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1. Introduction

Throughout this paper n is an integer greater than or equal to 2, and

!:{x(R': lrl=1} is the open unit ball in the n-dimensional Euclidean space R',

where lxl denotes the Euclidean norm of x€R'. §: {x(R': lxl: l} is the Euclidean

boundary of .8. For arbitrary nonzero x,y€R' set

E@, y) - arc cosffi,

where x.y stands for the inner product of x and y. We denote by P the Poisson

kernel for B, i.e.,

P(x, q) : ffi : ffi : F(lxl' E(x'tr))'

whenever xCB and 4(,S. For 4€§ and ,>0 the set

C(/t, t): {(€,S: EQt, E) = tl

will be referred to as an open spherical cap of radius I centered at 4, while the set

e @, t): {(€s: EQt,0 = t}

will be called a closed spherical cap of radius I centered at 4. o denotes the surface

measure on,S so normalized that o('§):l' lf p is a finite Borel measure on 
'S,

then the Poisson integral of p is defined, as usual, by

Pfdpl@) : t r1x,q) dp(D, xQB.

when /€I1(o), we wnte Plfl in place of Plfdol. It is classical (and known in

the case of n:2 as the Riesz-Herglotz theorem; see also l2l, p. 175) that if u=0
is a harmonic function on B, then u: Pldp) for some finite nonpositive Borel

measure p on ,S, called the boundary measure of. u. ln this case, for each t€.l0,11l

and ,? € ,S the limit

(1) lim f
r-*1- J e@,t)

un(t) - u(rQ do(o

koskenoj
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exists and

@ uo(t):*UrQQtt))+pG@,t))7 ror each r€(0,zr).

For each x€B we then have

(3) u(x) : I, p<l*|, t) dur(t), with q : xllxl if x * 0,

and with arbitrary f€,S if x:0.
In this paper we prove the sufficiency of a certain condition on u for tle existence

of the limits (l) and for the validity of the representation (3), even when there is

hardly a trace of a boundary measure left. Namely, we will prove

Theorem l. Let ube a real harmonic function on B. Let m(r):nlaqcsu(rn),
0=r=1, and suppose that

(4) l: l(m): Il3#9)''"'' o, -*.
Then the limit ur(t) defined by (l) exists for each q€S and each t(lO,nl. Each u,
as afunction defined on l},nf has one-sided limits at each t(f},nl and

(5) ur(t) : !lur(t+)+ur(t-)1 for each t€(0, n).

Moreoaer, the representation (3) is ualid for euery xQB.
If we assume in addition that u(0):0, then there exists a continuous increasing

.function x onfO, n) depending only on m and n, with z(0):9 and x(n):loJnl@-L),
where Ao is an absolute constant dependtng only on n, such that

(O ur(tr)-ur(h) = x(tr-tr)
wheneaer O<tr<tr=n, and q(5.

In the case where n:2 we can express our result in an apparently stronger

form, as

Theorem 2. Let u(z) be a real harmonic .function in lzl<1. Let m(r):
In&x;21=r u(z),0<r<1, and suppose that

(4,) ,:l:{rydr=*.
Then

(i) for each arc I of the unit circle the limit

(1) tt(D: Ir1-+ I,"Qz)ldzl
exists,

(ii) (6') p(r) 
= , ()!!)

prouided z(0):6, where x is as in Theorem I and lll denotes the length of I,
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GiD if fi(t): U({ett : 0=0=r}), all discontinuities of ir. are of the first kind, and

moreoaer

(s') iL(t): *WG)+t (t+)1, if t1(0,2n),

and
pi0+) : PQn)-fiQn-),

(iv) the following representation is ualid:

(3) u(z) : I7 frW,- a,drt(o), lzl = 1.

In the formulation of Theorem 2 we use the usual correspondence between Rg

and the complex plane.

Theorem 2 is not entirely new. It appeared in a weaker form in 12; Theotem 21.

It was shown there that if (4') holds, then there is a real number lo such that the

limit (1') exists for almost every real t(fto,to+2n] with l:It:{eiq: to=0=t}
and (3') holds (provided the integral in (3') is defined by integration by parts). In
the proof of that theorem the authors made good use of a conformal mapping

technique. The proof presented here seems to be more elementary, gives a stronger

result, and generalizes to the higher dimensional case.

The author would like to express his deep gratitude to Boris Korenblum for
his invaluable help in the course of the preparation of this paper.

