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0. Introduction

In this article we study the coefficient functionals b,+Ab, and b;+A4b; in
the class X of univalent, analytic functions fin D={z: |z|>1} with the normaliza-
tion
bl b2
0.1 f(z)=z+b0+7+?+....

In general, A will be a complex constant.

We divide the paper into four sections. In Sections 1 through 3, we apply results
from Jenkins’ general coefficient theorem to describe the extremal functions for the
linear functionals b,+Ab, and b;+A1b,, respectively. By analyzing the associated
Schiffer differential equations, the extremal values of the functionals are expressed
at least implicitly. Finally, in Section 4 we discuss a coefficient conjecture for X that
originates from a paper by Chang, Schiffer, and Schober [2]. It is related to the
nature of singularities lying on the trajectories of quadratic differentials associated

with linear extremal problems.

1. The functional b,+ b,

Let L be a continuous linear functional defined on the space of analytic func-
tions in D with the topology of locally uniform convergence. L is assumed to be
nonconstant on X and L(1)=0. We say f'is a support point of X for Lif Re L(f)=
Re L(g) for all g in X. It is known (e.g., [10, Corollary 10.15]) that the omitted set
of a support point f consists of finitely many analytic arcs lying on trajectories of
the quadratic differential L(1/(f—w)) dw?® The trajectories of this quadratic dif-
ferential are analytic arcs on which L(1/(f—w))dw?=>0.

In this section we shall study the functional L(f)=b,+ib;, where A is a
fixed complex constant. In this case L(1/(f—w))=w—by+A so that the associated
quadratic differential is

(L.1) (W —by+2) dw?.
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We shall refer to
1 2n ;i
by =5 [, f(e")do

as the conformal center of the omitted set of f.
The following result of Jenkins [4, Corollary 9] will be useful.

Lemma 1.1. Let f&€X have the expansion (0.1) and map D onto the comple-
ment of arcs lying on trajectories of the quadratic dijfferential (w—by+ 1) dw?. Then
Re {c;+Ac;}=Re {by+ b} for all g(z)=z+cy+ci/z+... in Z. Equality holds only
if g=f+k for some constant k.

Since it is irrelevant what the value b, is, we choose by=A. The resulting quad-
ratic differential is w dw?. Its critical trajectories are three rays emanating from
the origin w=0 at angles 0, 2n/3, and 4n/3, respectively. The case where the omitted
arcs lie on the critical trajectories is completely contained in the following theo-
rem and corollary of Jenkins [4, Corollary 10] and Kirwan and Schober [6, Theo-
rem 7 and its corollary].

Theorem 1.2. If f€¢Z has expansion (0.1) and A=(2/3)(a+b+c), where |a|=
|b|=|c|=1 and abc=1, then

2 1 1
Re {by+1b;} = T+ A~ Re {3}

For each such J this inequality is sharp only for translations of
f(2) = z[(1+a/z)(1+b/z) (1 +c/2)]?/5.

The relation A=(2/3)(a+b+c) gives a one-to-one correspondence between the
points a, b, ¢ of modulus one with abc=1 and values 1 inside and on the hypo-
cycloid with cusps at the points 2¢*™/3 k=0, 1,2. The special case

Re {by+2e*™i3p,} = 2
extends in an elementary way to the following.
Corollary 1.3. If fcZX, t=2, and k=0,1,2, then
Re {by+1e*™iBp} = t.
This inequality is sharp only for translations of f(z)=z+e™ 2™i/3;~1,

The purpose of this section is to study the situation where the omitted arc lies
on a noncritical trajectory. Lemma 1.1 shows that any arc of conformal radius 1
lying on a trajectory of w dw? is the omitted set of a support point fin X supporting
L(f)=b,+Ab;, where 1 is the conformal center of the arc.
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Assume that £ maps D onto the complement of an arc lying on a noncritical
trajectory of w dw?. Parametrizing the arc by w=f(e"), we obtain

f(e)ie’ f'(e%)F = 0.
The Schwarz reflection principle gives
(z—e™2(z—eP)2(z—re") [z ——}7 e"V]

(1.2) JOIF' P = q(2) = po ;

where a, §, y are real numbers and O<r=1. In addition, ¢(z)=0 on |z|]=1.

The function f maps (1/r)e” to the origin w=0, which is the zero of the
quadratic differential w dw?. Since the boundary slit lies on a noncritical trajectory,
the zero (1/r)e” must lie in D. Hence we have O<r<l1.

