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A REPRESENTATION THEOREM FOR HARMONIC
FUNCTIONS IN THE BALL IN R”

KRZYSZTOF SAMOTIJ

1. Introduction

Throughout this paper n is an integer greater than or equal to 2, and
B={x€R": |x|<l1} is the open unit ball in the n-dimensional Euclidean space R",
where |x| denotes the Euclidean norm of x€R” S={x€R": |x|=1} is the Euclidean
boundary of B. For arbitrary nonzero x, y€R" set

x-y
@(x, y) = arccos—=—,
x| |yl

where x-y stands for the inner product of x and y. We denote by P the Poisson
kernel for B, i.e.,

1—|x|? 1—|x[?
PGe.n) = -0 al

x—n" ~ [1—2x[cos ¢ (x, n)+|xPI"

= P(|x], ¢ (x,m),
whenever x€B and n€S. For n€S and t=0 the set
Cn, 1) = {£€S: o(n, O <1}

will be referred to as an open spherical cap of radius ¢ centered at 7, while the set

Cn, 1) ={¢€S: o, &) =1}

will be called a closed spherical cap of radius # centered at 7. ¢ denotes the surface
measure on S so normalized that ¢(S)=1. If u is a finite Borel measure on S,
then the Poisson integral of u is defined, as usual, by

Pldp)(x) = [ P(x, mdu(n), x<B.

When feIL(c), we write P[f] in place of P[fdo]. It is classical (and known in
the case of n=2 as the Riesz—Herglotz theorem; see also [2], p. 175) that if =0
is a harmonic function on B, then wu=P[du] for some finite nonpositive Borel
measure u on S, called the boundary measure of u. In this case, for each #€[0, 7]
and n€S the limit

) u, () = lim [ u(r&)do(®)
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exists and
) u, (1) = 5 [u(C, D) +u(C@y, 1))] for each 1€(0, n).

For each x¢B we then have
©)] u(x) = f:ﬁ(]xl, 1) du,(t), with 5 =x/|x] if x#0,

and with arbitrary €S if x=0.

In this paper we prove the sufficiency of a certain condition on u for the existence
of the limits (1) and for the validity of the representation (3), even when there is
hardly a trace of a boundary measure left. Namely, we will prove

Theorem 1. Let u be a real harmonic function on B. Let m(r)=max,cg u(rn),
0=r<I1, and suppose that

_ (n—1)/n
@ 7= = [}[2OZmOF Ty .
Then the limit u,(t) defined by (1) exists for each n€S and each t€[0, ). Each u,

as a function defined on [0, ] has one-sided limits at each t€[0, n] and
®) u,(t) = —;— [u,(t+)+u,(t=)] for each t€(0, m).

Moreover, the representation (3) is valid for every x€B.

If we assume in addition that u(0)=0, then there exists a continuous increasing
function % on [0, 7] depending only on m and n, with x(0)=0 and x(m)=A,J""~Y,
where A, is an absolute constant depending only on n, such that

(6) u, (t) —u, (t) = %(fy—1)

whenever 0=t,<t,=mn, and neSs.
In the case where n=2 we can express our result in an apparently stronger
form, as

Theorem 2. Let u(z) be a real harmonic function in |z|<1. Let m(r)=
max,, =, u(z), 0=r<1, and suppose that

/ m(r)—m(0)
@) J= f V ———dr <
Then
(i) for each arc I of the unit circle the limit
) WD) = lim - [ uG2)1dz]
exists,
@ ©) wn =« (2

provided u(0)=0, where x is as in Theorem 1 and |I| denotes the length of I,
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(iii) if fi()=p({e®: 0=0=t)), all discontinuities of fi are of the first kind, and
moreover
() B@) = FEE)+AED), if €02m),
and
A(0+) = gQ@2n)—f@2r-),

(iv) the following representatz’on is valid:

®) w@ = [7 S a1 <1

In the formulation of Theorem 2 we use the usual correspondence between R?
and the complex plane.

Theorem 2 is not entirely new. It appeared in a weaker form in [2; Theorem 2].
It was shown there that if (4°) holds, then there is a real number 7, such that the
limit (1’) exists for almost every real t€[ty, t,+2n] with I=1,=1{": t,=0=t}
and (3') holds (provided the integral in (3') is defined by integration by parts). In
the proof of that theorem the authors made good use of a conformal mapping
technique. The proof presented here seems to be more elementary, gives a stronger
result, and generalizes to the higher dimensional case.