2. Definitions, notations and basic facts

The Poisson kern el F has the following estimate, which is easily verified:

31

(7)

(8)

(e)

F@,t)=2 (1 -r) (0=r<1,0=t<ir).H"
For each 4€§ and each r€(0,2) the set Sa,r:{1<S: clQ6$:t} is an (n-2)-
dimensional submanifold of R'. Denote by or,, the (n -2)-dimensional surface

measure on,Sr,r so normalized that or,r(Sr,r):1. If/is a nonnegative Borel meas-

urable function on,S, and ry€^S is arbitrary and fixed, then

{ ,f ao : :r/, (tr" n-z 
7 f s,,,f dor,,) ,tt,

where cr: It sin"-z t dt. Therefore, for each fixed x€8, x*0, and C(x):
C(xllxl,l - lxl) we have

,tu?[, 
P(x, O.o(c(r)) - F(lxl, 1

1

-rxr).:{:-'o

=6
where the last inequality defines c2.

- 
Lzs

sin'-? t dt
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A subset I of § will be called a spherical simplex (or just a simplex) if a can
be written as the intersection of at most n*l open caps. There exists a positive
integer i[ depending only on n and with the following property: if a set Dcs is
the intersection of a spherical simplex and a cap or the complement (in ,s) of a
spherical simplex, then D can be represented as the union of at most r/ disjoint
spherical simplices and a set of o measure zero. This becomes evident when we
note that every open cap is the intersection of § and an open half-space. For each
x*0 and AcS,A*0, we set g(x, A):infaee,E@,q). Moreover,foreach AcS,
A # A* S, we denote w (A): suprq,- e 01, §^ .\ 

l).
Let k be a positive continuous nondecreasing unbounded function on [0, l)

such that ä(0):g *6
l: l(k): /;(+$)b-D, o,< {e.

For each positive constant M the condition

(10) k(q(r» : turr'(t - a(0), t€(0, n),

defines the unique function e:Qu on (0, n). lf, in addition, we set g,w(0):1,
then q,6 will be a continuous decreasing function from [0, z] into (0, ll. Since

7nl@-L) .\-
.t: k(e(/)) U 

^r(1 
- r)(r- "r1o dr)nt(n-L)

we have

(1 1)

= 
M (zn(t - q(t)) 

1n/(n 
-t)

-(2n)'t t ) '

1 - q(r) = * for each t((0, n),

whenever M>Mr:QrE)nJnlb-L). The last inequality will be assumed to hold in
what follows. Let 0<t'<t<2. Then

I)ok«>1tu: a !,,,(r_sG)) ,G-)

= {= t ff' [ 
(PJ. 

- " - (+@-- 
a J 

@ - t) t n 

I 
dr * o (t)

By letting t' tend to 0 we obtain

(t2) Ii*k@)a, =ffi,
where

n(t): Ii*,or(fl)'"-"'" a,, K(0,nr.

Note that the function f is continuous and increasing, that fi(n)<_J, arid that
fiml-o+ fi(t):O.
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3. ProofofTheorem 1

For each M=-Mo and each simplex AcS, g#A+5, we define an auxiliary
mapping fr:in,*, i: ,S*8, by the following formula:

(4, ry€S\1,
x\tD : ln*(*(r,S\l))r, ?t€A.

Let the auxiliary function ö:6n,* be defined on ,S by the following formula:

(0, ry€s\1,
ö(q) : to1p1ryl;, rt(A.

We extend fi to the function a:uA,M defined on ,8, by setting u(x):f1511r; got

x€8. lt is possible since we have the following

Lemma l. The function ön,* is integrable with respect to o. Moreouer, there
exists a constant cr>O depending only on n such that

I ,o,* d.o < crMTt"N(w($) = cBMunJ.

Proofof Lemmal.Let A:O!i=r,C(qi,t), wberc l=n+|, 4j(5, tje(O,n),
j:7,2,...,1. By the definition of w(A), we have Acl)tr=rer, where ei:
C(4.;,1;)\C(n1,t1-r1A)) if tt>w(A), and ei:C(rti,tj)if tj<w(A), j:1, 2,...,1.
It is clear that fro,*Q1)=max tö".,*Qil: l=j<l\ for each 4€,S. Therefore, if we
denote tj:^u* {0, t j-w(A)}, wä wiil have:

! an,* ao = Z'r:rf r,öc1,u 
ito

: Z', :, I r,k(o u(o@,s\c))) do (q)

: Z',:r* I :-'t otn (r)) sin'-,, a, = ffffi fi@@)),

where the second equality follows from (8) and the last inequality from (12). This
gives the first inequality of the lemma. The second one follows from the defini-
tion of ft.