The substitution of expansion (0.1) into (1.2) gives the following:

(1.3) 1 = e2i(a+/3+7),

(1.4) —) = 2(e‘“+e"”)+("+%] ¢,

(15) __bl — ezia+e2i[i +e2iy+4ei(a+ﬁ)+2 [r_'__l?] (eiaz_i_eiﬁ)eiv,
1.6 2Mby +3by = 2(e*+€#) (6P 4 e2)

+ (r—l-%) (€% + %P 4 4@+ B)) iy

Since

q(eiO) = __lg ei(d+ﬂ+7) Sin2 ( gga ) Sinz ( B—Z—ﬁ ] ]1 _re,‘(g_y)lz = 0’
we have
(17) ei(z+ﬁ+y) — 1,

which is consistent with (1.3). Therefore, using (1.7) to eliminate y in (1.4) to (1.6),
we arrive at

(1.8) —J = 2(e*+P) 4 25e= i@+ D),

_bl — e2ia+e2iﬁ+e—2i(a+l’)+4ei(a+ﬂ)+4s[e—ia+e—ip]’

27by +3b, = 8 cos F=B cos 3(“2“3)

5 +4s[2+cos (x—P)],

where

satisfies s>1.
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Now it is easy to represent

1 1

= ECOS Ot—ﬂ Cos 3(O£+ﬁ)

3 3 3 +—g—s[2+cos (x—Pp)]

_I_%[eia+ei/2+se—i(a+ﬁ)][e2ia+e2ip+e—2i(ac+ﬁ)+4ei(¢+ﬂ)+4se—-ia+4se—iﬁ],

and after some simplification the extreme value of the functional is

(1.9) M = Re {b2+,1b1} = _g_[7+4s2+2cos (a_ﬂ)] cos a'z_ﬁ cos 3(&2-|—ﬂ)

+-§~s[16+12cos(oc—ﬁ)+cos 3(+p)]
At this stage the extreme value M depends on three real parameters «, §, and s.

Equation (1.8) provides two real equations on them. Next a length condition will be
obtained. This will determine M implicitly.

Using w=f(z), the differential equation (1.2) becomes
2
wdw? = q(2) (%] .
First, the left side generates the mapping
= [ = 2
0 3 )

This mapping carries sectors Q% and Q2 in the w-plane onto the upper and lower
half-planes, respectively, as shown in Figure 1.
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There is a branch cut along the positive real axis in the {-plane. An arc lying
on a trajectory of w dw? in 2%, for example, is mapped to a horizontal line segment
in QF.

For q(z)(dz/z)?, there are double zeros at € and ¢ on |z|=1 and a simple
one at (1/r)e”’ in D. The critical trajectories of ¢(z)(dz/z)* in |z|=1 are simulated
in Figure 2.
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Figure 2
The mapping

z —dz
¢= f @/ryet () z

transforms Q! onto the upper half {-plane. The region Q% is mapped to a strip
just below the real axis. The positive real axis is again a branch cut. The arc on
the unit circle bordering Q% is mapped to a horizontal line segment 4’B’ on the
lower edge of the strip. If we continue from Q¥ into Q%" around the point ¢”, which
corresponds to 4’, then Q2 will be mapped onto the half-plane below the line 4"B”.
In addition, the arc of the circle bordering Q2" will be mapped to a horizontal line
segment A’B”.
We shall impose the restriction

(1.10) f|z|=11/q(z) izz- =0.

This forces B’ and B” to coincide and continuations around the outside of the circle
lz|=1 to agree. Thus we can sew Qf and Qf to obtain a single half-plane slit
along A’B’.
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The two figures combine to give a mapping fin 2 from |z]>1 onto the w-plane
slit along an arc lying on a trajectory in ©2. By choosing other branches of the
square roots, the slit will occur in the other sections of the w-plane.

If we assume that a<pf<a+2r, then (1.10) becomes

B i0\11/2 — at+2n 18\ [1/2
(L.11) S, la@redo = [ g2 db.