The author would like to express his deep gratitude to Boris Korenblum for
his invaluable help in the course of the preparation of this paper.

2. Definitions, notations and basic facts
The Poisson kernel P has the following estimate, which is easily verified:

) P(r, t)§2[—7t£]n(l—r) O=r<1,0<t=n).

For each n€S and each 7€(0,n) the set S, ,={(€S: o(n, &)=t} is an (n—2)-
dimensional submanifold of R". Denote by o, ., the (n—2)-dimensional surface
measure on S, , so normalized that o, ,(S,)=1. If fis a nonnegative Borel meas-
urable function on S, and 7€S is arbitrary and fixed, then

®) [ fdo= % Jo (=2t f s, Jdong) dr

where c¢;= f ¥ sin""?rdt. Therefore, for each fixed x€B, x#0, and C(x)=
C(x/|x|, 1—|x]) we have

) ¢ént(')P(x, &-o(Cx)) = P(x], 1—|x])- _fl (xl -2t dt
1

= Gt (n—1)
where the last inequality defines c,.

= Cy,
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A subset 4 of S will be called a spherical simplex (or just a simplex) if 4 can
be written as the intersection of at most n+1 open caps. There exists a positive
integer N depending only on 7 and with the following property: if a set Dc.S is
the intersection of a spherical simplex and a cap or the complement (in S) of a
spherical simplex, then D can be represented as the union of at most N disjoint
spherical simplices and a set of ¢ measure zero. This becomes evident when we
note that every open cap is the intersection of S and an open half-space. For each
x7#0 and ACS, A#0, we set ¢(x, A)=inf,c, ¢(x,n). Moreover, for each AcCS,
0= A=S, we denote w(A4)=sup,c, ¢ (1, S\A).

Let k be a positive continuous nondecreasing unbounded function on [0, 1)
such that k£(0)=0 and

(n—1)/n
J=J(k) = f(f(_?) dr <o,

For each positive constant M the condition
10 k(e(n) = Mt="(1-0(0), 1€(0, ),

defines the unique function ¢=g, on (0,z]. If, in addition, we set g,(0)=1,
then g, will be a continuous decreasing function from [0, 7] into (0, 1]. Since

Jre=D = k(o(1)) (fl (l_r)(l—n)/ndr)”/(n—l)

- )™

we have

(11 1—g(z)§% for each €(0, ),

whenever M=M,=(2r)"J""~Y, The last inequality will be assumed to hold in
what follows. Let 0<¢’<t¢=n. Then

f;k(g(z)) dv = Mf:, (1—9(7:))d[131_——,;)

_ Ml/n e((:)f) [( Ilc_(rz)(n—l)/n ~ (ILE%)_](”—W

]dr+o(1).

By letting ¢ tend to O we obtain

(12) [ik(e@)dr < -A-lll(’)

where

! k(r)]("_l)/”
#(1) —ngo(t)(l dr, t€(0,n].

—r

Note that the function % is continuous and increasing, that #(n)=J, and that
lim, . %(¢)=0.
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3. Proof of Theorem 1

For each M=M, and each simplex ACS, 0=A4=S, we define an auxiliary
mapping =X, ,, ¥: S—B, by the following formula:

20) = { neESN\A4,

= Lol @, S\, neA.

Let the auxiliary function #=0,,, be defined on S by the following formula:

{0 neESN A4,
bl = k(Ixm), neA.

We extend  to the function v=wv, , defined on B, by setting »(x)=P[?](x) for
x€B. It is possible since we have the following

Lemma 1. The function ¥,,,, is integrable with respect to o. Moreover, there
exists a constant c¢;=>0 depending only on n such that

S Bando = e MU %(w(A) = e M.

Proof of Lemma 1. Let A= ﬂj 1Cnj, 1)), where I=n+1, n;€S, t;€(0,n],
j=1,2,..,1. By the definition of w(4), we have Acl);_, C;, where C;=
C(n;, ,)\c(nj, ;—w(A)) if t;=w(4), and C;=C(n;, 1,)if t;=w(4), j=1, 2, ..., 1.
It is clear that 7, M(n)<max {vc wM: lfj<l} for each n€S. Therefore, 1f we
denote #;=max {0, ;—w(A4)}, we will have:

fﬁA,Mdo- = 2j=1f6.ﬁcj’M do
= e[, Kleu (o, S\C,)) do ()

- 2;=I%f;j-tjk(0n4(t))Sin"’Ztdt< Qf(i)M_ 2(w(4),

where the second equality follows from (8) and the last inequality from (12). This
gives the first inequality of the lemma. The second one follows from the defini-
tion of #%.