Lemma 2. There exists a constant cr>O depending only on n such that for
eachsimplex Ac.S,0*A*5, Jbr each M, M>Mo, andeach r1(A we haue

u^,a(iQ») > caoe,u(4).

Proof of Lemma2. Note first that there exists a constant cs>0 such that for
arbitrary distinct points qo,rhcs and real numbers to, tL, O<to<tr:e(4o,4r),
we have

(13) o(cg2?) - "-o(c)
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where Cr:C(!li,ti),i:O,1. Now, fix qo€A. Let 4r(§^.-1,4 besuch thatEQlo,qr):

9(40,§^.-\,4). Let tr:cp(4o,qr) and to:l-Qu(tr). Note that, by (11), we have

0<to<t1. And, since k(e*@) is a decreasing function of l, we have un,*Q)>
ae,u(4o) for each q€.CtaA. Therefore

uA,M(*@r)) > cuo(Cs). ot,uQto).,.ll[", F(x(rt], rt) =- ,uczat,uQlo),

where the first inequality follows by (13) and the second bV (9).

Now we are able to prove Lemma 3, which is an essential part of the proof

ofTheorem 1.

Lemma 3. There exists a constant cs-l, depending only on n, such that for
eaery function u, harmonic in a neighborhood of B with z(0):9 and u(x)=k(lxl),
x€8, andfor eaery spherical simplex AcS,g*A*5, we hnae

Proof of Lemma3. Let,il be the family of all simplices in §. Let us denote

.1K:sup76a tnudo. Note that, since /s udo:O, we have Itudo= -N/( and

,["..r, do=-NBK for arbitrary A(,il and an arbitrary @P C, where N is the

öonitant from the previous section. Now, for arbitrary A<,il, 0#A*5, and x(8,
x#0, such that q(x,S .\,'4):/o>Q, we have

p [z . tsy,a] (x) : t" oF 
11x1, 0 d ( I 

"<.,_t,,rlr, 
do) = .P11x;, ro1 I - lFr;.

Observe that (7), (10) and what is above give

(14) P[a'151,](.i(,?)) = -#u$rrl)
for each q€.A, where cz:4nnNs.

For each A(,il and each M>Mo set

h: h,n,u - ,.r^-*(#.r)oo,*,

and extend h to the whole of .B by its Poisson integral. Then by Lemma I we have

I o, do = c6JLt@-L) i( (r(/)).

(r s)

(16)

h(o) =- { oudo-\ff* t) Mtpn(*(A)).

On the other hand, u.ln-u-l .,,t'u ot,S, and hence, by Lemma 2 and (14),

we have

h(fr(rl)) = 0 for every qeA.

Let Q:{x€B: x+0, lxl<*(x/lxD}u{0}. We can write \G:GtvGzvGs,
where Gr:;(A), Gris the interior (in the relative topology on S) of \''4 and

G, is the boundary of ,4 (also in the relative topology on §). The function å is har-
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monic on G and continuous on G1Gr. Moreover, h(r»:O for each q(Gz by the
definition of h,and,by(16), h=O onGr. Sinceåisboundedfromabove on B>G,
and since G, is a polar set, we have, by a versionof themaximumprincipledueto
Ascoli ([], Theorem 5.16), that h=0 on G. In particular ft(0)=0. Therefore, by
(15), we have

(17)

and, consequently,

u='å(#.r)a'nt.
Since the last inequality holds for each M>Ms:(2rE)Jnl(n-L), there is a constant
c, depending only on n such that K<-csJr(z-r). 1trir together with (17) implies the
lemma.

Now, let x be an arbitrary continuous increasing function on 10, nl with
x(o):O. A real function / defined on [0, z] is said (in this section only) to have
the z-property if f(O):f(n):0,f(tr\-f(tr)=x(tr-tr) whenever O=tr<tr=n, sx16

f(t):lf(t+)+f(t-)ll2 whenever it makes sense. Note that if f has the lr-prop-
erty, it has one-sided limits at each t([0, nl (so the last condition for the x-prop-
erty is satisfied at each K(0, n)) and, consequently, f has at most a countable
number of points of discontinuity, and that lf(t)l=r4(n) for each t€t},nl. In
the next step of the proof of Theorem I we will need the following Helly-type selec-
tion theorem adopted from [4] (Theorem l, p.204).

