),

which are clearly harmonic in Qp(x,1y, provided that the integrals are finite. It
was shown in [14, Lemma 1] that the quotients H ./h, and I, ./h, can be con-
tinuously defined on W,n&, where y=min {x, 1}. Denoting these extended func-
tions respectively by #;, . and J; ., we define

M ([, %) = [ Hpx (X) dv(X)
and
K (0= [ I (X)) dv(X).

Let s be subharmonic in Q and extend it to Q by
s(Z) = lhgfélp s(X) (Z€o9).

If, for each Z€9Q, there is a bounded neighbourhood of Z, whose intersection w
with Q satisfies

(i) the restriction of s to dw is resolutive for w, and

(i) s=H? ino,
then we say that s€ Z%.

If s€ %9, then it follows from [15, Theorem 2 (i)] that s is resolutive for every
Q., and s=H®% in Q,. Hence H, ., #, ., H(s,X), L,z F, 5 and A(s,x) all
exist, and it is easy to see (cf. [14, Theorem 1]) that

(i) (s, x) is an increasing'), real-valued function of x.

(i) If also s=0 on AL, then the same is true of A'(s, x).

(iii) If 4 is harmonic in Q and continuous on &, then .#(h, x) is a constant
function of x.

Lemma 5. The function F,, defined on QX Q, by

F.(X,Y) = Ih*(-)G*(X,~),x(Y)/h*(Y)a
has a jointly continuous extension to QX (W,nQ) such that h (.)F.(.,Y) is har-
monic in Q, for any Y. Further,

G*(X,Y) = F,(X,Y) (X{W.nQ),
and

M G*(X.¥) = F(X, Y+, lim  G.(P, O)/{h,(P)h,(Q))
if X,YEW,nQ and X=Y, the limit being unnecessary if both X and Y are in Q,.

The extended function of the above lemma will also be denoted by F,.

N
1) We use increasing in the wide sense.
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We conclude this section by illustrating some of our definitions.

Example 1. Consider the two-dimensional case of the strip, so that
Q=(-1,1)XR, E=[-1,1]1x{0}

dv (xl, xz) = 875_2 C052 (";' ﬂxl) dx1 dao(xz)
and
h, (%, x;) = 2n~cos (3 mx,) cosh (3 7x;),

where J, is the Dirac measure at the origin of R. The Green kernel for Q is well-
known (see, for example, [7, Lemmas 3, 4] and use a simple conformal mapping); in

particular,
G((xl, x2), (¥1, 0))

=2 2;;1 m=1sin [% mm(x, + 1)] sin [% mn(y; + 1)] exp (—% mn |x2|) .

If x,0, then clearly the series converges uniformly in y,;, and so we can integrate
term-by-term to obtain

O, 1) =2 [ G((xr, %), (71,0)) cos (3 my) [{eos (3 mxy) cosh (3 mx,)} dyy
= 4 sech (—;— nx2) exXp (—% ﬂ]le)

= 8{1+exp (n [}

This remains valid for x,=0 by the Ls. continuity of @. Thus »=4 and, defining
¢: (0, +)—~(0,4) by
@ (x) = 8{l+exp (mx)} 7,

it follows that Q,=(—1, 1)X(—x, x). The assumptions of Definition 1 are now
easily seen to hold.

3. The generalized mean

If s is subharmonic in @, then the measure associated with s in Q is given by
Us=y,4s, where

72 =Q0)7Y y,={(n-2c )t (n=3),

¢, denoting the surface area of dB(O, 1), and 4s is the distributional Laplacian of
s in Q. The following result associates a second measure, defined on 9Q, with s.

Theorem 1. If s€ 9D, then there exists a uniqgue measure A on 09 such that
the least harmonic majorant of s in Q, is given by

0 HE(Y)=h,(Y) [ {G*(X, Y)—F.(X, Y)}dA,(X).
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(We remark that, if s is subharmonic in an open set containing €, then the
least harmonic majorant of s in Q, is given by H=, and so A, is the zero measure
on 02.)

Definition 2. We introduce a modified mean #*(s,x) for s€ #2, given by
M5, %) = M (5, )+ [ 1o(z) doo (0),
where the latter term is a Riemann—Stieltjes integral.

Example 2. Following on from Example I, we deduce from [14, Section
9] that

M (s, x) = 2n~* sech (5 mx) f ilcos (5 mx1) {5 Cees ) +5 (%1, —%)} dxy
+ [ sech? (3) [* cosh (5 mxs) {s(= 1, x2) +5(1, x2)} dx, d1.
Since the derivative of ¢ (x) is —2n sech? (3 mx), we have
M* (s, x) = 2n~1 sech (5 mx) filcos (5 7x1) {sGers ) 50, —X)} dxy
-|—f: sech? (5 nf) [ft_tcosh (5 mx2) {s(=1, x2) +5(1, x;)} dox,
—2m ({1, X (=1, 1))] dr.

The following is a generalization of Nevanlinna’s first fundamental theorem for sub-
harmonic functions in R” (see [16, p. 127]).

Theorem 2. If s€ %2, then
M (s, %) = K (s, V=[] [ h(Z)dp(2) dg(0).

Proofs of Theorems 1 and 2 may be found in Sections 8 and 9, respectively.

4. General results

Theorem 2 is used to deduce the main results of this paper.

Theorem 3. Let s€£9. Then

(i) M*(s,x) is increasing as a function of x and convex as a function of ¢ (x)
on (0, 4 <);

(i) if w=>y=0 and s is harmonic in Q\Q,, then M*(s,x) is a linear func-
tion of ¢(x) on [y, w];

(iii) #*(s,x) is constant on (0, + =) if and only if s is harmonic in Q.
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Theorem 4. If s€ %9, then the following are equivalent:
(i) s has a harmonic majorant in Q;

(i) A*(s, x) is bounded above on (0, + );

(i) f o, h (X) ®(X) dug(X) < + .