This may be interpreted as a length condition since it says that the Euclidean lengths
of A’B” and A’B’ agree. Since

0—a
2

[q(e?)] = 32 sin2[ ] sin2( 9;ﬁ ) [s—cos(0+a+p)],

the length condition (1.11) can be written as

_Vﬁff sin[ 9;“) sin [ GEBJVS—COS(G-HZ'F/}) do

- ]/3_2f;+2" sin( 9;“] sin ( Bgﬁ) Vs—cos (0+a+p) db,

or, more simply,

a1 L (S i (S v @rarpao = o

2

This equation provides the last constraint on the parameters «, 8, and s.
In principle, the problem

(1.13) max Re {b, +4by}

is now completely solved. If / is fixed and not on the hypocycloid or rays covered
by Theorem 1.2 and Corollary 1.3, then 4 may be parametrized by equation (1.8),
where «, B, and s satisfy the length condition (1.12). While this parametrization is
not immediately obvious from relations (1.8) and (1.12), it is a consequence of our
development. On the one hand, the problem (1.13) has a solution (1.9) that satisfies
(1.8) and (1.12). On the other hand, each choice of parameters «, B, s satisfying
the length condition (1.12) generates a function f€ZX that is admissible for the
quadratic differential (1.1) with A defined by (1.8). Therefore (1.9) is the solution
to the problem (1.13) for this choice of parameters. Let us summarize these con-
clusions.

Theorem 1.4. Leta, B, and s be real numbers satisfying a<p<a+2n,s>1, and

f:+2n sin( 0—a sin (0;[; ) Vs—cos (0+a+p) db = 0.

2
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If A= —2e""—2¢" —25e™ "+ then

(1.14)  maxRe {by+Ab} = %[7+4s2+2005(cx—/3)]cos a;ﬂ cos 3(a2—|-[3)

+% s[16+12 cos («— B)+cos 3 (e +f)].

Furthermore, every complex A not covered in Theorem 1.2 or Corollary 1.3 can be
obtained in this way.

The extremal functions for (1.14) have all been described up to translation by
our construction. Their omitted arcs lie on noncritical trajectories of the quadratic
differentials (1.1).

All real values of A=—2/3 are covered by Theorem 1.2 and Corollary 1.3.
Let us consider now just the real values A<—2/3. In this case e’=e" and the
omitted arc for our extremal function lies symmetrically with respect to the nega-
tive real axis. Otherwise, we could switch the roles of ¢* and e” to obtain another
extremal function, in contradiction to the uniqueness statement in Lemma 1.1.

When ef=e~ the conditions (1.8), (1.9), and (1.12) can be simplified in
terms of x=cosa to

A =—25s—4x,

M= %[58 +10x + 8s%x 4 24s5x2 4 8x3],

S (x—cos 0) Ys—cos0.d0 = 0.

The latter could be written in terms of standard elliptic integrals, but it seems more
informative in this way. Theorem 1.4 reduces to the following in this case.

Corollary 1.5. Let s>1, x=[;*(cos0)Vs—cos0 df/ [ Vs—cos0 db, and
A=—2s—4x. Then

max Re {b,+1b,} = % [5s+10x +8s2x +24sx% + 8x%].

Furthermore, each A€(— o, —2/3) is obtained in this way.

If s—-+o, then x—-1 and A-——c. On the other hand, if s—1, then after
some integrations one finds that x——1/3 and so A——2/3. From these observa-
tions one has the final statement in Corollary 1.5 directly.
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2. The functional b;+ b, for A in the diamond region

For the convenience of computation and without loss of generality, we restrict
our consideration of the functional L(f)=b;+b; to the subclass X, of those
functions in ¥ with the constant term missing. Since L(1/(f—w))=w?*—b;+1, the
omitted arc of a support point for such a functional lies on trajectories of the quad-
ratic differential

(VR [w2—(by—A)] dw™

We shall need a few technical results before coming to the problem itself. The
structure of the critical trajectories of the differential (w®—pu) dw? will be analyzed
first. Next, we show the oddness of the extremal function based on the uniqueness
statement in the extended form of Jenkins’ general coefficient theorem [5]. A special
case of the general coefficient theorem is then applied to show that for 4 lying in
a symmetric ‘“‘diamond” region, the omitted arcs of a support point contain the
two zeros of the quadratic differential (2.1). In this case we are able to solve the
extremal problem

.2) max Re {b;+Ab,}

fairly explicitly.

The quadratic differential (w?—u) dw?, u>0, has simple zeros at =+ yu. If
1 is purely imaginary, the two zeros are connected by a finite straight line trajectory
through the origin. This can be easily demonstrated by substituting w=Yut, —1=
t=1, into the quadratic differential. The following converse result has been implicitly
shown in Schaeffer and Spencer’s monograph [9, Chapter 13], Ahlfors’ book [1,
Chapter 8], and Pfluger’s article [8]. Our proof is different from theirs.