Lemma 2. There exists a constant c,>0 depending only on n such that for
each simplex ACS, 0= A#=S, for each M, M=M,, and each n€ A we have

UA,M(’z (’7)) = cqvq, ().

Proof of Lemma 2. Note first that there exists a constant ¢;>0 such that for
arbitrary distinct points #y, 7,€S and real numbers 7y, #;, O<t,<t;=0 (1, #1),
we have

o(CnCy) _

(13) _—o—'@_ = (s,
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where C;=C(1;, t;),j=0, 1. Now, fix noc4. Let €SN\ A be such that ¢ (10, 11)=
© (Mo, SNA). Let t;=¢(ny,ny) and t,=1—0y (). Note that, by (11), we have
O<ty<t,. And, since k(g (?)) is a decreasing function of 7, we have v, u@m=
vy, m(no) for each n€CinA. Therefore

UA,M(-7~C (’70)) = ¢;0(Co) » v4,m(1M0) * neicrolgc 1‘6(Jz (10)s ’1) = ¢5¢a 04, (M0)s

where the first inequality follows by (13) and the second by (9).
Now we are able to prove Lemma 3, which is an essential part of the proof
of Theorem 1.

Lemma 3. There exists a constant cg=0, depending only on n, such that for
every function u, harmonic in a neighborhood of B with u(0)=0 and u(x)=k(|x)),
X€B, and for every spherical simplex ACS, 0#A#S, we have

i udo = cgJN7(w(A).

Proof of Lemma 3. Let o/ be the family of all simplices in S. Let us denote
K=sup,., [4udo. Note that, since [sudo=0, we have [,udo=—NK and
f catdo=—N3K for arbitrary A€s/ and an arbitrary cap C, where N is the
constant from the previous section. Now, for arbitrary A€/, 0#A#=S, and x€B,
x#0, such that ¢(x, S\A4)=1#,>0, we have

Plu-1s4](x) = f:: P(lxl, 1) d(fc(x/[x[,t)\A

Observe that (7), (10) and what is above give

ude)= P(|x|, 1) (— N*K).

(14) Plu- 15 (3() =L K(F@))

for each n€Ad, where c;=4n"N2.
For each A¢sf and each M=M, set

1(c,K .
h=hyu= u‘lA—a(%[-l'l) Vg, M5

and extend & to the whole of B by its Poisson integral. Then by Lemma 1 we have

(15) h(0) = fAuda—i—z (%+1] M7 5% (w(A)).

On the other hand, u-1,=u—1g,-u on S, and hence, by Lemma 2 and (14),
we have

(16) h(%(@m) =0 for every ned.
Let G={x€B: x#0, |x|<X(x/|x)}u{0}. We can write 0G=G,0GLG;,

where G,=3X(A4), G, is the interior (in the relative topology on S) of S\ 4 and
G, is the boundary of 4 (also in the relative topology on S). The function A is har-
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monic on G and continuous on G\G,. Moreover, h(n)=0 for each #§€G, by the
definition of A, and, by (16), h=0 on G,. Since k is bounded from above on BOG,
and since G, is a polar set, we have, by a version of the maximum principle due to
Ascoli ([1], Theorem 5.16), that A=0 on G. In particular h(0)=0. Therefore, by
(15), we have

K

el it 1ng
(17) S udo= - ( 7 +1) MY %(w(4)),
and, consequently,

¢ (c; K Un
K= -01(7+1]M/ J.
Since the last inequality holds for each M =M,=(2r)"J""~Y, there is a constant
cs depending only on 7 such that K=cgJ*®~Y, This together with (17) implies the
lemma.

Now, let » be an arbitrary continuous increasing function on [0, ] with
%#(0)=0. A real function f defined on [0, n] is said (in this section only) to have
the x-property if f(0)=f(n)=0, f(t,)—f(t;)=»(t,—t,) whenever 0=t,<t,=n, and
S@)=[f(t+)+f(t—)]/2 whenever it makes sense. Note that if f has the x-prop-
erty, it has one-sided limits at each 7€[0, #] (so the last condition for the %-prop-
erty is satisfied at each 7€(0,n)) and, consequently, f has at most a countable
number of points of discontinuity, and that |f(¢)|=x(n) for each ¢€[0, z]. In
the next step of the proof of Theorem 1 we will need the following Helly-type selec-
tion theorem adopted from [4] (Theorem 1, p. 204).