Theorems 3 and 4 show that .#*(s, x) has “ideal” properties; that is, it behaves
exactly like the ordinary spherical mean of subharmonic functions in R" (of which
it is a generalization). The major disadvantage of this mean is that A; has to be
defined in a rather indirect fashion. Thus there is a case for discussing also the
(slightly less satisfactory) properties of . (s, x), some of which have already been
given in [14].

Theorem 5. (i) If s€ D and M (s,Xx) is bounded above on (0, + <), then
s has a harmonic majorant in Q.

(ii) Let s be subharmonic in an open set W containing Q. Then s has a harmonic
majorant in Q if and only if M (s,x) is bounded above on (0, + ).

Part (i) holds since #*(s, x)=.4 (s, x) (see Definition 2; ¢ is decreasing), and
generalizes [14, Theorem 2]. Part (ii) is identical to [14, Theorem 3] and is immediate
since, in this case A,=0.

Convexity results for .# (s, x) were not considered in [14], but are now also
easily derived.

Theorem 6. (i) If s€ 9D, then M (s,x) isincreasing as a function of x, and
convex as a function of ¢(x) on (0, + ).

(i) If also s=0 on 0Q, then A (s,x) is increasing as a function of x, and
convex as a function of ¢ (x) on (0, + o).

Theorems 3, 4 and 6 are proved in Section 10.

5. Variant means

Analogous results for variants of the mean 47(s,x) are now given.

Theorem 7. If s is a non-negative subharmonic function in Q which continuously
vanishes on 0Q, and 1=p<-+ o=, then the mean

N (s, x) = {N (h3Ps, )}P
is real-valued, convex as a function of ¢(x), and increasing as a function of x=0.

Theorem 8. If u is a positive superharmonic function in Q, and p€(— <, 0)u
0, 1), then N,(u,x) is real-valued, concave as a function of ¢(x), and decreasing
as a function of x=0.
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Theorem 9. If s€%92 and s=0 on 9Q, then the “mean”
N (s, x) = sup {s(X)/h,.(X): X€o,}
is real-valued, convex as a function of ¢(x), and increasing as a function of x=0.
Theorem 10. If s€ 92 and s=0 on 0L, then the mean
N (s, x) = log A (h, exp (s/hy), X)
is real-valued, convex as a function of ¢(x), and increasing as a function of x=0.

The proofs of these theorems are closely related, and are based on a technique
of Fugard [12, Chapter 2] (or see [5, Theorems 7 and 8]). We shall illustrate this
by giving the proof of Theorem 10 in Section 11. Theorem 9 is a generalization
of Hadamard’s Three Circles Theorem, and can equivalently be stated in terms of
the infimum of wu/h, over o, for suitable superharmonic functions . It is a little
easier to prove, and the maximum principle can be used to establish the monotonicity
part of the result.

6. Proofs of Lemmas 1—4

6.1. We shall make use of the following results.

Theorem A. (Boundary Harnack principle.) Let Q" be a bounded Lipschitz
domain of which P is a fixed point, A be a relatively open subset of 0, and W’ be a
subdomain of @ satisfying 02 nOW’'S A. Then there is a constant ¢ such that, if
h, and h, are two positive harmonic functions in Q' vanishing on A and hy(P)=h,(P),
then hy(X)=chy(X) for all XcW".

Theorem B. If h, and hy, are positive harmonic functions on a bounded Lip-
schitz domain § vanishing on a relatively open subset A of 0, then hy/h, can be
continuously extended to a strictly positive function defined on Q' UA.

For Theorem A we refer to either Dahlberg [10, Theorem 4] or Wu [30,
Theorem 1]. If the set A is empty, then the result reduces to the usual Harnack
inequality [18, Theorem 2.16]. Alternative proofs for Theorem B can be found in
[21, (7.9)] and [6, Theorem 2].

6.2. To prove Lemma 1, first note that Q has a Green kernel. If n=3, this is
immediate; if n=2, choose r such that W'ndQ is non-empty. Since Q, is Lip-
schitz, there exist ¥ and ¢>0 such that B(Y, ¢) S\ 2, whence QSR B(Y, ¢)
and so Q has a Green kernel.

Denoting this kernel by G and letting X¢€ Q, we show that G(X, .) vanishes
on 9Q. Fix r such that X¢€Q,, let G, be the Green kernel for Q;, and define fx on
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9% by setting it equal to G(X, .) on d2;nQ and O elsewhere. Then the function

_[G(X, Y)=G/(X,Y)—H%(Y) (YeQ))
s(¥) = {0 T (veaN @)

is easily seen to be a non-negative subharmonic minorant of G(X, Y) in @ (since
Q' is regular) and so is identically zero. Since G, (X, .) and Hﬁl: vanish on W'n0Q,
so does G(X, .), and since r may be arbitrarily large, part (a) is proved.

To prove (b), let Q be a fixed point in © and (¥,,) be an unbounded sequence
of points in Q. By choosing a suitable subsequence if necessary (compactness argu-
ment), we may assume that (Y,,) converges to a Martin boundary point of Q. If
dQ is empty, the lemma is trivially true. Otherwise, let » and R be such that QW
and Q€Q}, and such that #'ndQ is non-empty. Fix PcQ\Q%. From Theo-
rem A there is a constant ¢ such that

G(Yy, X)/G(Y, Q) = cG(P, X)[G(P, Q) (XEQ))
whence

B0 = lim G (Y, X)/G(¥, ©) = CG(P, X) (X)),

Thus 4 is a positive harmonic function in Q] which vanishes on W#'ndQ. Since r
may be arbitrarily large, (b) is proved.

6.3. We now prove Lemma 2. Let X,, ¥, Q. Joint continuity clearly holds
at (X,, Y,) unless at least one of X;, Y, is in Q. We shall consider the case where
both X, and Y, are in 9Q and X,=Y,, the case where only one of X, ¥, is in 9Q
being similar and easier. It is clearly sufficient to show that G*(X, Y) has a limit
as (X,Y) tends to (Xy,Y,) from within QX Q.