Lemma 4. Let x be a function as aboae. Let {fi}i, be a sequence of real
functions such that eachf, is defined on l0,rl and has the n-property. Tlun there
existafunctionf on [0,n] hauingthex-propertyandasubsequence lfirl (jr=jz=...)
which conuerges to f at euery point of continuity off.

The proof of Lemma 4 ean be established by a slight variation of the classical
proof of the Helly selection theorem (cf. t3l).

Now, assume that z satisfies the assumptions of Theorem l. Note first that
it is sufficient to prove the theorem in the case where z(0):0. Moreover, we can
and do assume thatu is unbounded from above, since otherwise the result is classical.
Now, set k(r):7n1r7,0<r<1. Such a ft has all the properties that we assumed
for the function /< introduced in the second section. Let u(')(x):u(rx) for each
r((0, l) and x(Blr. Fix an arbitrary 4€§, and set

uy\(t): f 
"<r,r.tu?rdo, 

o=t < n.

Since, a(')(x)=k(lrxl)=k(lxl), r€(0, l), xeB, Lemma 3 gives

I ou 
do = Zff*,) Mttu n(* (A)),

(18) f- J c(r,rr)\cet,tr)
uv) (tz) - uQ) (tL) ub) do å caltl@-L) fi(tz-tr),
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whenever O<tr<tr=n, because *(e@,lr)\e'(,1, tr)):(tr-tr)12. Let us denote

x(t):sr|ta-DilQ). Observe that x as a function on [0,2] is continuous and

increasing, x(0):9, and x(n)=cult@-t). From the inequality (18) it follows

that each uN Aas the x-property. Lemma4 implies that for each 4€,S there exist

a sequen@ {ril!r, Q<.rr<|, tending to l, and afanctionf, on [0, z] having the

%-propefty such that limr.-- uYn|):fi(t), whenever r is a point of continuity ofl
Now, for each x€B such that xllxl:rl we have

: - lx Ii"? Q) * F(xl' t) dt

: -l,n<»*Fqx;, 11 s: !" FQxl,t)df,(t),

by integration by parts and the Lebesgue dominated convergence theorem.

Now, it remains to prove that the limitur(t) exists for each 16[0, nf and u,r:.fr.
For this purpose let us state an elementary lemma.

Lemma 5. For each r((0,1\ and t€.(O,n) let us define a function pl') on

l},nl writing pf)(t\:p[t"<,r,r)(r),where ( is an arbitary element of S satisfying

the relation eQt, ():s. Then pp is a well-defined continuously dffirentiable, deueas-

ingfunction on l},nl, andfor each t((O,n) we haue

Moreouer, if g is a harmonic function on a neighborhood of B, then for each 4QS,
t€(0,n), r€(0,1) we haae

Using this lemma, the integration-by-parts formula and the Lebesgue dominated

convergence theorem, we obtain first, for arbitrary r€(0, 1) and l€(0, z),

u(x): Jit u(rix) : ,l* f , P(xl, t) du$') (t)

ft if o<s</,
Jlppi',(s) 

: 
tå 

,{ 
iI!,=.

f ,r0,,, s?O do (O : [: p[') (s) d ( I ,r,,) s (0 ao G)) .

f uo) clo - lim f ,Q.r,) fl6J Ch,t) j** J C(q,t)
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Then, by letting r tend to I above, we get

lim f uQ) do -r*L- J C?lrt)

This concludes the proof of Theorem I.

(again by Lemma 5):

fi(t -) +f,,(t +)
2'

4. Conclusion

Theorem 2 is, apart from unessential changes, a special case of Theorem l.
on the other hand, the method used in the proof of rheorem 1 is greatly simplified
when used to prove its 2-dimensional version, Theorem 2. The reason for this is
that the concept of spherical simplices can then be replaced by that of circular
arcs. It should be noted that the last part of the proof ot'this case is essentially
contained in [4] (Theorem 2, p. 212).

It is obvious that using translations and dilations we can generalize our result
to the case of an arbitrary open ball in R'. Furthermore, employing also the Kelvin
transform we can obtain from our theorems their half-space (in the case of Theorem 2,
"half-plane") analogues.
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