Lemma 4. Let x be a function as above. Let {f;}7_, be a sequence of real
JSunctions such that each f; is defined on [0, nt] and has the x-property. Then there
exist a function f on [0, n] having the x-property and a subsequence { fi} (h<je<...)
which converges to f at every point of continuity of f.

The proof of Lemma 4 can be established by a slight variation of the classical
proof of the Helly selection theorem (cf. [3]).

Now, assume that u satisfies the assumptions of Theorem 1. Note first that
it is sufficient to prove the theorem in the case where u(0)=0. Moreover, we can
and do assume that u is unbounded from above, since otherwise the result is classical.
Now, set k(r)=m(r), 0=r<1. Such a k has all the properties that we assumed
for the function k introduced in the second section. Let u®(x)=u(rx) for each
r€(0,1) and x€B/r. Fix an arbitrary n€.S, and set

u" (1) = f - u"de, 0=t=nm.
Since, u®(x)=k(|rx])=k(|x]), r€(0, 1), x€B, Lemma 3 gives

(18) u® (1) — u® ()

= (l')d - Jl/(n_l) ~ t—t
u 0 = C 14
fc(ﬂ.tg)\C(n,tl) 6 (ta—1),
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whenever 0=t,<t,=n, because w(C(n, )\C’(n, t;))=(t,—1)/2. Let us denote
%(1)=ceJY" VD 5%(1). Observe that x» as a function on [0, =] is continuous and
increasing, %(0)=0, and x(m)=cgJ"" . From the inequality (18) it follows
that each uf,’) has the x-property. Lemma 4 implies that for each n€S there exist
a sequence {r;}j=,, O<r;<1, tending to 1, and a function f, on [0, 7] having the
x-property such that lim;_ . uf,"f)(t)z £,(¢), whenever ¢ is a point of continuity of f.
Now, for each x€B such that x/|x|=n we have

u(x) = Jim u(r;x) = lim f 0 B(|x], ) dufr? (t)

. n 0 «~
=~ lim f 319 () P(lxl, ) dt

=- f:f,,(t)%ﬁ([xl, tyde = [T P(xl, 1) df, ),

by integration by parts and the Lebesgue dominated convergence theorem.
Now, it remains to prove that the limit , () exists for each #€[0, n] and u,=f;.
For this purpose let us state an elementary lemma.

Lemma 5. For each r€(0,1) and tc(0,n) let us define a function p” on
[0, ] writing pP(s)=Pllc,s](r0), where { is an arbitrary element of S satisfying
the relation @ (n, {)=s. Then p® is a well-defined continuously differentiable, decreas-
ing function on [0, nt], and for each t€(0,m) we have

1 if 0=s<1¢,
lim p(s) =5 ¥ s=t,
Jim

0 if t<s=m.

Moreover, if g is a harmonic function on a neighborhood of B, then for each n€sS,
t€(0, m), r€(0, 1) we have

Jo ,8CD0® = [Tp0@d( [, 8O do).

Using this lemma, the integration-by-parts formula and the Lebesgue dominated
convergence theorem, we obtain first, for arbitrary r€(0, 1) and t€(0, n),

f u® de = lim ur) do
Cln, 1) e 4 C(n,t)

. pn 0
= — lim fo u®)(s) gp,(’)(s) ds

jroo

= [ KO B P ds.
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Then, by letting r tend to 1 above, we get (again by Lemma 5):
u® do = f;y(t‘);'f;,(t'i')‘

lim
r>1—J C(n,1)

This concludes the proof of Theorem 1.

4. Conclusion

Theorem 2 is, apart from unessential changes, a special case of Theorem 1.
On the other hand, the method used in the proof of Theorem 1 is greatly simplified
when used to prove its 2-dimensional version, Theorem 2. The reason for this is
that the concept of spherical simplices can then be replaced by that of circular
arcs. It should be noted that the last part of the proof ot this case is essentially
contained in [4] (Theorem 2, p. 212).

It is obvious that using translations and dilations we can generalize our result
to the case of an arbitrary open ball in R”. Furthermore, employing also the Kelvin
transform we can obtain from our theorems their half-space (in the case of Theorem 2,
“half-plane”) analogues.
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