Let U,eN(X,) and VeN(Y,) (i=1,2,3) be such that

(i) U,cU,cU,c U, and similarly for ¥;;

(i) U;nV,=0;

(iii) the sets U;=U;nQ and V;’=V,nQ are Lipschitz domains (this is pos-
sible because X,, Y €W,” for sufficiently large ). We denote harmonic measure
for U] and X€U; by A; x, and for ¥;” and Y€V;” by v, y.

In view of (i), G(X, Y) is bounded above, by ¢ say, for (X,Y) in U/XV; .
From Theorem A

GXY)= [, G(ZY)dhx(Z)

=k, x(OUN Q) =cth, (X)
for XeU, and Y€V,'. Repeating this argument, we obtain
©) G, V)hX) =

N

G(X, Z)[h, (X)dvy,y(Z) = c"h (Y)

for XeU, and Y€V
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Let & =0. It follows from (3) and the joint continuity of G in QX Q that there
exists =0 such that

[G(X1,Y)—G(X,,Y)| <& (YENWnQ)
for Xi, X,€0U,nQ satisfying |X;—X,|<d. Again using Theorem A
) IG(X1, Y)—G(Xp, V)| = & vy y (VonQ) < e’ (Y) (YEVS).
From Theorem B, the functions
{GX, )/h,(.): XeOU,nQ}

have continuous extensions to ¥,". Hence, from (3), (4) and the fact that dU,nQ
is relatively compact, we can apply the Arzela—Ascoli theorem to see that they are

equicontinuous on V.
Let ¢=0. Then there exists V,6N(Y,) such that V,c¥, and

|G(X, Y)/h, (YD) —GX, Y)/h (Y] <e (XeoU,nQ)
for Yy, Y,eV,'=V,nQ, and so
|G(X, Y)/h, (Y —G(X, Y h, (Y| = ehy x(0U,nQ) < cPeh, (X)
for XcU,. Thus we have
|G*(X, Y)—G*(X, Yy)| < Ve (XEUs; Yy, Yo€V)).
Correspondingly, we obtain U/ such that
IG*(X1,Y)—G*(X,, Y)| < c’e (Xy, Xh6 U5 YEVS),
and so
IG* (X1, Y) —G* (X, Vy)| < (c"+ce (Xy, XLe U[s Yy, Yo€Vy),

where ¢ and ¢® are independent of &. A completeness argument now shows that
G*(X,Y) has a limit as (X, ¥Y)—~(X,, Yo).

The harmonicity of A, (.)G*(.,Y) in Q\{Y} is clear if Y€Q. If Y€0Q,
let (¥,,) be a sequence of points in @, converging to Y. In view of the joint con-
tinuity of G*, the functions A, (.)G*(., Y,,) are locally uniformly bounded in Q
and so their limit is harmonic in Q (see [18; Theorem 2.18]).

The positivity of G* is a consequence of Theorem B, and the symmetry is
obvious from the symmetry of G.

6.4. In Lemma 3, since G* is positive and v is non-zero, the positivity of @
need be checked only at points Z of EndQ. To do this, we choose » such that
EcW,’ and apply [24, Théoréme 7—16] and Theorem B to see that

@(2) = {liginf h, () 2(X)/G;(X, O} {lim, G; (X, Q)/h, (X} =0,

where Q is an arbitrary point of ;.
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Let v, and v, be the restrictions of v to dQNE and QnNE respectively, and
define
dvs(Y) = {h, ()} dva(Y).

In view of Lemma 2, h @ is clearly finite on @\, and so the function Gv; is a
potential in Q. It is immediate also from Lemma 2 that h, & vanishes on JQ\E,
and so it remains only to show that

Soang s (G V) dn(Y)

is harmonic in Q. In fact, Lemma 2 ensures that this function is continuous in Q
and Fubini’s theorem shows that the mean-value equality holds for all sufficiently
small spheres centred at any X¢€Q.

6.5. Lemma 4 is straightforward to establish. Since, for each x, ¢@(x)<sx, it
follows that
ESW.nQEQ,,

and so (a) holds. Part (b) is true because @ is positive in Q. Since ¢ is continuous
in O\E, we have ®(X)=¢(x) for X€Q,, and so

x<w= 0 >oW=0Q cWnQ,

proving (c). Part (d) follows from the continuity of @ at points of o,.

7. Proof of Lemma 5

Once the joint continuity of F, is established, the harmonicity of A, (.)F.(., Y)
follows easily as in Lemma 2. Let

Sl = (Q\Qx)xgx’ SZ = Qx ><Qx
and _ _
(Xo, Y)€ QX (W.n Q).

We shall show that, as (X, Y) tends to (X,, ¥;) from within S;uUS,, the function
F.(X,Y) tends to a limit, which equals F,(X,, ¥;) if Y,€Q,. Our proof falls
naturally into three parts.

Case I: X, O\Q,. For Xe\Q,, the function h (.)G*(X,.) is harmonic
in Q,, continuous in &, and valued zero on 7, (see Lemma 2). Thus, if (X, ¥Y)€.S,
then

F.(X,Y)=h(Y)G" (X, Y)/h(Y) = G* (X, Y).

As (X,Y)~(X,,Y,), we have F,(X,Y)>~G*(X,,Y,), and if Y,£Q,, then
G*(X,, Yy)=F,(X,, Y,) as required.
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Case Il: Xy€Q,0t,=W,nQ. Let ¢=0. From the joint continuity of G* there
exists U,6N(X,) such that U,CW, and

|G* (X1, Z)—G* (X, Z2)| < ¢
for X; and X, in U,nQ and Z in o,. Hence
|F(X, Y)—F (X3, Y)| <&
for X; and X, in U,nQ and Y€Q,. Since
® GX,Y) = Igx, - (Y)+G,(X,Y) (X,Y€Q)),

it is clear that F, is symmetric in Q,X Q, and so there also exists V6 N(Y,) such
that V,cW, and
IFx(Xa Yl)_Fx(Xa YZ)I <&

for Xin Q. and ¥; and ¥, in ¥V,nQ. If we let X;€U.nQ, then
lFx(X19 Yl)—Fx(X2, Y2)| = lFx(Xl, Yl)_'Fx(sta Y1)|
+[Fx(X3sYl)_Fx(X3,Y2)I+IFx(X35Y2)_Fx(X2a Y2)|
< 3¢

for X; and X, in U,nQ and Y, Y,€V,nQ. A completeness argument shows
that F, has a limit as (X, Y)—~(X,, ¥p). If Y;€Q,, then choose (X;, Y;)=(X,, ;)
to see that the limit is, in fact, F.(X,,Yp). Also, (1) now follows from (5) and
Lemma 2.

Case III: X, Q\W,. This is the most difficult case to prove. Let Q, Y€Q,.
If w=>x, then, as has already been observed in Section 2, Q,\ @, is non-thin at
X, in the minimal fine topology for Q,,, whence

S, Jim G, (X, 2)/G,(X, Q) di,,y(Z) = Jim G, (X, V)/Gu(X; O),
or, in view of Theorem B,
© J, Jim G (X Z)/h, (X) dity,y(2) = lim G,(X, V)], (X).

Also, from II, F,, is jointly continuous in (W,nQ)X(W,nQ) and h (.)F,(X,,.)
is harmonic in Q,,, and so

™ J, 1 (@DF, (X0, 2) dpe 3 (Z) = b, (Y) F, (X, V).

Thus, from (1), (6) and (7),
F(X0, V) = [, 1(2)G" (X, Z) dpts,y (D)1, (Y) = G* (X, ) (YEQ).
The lemma will follow if we show that

Fx(X’ Y) - G* (X()a YO) ((Xa Y) -~ (XO’ YO), (Xa Y)ES1US2)°
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This is clearly true as (X, Y) tends to (X,,Y,) from within S;, since F,=G*

there. If (X, Y)€S,, then it follows from (1) that we need only prove

® G (X, N)[{h, ()R, (Y)} >0 ((X,Y) ~ (X, Yy)).

We use the non-thinness of Q,\Q, at X, and [24, Théoréme 11] to observe that
G.(X,0/G,(X,0) ~0 (X ~X;; XeQ,)

and so, since G, (X, Q)/h (X) has a positive finite limit at X, (seec Theorem B
when X €0Q),

(€) G (X, Q)h(X) ~0 (X ~ Xp; XeQ,).

Now, since Y,eW,nQ and Q¢cQ,., we can choose z<y<x such that ¥, is in
W,nQ and Q€Q,. Thus we may apply Theorem A with Q=Q, and Q,=Q,
to obtain the existence of a positive constant ¢ such that

G.(X,Y)/G,(X, Q) = ch, (Y)/h,(Q)
and so

(10 G, (X, V)/{h(X)h, (Y)} = ¢ G (X, Q) h,(X)
for X2\ Q, and Y€Q,. Combining (9) and (10) yields (8) as required.

8. Proof of Theorem 1

8.1. We recall (see [20, Theorem (4.2)]) that, if " is a Lipschitz domain, then
every Martin boundary point of Q’ is minimal, and the set 4, of Martin boundary
points of Q" can be put into one-to-one correspondence with JQ’ in such a way
that the Martin topology on Q’u4, is equivalent to the Euclidean topology on @'.

Lemma 6. Let h be a non-negative harmonic function in a Lipschitz domain
', and let u be the measure on 0 associated with it in the Martin representation.
If A is a relatively open subset of 0Q’, then h vanishes continuously on A if and only
if u(4)=0.

The ““only if”” part follows from [30, Lemma 10]. The “if” part is trivial if 4
is empty. Otherwise, let Z€¢A4 and choose WEN(Z) such that Q"=WnQ' is
a domain and Q"N I cA. Let QcQ\ Q" and P<Q”. For a small positive
value of ¢, we can now apply Theorem A with Q" replaced by Q\B(Q,¢) to
deduce that

an K(Y, X) = cK(Y, P)G'(Q, X)/G'(Q, P)
for Y0\ A and X€Q”, where G’ is the Green kernel for Q" and K(.,.) denotes

the Martin kernel on 9Q'X Q" (by the Poincaré—Zaremba cone criterion [18,
Theorem 8.27], G(Q, .) vanishes on dQ’, and it is shown in [20] that K(¥,.) van-
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ishes on dQ\{Y}). Integrating both sides of (11) with respect to du(Y), it fol-

lows that
h(X)=ch(P)G(Q,X) (XeQ")

and so h vanishes at Z as required.

Lemma 7. If /. and pu are measures on t, such that, for all YQ., we have
[ G X - F(X, 1} 20 = [ {G"(X, V)~ F(X, Y} du(X),

then A=p.

Let
m(Y) = h () [ {G*(X, V)~ F.(X, V)} dA(X),

and define A" on 7, by
i (X) = {lim G.(Z, Q)/h,(2)} d1(X),

where Q is a fixed point of Q, (see Theorem B). From Lemmas 2 and 5, A, is har-
monic in @, and, from (1),

(12) h(Y) = [ lim G.(Z, Y)/h,(Z) dA(X)

= [_lim G.(Z Y)/G.(Z, Q) dX(X).

Defining 4, and y’ in a similar manner, we obtain an equation analogous to (12).
Since h;=h, by hypothesis, it follows from the uniqueness of the Martin representa-
tion for h, in Q, that A’=yu’, whence A=p.

8.2. The proof of Theorem 1 will now be given. Let s€ 4% and w=>x=0.
From [15, Theorem 2 (i)], the restriction of s to dQ,, is resolutive and H?w—s is
non-negative and superharmonic in ,,. It follows from the Riesz—Martin decom-
position and Theorem B that there is a measure , on 7,, such that

(13)
H»(@)=s(@) = h(N+ [ Gu(X, V) du(X)+ [ lim G, (Z, Y)/h,(Z) d)(X),

where h is non-negative and harmonic in £,, and continuously vanishes on 7,, (see
Lemma 6). For any y<w, let QcQ,\ €, and apply Theorem A to show that
there is a positive constant ¢ such that

toom [0 L O@ X dn = [ (X0 dp(X).

It follows that we can define a measure v, on the Borel subsets 4 of Q,ut, by

(14) v, () =

AN,

h,(Z) duy(2)+2,(40,).
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This and (1) enable us to rewrite (13) as
15  HEWW=s®) =h@+[, b @G X, Y)~F, X, V)}dv,(X).
Now observe that

[, B2 duey(2) = B~ [ 5(2) dpse,(2).

Also, since h, (+)F, (X, ) is harmonic in Q, and continuously vanishes on 7, (see
Lemma 5),
. n@DF, X, Z) dp, y(2) = b (Y)F,(X, Y).

It now follows that, if we integrate (15) with respect to harmonic measure on o,
(relative to Q) and use Lemma 5, we obtain

(16) HPw(Y)—H2=(Y) = h(Y)_l_f(Ww\W,,)ﬁf-S

h (N{G* (X, Y)— F, (X, Y)} dv,(X)

+ W,.N& h*
Subtracting (16) from (15) yields
an  HAO-s@®) = [ h0{G X, Y) = F(X, )} dv(X),

and so (2) holds for x<w and A, is uniquely (by Lemma 7) defined on r,,. Since
w may be arbitrarily large, , can be defined on all of dQ (sce Lemma 4 (b)).

9. Proof of Theorem 2

9.1. We require the following lemma.
Lemma 8. The function

?.(X) = [ F.(X.Y)dv(Y)
has the constant value ¢ (x) on Q..
From Lemma 5, @, is continuous on &, and, if X€o,, then
2.0 =[G X V) dv(¥) = 2(X) = o (x)

(see Lemma 4 (d)). Further, by Fubini’s theorem and Lemma 5, h_ &, satisfies the
mean-value equality for balls whose closures are contained in Q,. Thus

R (P ()~ ()}

is harmonic in Q,, continuously vanishing on dQ,, and so it is identically zero
in Q.. Hence &,(-)=¢(x) in 2,nQ and so also in &, by the continuity of D,.
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9.2. To prove Theorem 2, we suppose x>1, the case x<1 being similar and
the case x=1 being trivial. Let v, be defined on W,n@Q by (14) (with w=x). Sub-
tracting (17) when x=1 from (17) as it stands yields

H~(D)—HA () = h, (V) [, {G* (X, V)~ F.(X, )} dv, ()

Wx\Wl)n'G
+h @) [, G D= F (G D}y (),
whence, by the joint continuity of G*, F, and F; (see Lemmas 2 and 5),
— * —_—
Hx () =Fa () = [, AG X V) - F(X, Y} v (X)
+ [y, a6 D= Fe(X, D} vy (X)

for YCE. If we now integrate this equation with respect to v and apply Fubini’s
theorem (recall that the integrands are jointly continuous and non-negative on the
range of doubletintegration), we obtain
(18) ‘//[(Ss X)—JV(S, 1)

= [y oumona @E =20 0O+ [ {0:(0) = @)} dv,(X)

= [ arona @EO—0@} .0 +{p =0 D} (#:0Q),

the second equality being a consequence of Lemma 8.
We now define B
a,(?) = v;(W:nQ) (€1, x]),

which allows (18) to be rewritten as
M (5,5 =N (5, 1) = [ 9(0) doty (1)~ (¥) 2, () + 9 (D, (1),

since ¢ is continuous and decreasing, and «, is of bounded variation on [1, x].
Integrating by parts, this yields

M (5, %)= (5, 1) == [ o, (1) dop (1)

=~ [T 4@ do)~ [} [, h(2)dn(2) do (),

and the result follows from the definition of #*(s, x).
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10. Proofs of Theorems 3, 4 and 6

10.1. To prove Theorem 3, we observe from Theorem 2 that

(19) M (5,3 =N (5, D= [[ [, 1.(2) du(Z)dp ).

Since ¢ is decreasing, the double integral is decreasing, and so .#*(s, x) is increasing.
Next note that the integrand

Jo 1+ (@) du(2)

Is right continuous with respect to ¢ (), so that the double integral in (19) is right
differentiable with respect to ¢(x), and

*
0) LD~ [ b (2)dn@)

holds on (0, + <) if the derivative is understood as a right derivative. Since the
right hand side of (20) increases as ¢ (x) increases, it follows that .#*(s, x) is con-
vex as a function of ¢ (x) on (0, + =), proving (i).

Further, if s is harmonic in Q,\ @,, then 1s(2,\8,) is zero, and it follows
from (19) that #*(s, x) is a linear function of ¢(x) on (y,w], and so on [y, w]
by the continuity of #*(s,x) on (0, +oo).

Finally, .#*(s,x) is constant if and only if u,(R,) is zero for all x, which is
equivalent to s being harmonic in Q.

10.2. To prove Theorem 4, we begin by obtaining some inequalities. Let y=1
and Q€QN\Q,. Since s€£92, it follows that s has a harmonic majorant in Q,
(for example, H?>) and so, using Theorem A to compare G(Q, -) with G,(Q, +)
in Q;, we have

@D [0,0@0d1X) = ¢ [ G,(0, X) din,(X) <+
Let PcQ,. Using Theorem A again, there is a positive constant ¢ such that
¢ h(Y)/h(P) = G(X,Y)/G(X, P) = ch,(Y)/h,(P)
for XeQ\Q, and Y£Q,;,, and so, from Lemma 2,
¢"G(X, P) = h,(X)G*(X,Y) = ¢” G(X, P),
for Xe@\Q, and Y€Q,,, whence

(22) ¢"V(E)GX,P) =h,(X)P(X) = c”Vv(E)G(X, P)
for Xe O\ Q,.
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We now show that (i) and (iii) are equivalent. The function s has a harmonic
majorant in  if and only if G, is a potential in Q. From (21) this is equivalent to

/. g, G P i (X) < o=,

which, in turn, is equivalent to (iii) because of (22).

It remains to show that (ii) and (iii) are equivalent. Let x>1. From (18) and
the integration by parts employed at the end of the proof of Theorem 2, we can
write

(23) M (5, %) = A (s, D+ D=0 @} [, 7 (0 dr(X)

+ [ o q, @) =0} R (X) dp(X)

= # (s D+o0) [, D@+ [, 2Oh,X) du ().
Thus (iii) implies (ii). On the other hand, the function
Y@ =0 20()
is defined for all sufficiently large x, and
Sona, @O0 @O A =5 [, - 2E)hX) A X,
since @(X)=¢(¥(x)) on Q. Therefore, from (23),

M) =N (D7 [, PE) R D) dp ),

NN
and so (ii) implies (iii).
10.3. It is now straightforward to deduce Theorem 6. To show (i), we recall that

M (5, %)= M*(5, %) = = [ A (@) dg (0).

Since ¢ is decreasing, the right hand side is increasing as a function of x. Further,
its right derivative with respect to ¢ (x) increases as ¢ (x) increases, so that it is con-
vex with respect to ¢ (x). The result now follows from Theorem 3 (i).

In the case of (ii), I, , is a harmonic majorant of s in Q,, and as in Theorem 1,
there exists a measure A, on dQ such that the least harmonic majorant of s in Q,
is given by

L(¥)=h,(¥) [ {G*(X, ¥)=F.(X, )} 2 (X).

The argument of Theorem 2 now yields that

H (5,9 =K (s, D= [{K @+ [, h(2) du (D)} do (),

and the result follows as in Theorem 3 (i).
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11. Proof of Theorem 10

11.1. The following lemma is required.

Lemma 9. Let O<a<z and S be a function which is non-negative and sub-
harmonic in Q\Q,, and vanishes continuously on t,\z,. Then the mean N'(S, x)
is real-valued and convex as a function of ¢ (x) for x€(a, z).

To see this, let a<b<c<d<y<z and define

Auy,X(Ta) if XEQ,, ’
SeX)={ 1  if Xez,
0 elsewhere in Q.

Clearly So€#2, and from Theorem A there is a positive constant ¢’ such that
S(X) = HENB(X) = 'S, (X)  (XEQN\Q),

the first inequality being a consequence of [15, Theorem 2 (i)] and the fact that
QN\W, is the disjoint union of the closures of finitely many Lipschitz domains (see
Definition 1). Hence the function

¢’Sy(X) if XeQ,
max {c¢"S,(X), S(X)} if XeW,nON\Q,
is subharmonic in 2., equal to S in ,\@Q,, and satisfies

lil}l sup S'X)=8(2Z)=c (Zery).

s - |

Now suppose that z=1. If x€(y,z), then
24 M(S’, x) = N (S, x)+M(Sy, x).

Since S,=0 in (W,nQ)\Q,, it follows from Theorem 3 (ii) that /*(S,, x) is a
linear function of ¢@(x) on (y, z). Further, it is easily seen from Lemma 6 and the
proof of Theorem 1 that

Y So (Tz\Ty) = 03

and so (S, x) is also a linear function of ¢(x) on (p,z) (see Definition 2).
In addition, Theorem 6 (i) shows that .#(S’, x) is a convex function of ¢(x) on
(0, z) (the fact that S” is not defined on all of Q is immaterial). Hence, from (24),
A'(S, x) is a convex function of ¢(x) on (y,z), and so on (a,z) since y€(a,z)
is arbitrary.

Finally, we point out that, if z=1, then we could define

Hyx(X) = H=(X) = [ 5(Z) dpeps,x(Z)

and corresponding means (s, x) and #)(s, x) to avoid the problem of S’ and
Ag- not being defined on 7.



22 S. J. GARDINER

11.2. We now prove Theorem 10. Routine differentiation yields that
Afh, exp(s/h)} =0

in Q if s€C2(Q). If XcQ, take a decreasing sequence (s,) of C? subharmonic
functions, and it follows easily that h,_exp (s/h,) is u.s.c. in Q and satisfies the
mean-value inequality for balls whose closures are contained in Q.

Let z=y=0. Using the fact that s=0 on 9 and Theorem A, there is a posi-
tive constant ¢ such that

s(X) = L+, (X) = ch (X)) (X€Q),
whence h, exp (s/h,) vanishes continuously on t,, and so (y being arbitrary) on
all of 9Q. It follows from Theorem 6 (i) that
JV(h* exp (s/hy), x)
is increasing as a function of x, and so the same is true of A%(s, X).
Let 0<a<y<w, and note that (see Lemma 3) the function

S = h, exp {k®+s/h,},
where

(25 k= {N5(s, w)=AH5 (s, M} {e ) —o W)},
is subharmonic in @\, and vanishes continuously on 9dQ\7,. From Lemma 9,
H(S, x) is real-valued and convex as a function of ¢ (x) on (a, + ). Using Lemma
4(d), if x€(y,w), then
exp{k exp {ANz:(s, x é{w}ex k exp {AN%:(s,
p{ke (x)} exp {AE(s, x)} ORI p {ko (»)} exp {VE(s, ¥)}
+ {(P(y)—co(x)

EA) } exp {ko (W)} exp { Az (s, W)}

which, upon rearranging, using (25) and taking logs, yields

_[ex)—eW) e (y)—(x)
#0092 (ST G R s RN
as required.

12. Applications to the whole space

In this and subsequent sections, when (n— 1)-dimensional surface area meas-
ure on the boundary of a domain exists, it will be denoted by o. Thus, in particular,
the spherical mean of a suitably defined function f is given by

L X, =crr [ f(Z)do(2),

B(X,r)

where c, denotes the surface area of dB(0, 1).
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Let Q=R" (n=3) and h,=1. First consider E={0}, and v to be the Dirac
measure at the origin. Clearly & (X)=|X|*"" so that x=+4- and, if we take
o(x)=x2"", then Q,=B(0, x) for all x, and

M* (s, X) = M (5, x) =N (5, x) = HEOX(0) = #(s: 0, x).

The following well-known results are now seen to be special cases of the results in
Sections 4 and 5.

Theorem 11. Let s be subharmonic in R* (n=3) and u be positive and super-

harmonic. Then
(i) Z(s: O, r) is convex as a function of r*~" and increasing as a function of r;

(i) if Ry>R,>0 and s is harmonic in B(O, R)NB(O, R,), then Z(s: O,r)
is a linear function of r*~" on [Ry, R,];

(iii) s has a harmonic majorant in R" if and only if £ (s: O,r) is bounded
above for r=0, which in turn is equivalent to

S X D27 dp(X) < + oo

(iv) the expressions
sup {s(X): |X|=r}
and
log L (exps: O,r)

are convex as functions of r*~" and increasing as functions of r=0;
) if s=0 and p=1, then the same is true of

{&L(s?: O, r)}P,;
(vi) if p€(—eo, 0)U(0, 1), then
{L@r: O,r)}?
is concave as a function of ¥*~" and decreasing as a function of r=0.

It is natural to ask what results could be obtained for different choices of E
and v. The simplest cases to consider would be when E is an m-dimensional ball,
where O0<m=n—1, and v is symmetrically distributed on E. In order to simplify
the discussion, we shall restrict ourselves to the case Q=R3, and again let h =1.

Example 3. (i) Fix ¢=0 and let
E = {XcR® x; =x,=0 and |x3] = c}.
It will be convenient to work in prolate spheroidal polar co-ordinates, so that
x; = ¢ sinh 7 sin 6 cos Y,

X, = ¢ sinh# sin 6 sin ,

X3 = ¢ cosh 5 cos 0,
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where
0=n<+o, 0=0=7 0=y <2m.

Choosing ¢ (x)=log coth (3 x), itis routine to deduce that Q, is the region bounded
by the prolate spheroid

x3/cosh? x +(xF +x3)/sinh? x = c?,
and that

M (s, %) =N (s, x) = (4n)—1cf:j:"s(x, 0, W) sin 6 dy db.

A theorem analogous to Theorem 11 can now be written down for the prolate
spheroidal mean ./(s, x); convexity is in terms of logcoth (3 x).
(ii) If similar calculations are performed for

E = {XeR®: xi+x3=c? and x; = 0},

analogous results for an oblate spheroidal mean are obtained. Details are left to
the reader.

13. Applications to the half-space

Let Q=R"'X(0, + ) (n=2), let E={0} and v be the mass ¢,/(2n) at O,

and h, (X)=x, in Q. From [25, Lemma 1],
297 e %, v (X, —x) =Y | "= G(X,Y) = 29, e %, 3, [ X =Y |77,
where y, is as defined in Section 3. Hence
?(X) = ¢,2n) T G*(X, 0) = y; ' n~H|X |7

Thus x=+4oc and, defining ¢(x)=y,'n"'x™" for x€(0, + ), it follows that
Q.=B(0, x)nQ. It now follows from [14, Section 8] that

N (5,0 =x"1 [ yus(V)do(¥),
and *
M (s, %) = N (s, x)+f:t"‘“1f1 s(Y)do (Y) dt.

In this context, Theorems 2—6 are improvements of the main results of [4].

14. Applications to the infinite cylinder

Instead of deducing known results concerning the infinite strip, [5], and infinite
cone, [13], we follow the pattern of [14] and derive previously unpublished results
for the infinite cylinder.

Let Q={X’, x,): |X’|<1}, (n=2). We shall employ the Bessel function
J (n—3y2 defined in Watson [28, pp. 40—42], the least positive zero of which will be



Generalized means of subharmonic functions 25

denoted by a,. We write

‘ V(@) = 1O _g(a,t) (t>0)
an

b, = anJ(n—l)/2(an) >0,

(see [28, p. 45(4) and p. 479 § 15.22]). Recalling (see [14, Lemma 3]) that the func-
tions ¥ (|X’]) exp (+a,x,) are positive and harmonic in Q and vanish on 9R, we
can define

E=X,x,): |X'| <1, x,=0},

dv(X) =2{y (X"} dX" dd,(x,) (XEE),
hy(X) = ¥ (|X”]) cosh (a,x,),

and

where J, denotes the Dirac measure at the origin of R.
Next we determine @, and hence Q.. Clearly the function

v(X) = a; ' exp (—a, [x, DY (X)) (XeQ)

is positive and superharmonic in Q, harmonic in Q\ E, bounded above on @, and
continuously vanishing on 9Q. From a result of Bouligand [18, Corollary 9.20],
the greatest harmonic minorant of » in Q is zero, and so v is the potential whose
measure is given by u=—y,4v. If we now let ¥ be a C* function with compact
support in €, it follows from Green’s theorem (as in [14, Section 9]) that

@y ==2f . XX O _yn(a,|X ] dX’,

[X’]<1}
whence

dﬂ(X) = 2'}’,, ]X/l(3_")/2‘,(n—3)/2 (an IX’D dX’ déo(xn)3
and so

vt X) = [L G, V), (V) dv(¥) = h,(X) S (X).
Hence, dividing through by A (X),

D(X) =y, 'a; " exp (—a,|x,|) sech (a, x,),
= ’yn_lan_1 {1 —tanh (an lxn[)}’

and so x=y, 'a,'. If we define

o (x) =y a; {1 —tank {a,x)},
it follows that
Q. = {XeQ: |x,| < x},

and so, from [14, Section 9],

A (5, %) = sech (@,%) [ ¥ (X'Ds(X) do(X),
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and
M (5, %) = N (s, %)+b, [ 1 sech? (a,7) [  s(X) cosh (a,x,) do (X) d1.

The results of Sections 4 and 5 may now be applied to subharmonic functions in
the infinite cylinder, and convexity as a function of ¢(x) can clearly be equivalently
stated as convexity as a function of tanh (a,x).

References

[1] AsLFORS, L. V.: On Phragmén—Lindelof’s principle. - Trans. Amer. Math. Soc. 41, 1937,
1—S8.
[2] AALFORS, L. V.: Remarks on Carleman’s formula for functions in a half-plane. - SIAM J.
Numer. Anal. 3, 1966, 183—187.
[3] ARMITAGE, D. H.: Half-spherical means and harmonic majorization in half-spaces. - J. London
Math. Soc. (2) 19, 1979, 457—464.
[4] ARMITAGE, D. H.: A Nevanlinna theorem for superharmonic functions in half-spaces, with
applications. - J. London Math. Soc. (2) 23, 1981, 137—157.
[5] ArmITAGE, D. H., and T. B. FUGARD: Subharmonic functions in strips. - J. Math. Anal.
Appl. 89, 1982, 1—27.
[6] ARMITAGE, D. H., and S. J. GARDINER: Some Phragmén—Lindelof and harmonic majoriza-
tion theorems for subharmonic functions. - J. Math. Anal. Appl. 102, 1984, 156—174.
[7] BRaWN, F. T.: The Green and Poisson kernels for the strip R"X]0, 1[.-J. London Math.
Soc. (2) 2, 1970, 439—454.
[8] BrawN, F. T.: Mean value and Phragmén—Lindelof theorems for subharmonic functions in
strips. - J. London Math. Soc. (2) 3, 1971, 689—698.
[9] BRAWN, F. T.: Positive harmonic majorization of subharmonic functions in strips. - Proc.
London Math. Soc. (3) 27, 1973, 261—289.
[10] DAHLBERG, B. E. J.: Estimates of harmonic measure. - Arch. Rational Mech. Anal. 65, 1977,
275—288.
[11] DinGHas, A.: Uber einige Konvexititsitze fiir die Mittelwerte von subharmonischen Funk-
tionen. - J. Math. Pures Appl. 44, 1965, 223—247.
[12] Fucarp, T. B.: Growth and convexity properties of harmonic and subharmonic functions. -
M. Sc. Thesis, The Queen’s University of Belfast, 1979.
[13] FuGarDp, T. B.: Harmonic and subharmonic functions in cones and half-spaces. - Ph. D.
Thesis, The Queen’s University of Belfast, 1981.
[14] GARDINER, S. J.: Harmonic majorization of subharmonic functions in unbounded domains. -
Ann. Acad. Sci. Fenn. Ser. A I Math. 8, 1983, 43—54.
[15] GARDINER, S. J.: Local and global majorization of subharmonic functions. - J. Analyse Math.
42, 1983, 175—184.
[16] HAYMAN, W. K., and P. B. KENNEDY: Subharmonic functions, Vol. I. - London Mathema-
tical Society Monographs, No. 9, Academic Press, London—New York—San Fran-
cisco, 1976.
[17] HEeins, M.: On some theorems associated with the Phragmén—Lindel6f principle - Ann. Acad.
Sci. Fenn. Ser. A I Math. 46, 1948, 1—10.
[18] HeLms, L. L.: Introduction to potential theory. - Wiley-Interscience, a division of John Wiley
& Sons, New York—London—Sydney—Toronto, 1969.
[19] HUBER, A.: On functions subharmonic in a half-space. - Trans. Amer. Math. Soc. 82, 1956,
147—159.



Generalized means of subharmonic functions 27

[20] HunT, R. A., and R. L. WHEEDEN : Positive harmonic functions on Lipschitz domains. - Trans.
Amer. Math. Soc. 147, 1970, 507—527.

[21] JerisoN, D. S., and C. E. KeNiG: Boundary behavior of harmonic functjons in non-tangentially
accessible domains. - Adv. in Math. 46, 1982, 80—147.

[22] KuraN, U.: Study of superharmonic functions in R"X(0, + <) by a passage to R"*3. - Proc.
London Math. Soc. (3) 20, 1970, 276—302.

[23] KuraN, U.: On half-spherical means of subharmonic functions in half-spaces. - J. London
Math. Soc. (2) 2, 1970, 305—317.

[24] Naim, L.: Sur le role de la frontiére de R. S. Martin dans la théorie du potentiel. - Ann. Inst.
Fourier (Grenoble) 7, 1957, 183—281.

[25] NUALTARANEE, S.: On least harmonic majorants in half-spaces. - Proc. London Math. Soc.
(3) 27, 1973, 243—260.

[264 Riesz, F.: Sur les fonctions subharmoniques et leur rapport a la théorie du potentiel. - Acta
Math. 48, 1926, 329—343.

[27] Tsuat, M.: On a positive harmonic function in a half-plane. - Japan J. Math. 15, 1939, 277—
285.

[28] WATsON, G. N.: A treatise on the theory of Bessel functions (2nd edition). - Cambridge
University Press, London, 1944.

[29] Wu, J.-M. G.: Convexity of integral means of subharmonic functions. - Proc. Amer. Math.
Soc. 60, 1976, 225—230.

[30] Wu, J.-M. G.: Comparisons of kernel functions, boundary Harnack principle and relative
Fatou theorem on Lipschitz domains. « Ann. Inst. Fourier (Grenoble) 28, 1978,
147—167.

Mrs. Marjatta Lappalainen

14 January 1986
Present adress

The Queen’s University of Belfast University College
Department of Pure Mathematics Department of Mathematics
Belfast BT7 1NN Belfield, Dublin 4

Northern Ireland Republic of Ireland

Received 9 February 1984