Lemma 2.1. If the zeros of (W*—p)dw?, u=0, are connected by a critical
trajectory, then p must be purely imaginary.

Proof. There is only one finite critical trajectory joining Vu and — Vu. Other-
wise, two such trajectories would enclose a simply connected domain free of sin-
gularities. This domain would be mapped by { = [ ';; Ywi—pudw onto a bounded
domain with a real boundary.

A trajectory joining Vp and —Vu must be symmetric with respect to the
origin. Otherwise, its negative would be a second trajectory joining Yu and —Vpu.
Consequently, there is an odd function f(z)=pz+pfi/z+..., f=0, mapping D
onto its complement. The function f satisfies

B Bi(z2— e2iaz)4

Z4

/@ —ullzf" P = q(2)
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for some real o, and ¢(z)=0 on |z]=1. On the one hand,
. 1 2n .
4 dic . i6
6t = 2nf0 q(€®) do < 0.

On the other hand, a comparison of the z? terms on both sides gives
u= 482 e2iot’
which is evidently a purely imaginary number. J

Next we show that the extremal functions for L(f)=b;+Aib; are odd. For
that purpose we shall use the following special case of Jenkins’ general coefficient
theorem [4, Theorem 3]. Very important for us will be the final uniqueness state-
ment, which is taken from the extended form of the general coefficient theorem as
found, for example, in [5]. Note that the quadratic differential (2.1) has a pole of
order six at infinity.

Lemma 2.2 (Jenkins [4,5]). Let  be univalent in a domain admissible for the
quadratic differential (w*—p) dw? and regular apart from a pole at infinity where
it has the expansion

L 'Y
YW) =Wttt
Then
2.3) Re {3 +(1/2)0f —poy} = 0.

If equality holds in (2.3), then \y is a translation along the trajectories of (w*— ) dw?.
If equality holds in (2.3) and «;=0, then Yy (w)=w.

Lemma 2.3. If f is an extremal function for the problem (2.2), then f is odd.

Proof. Let f(z)=z+by/z+by/z*+... be extremal for the problem (2.2) and
define g(z)=—f(—z). Then

Yo = g(f () = w—oe _ Zoat b

is admissible for the quadratic differential (w®—u)dw?® with pu=b,—A. Since
equality holds in (2.3) and «; =0, we conclude from Lemma 2.2 that Yy (w)=w.
That is, fis odd. §

The oddness of f can also be proved using the geometric ideas as presented
in the Lemma of a paper by Charzyfiski and Schiffer [3] and in an article of Kubota
[7]. See also Pfluger [8], who has considered a problem very similar to ours.

The following lemma contains additional a priori information.

Lemma 2.4. If f(z)=z+b,/z+... is extremal for the problem (2.2), then
(Re b))(Re 1)=0 and (Im b;)(Im 2)=0.
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Proof. Compare Re {b;+1b,} with Re {b;—1b,;} and Re{b,+4b,}, which
arise from 7 f(iz) and f(Z)- @

The omitted arcs of extremal functions for our present problem have two pos-
sible configurations. The first configuration contains a straight line segment con-
necting the two zeros of (w*—p)dw? The second is a single arc symmetric with
respect to the origin. They are indicated in Figure 3 for Im u<0.

Align the pictures so that the 0’s are of the same leight.

’ |

| |
| I
I

I /

]

/ !
! /
h !

u purely imaginary u not purely imaginary
Figure 3

Next we develop the values for 1 that produce the first configuration. We shall
see that these values of A lie in a diamond-shaped region. We shall make use of a
method of Jenkins [4].

Lemma 2.5 (Jenkins [4, Lemma 4]). Ler Q(w)dw? be the quadratic differ-
ential (W*+4is)dw® with 0=s=1. Then there is a family of odd functions
G(z, 5, )€ X, which are admissible for Q(w)dw? and map D onto the complement
of the straight line segment joining 2Yse*™/* and —2Vse*™/* together with arcs
of the other trajectories from these points. The real parameter t measures the amount
of translation along these other trajectories and satisfies the inequality

[t] = Y1 —s—sarccoss.

For s=1 only the straight line segment occurs. For s=0 the line segment degen-
erates to the origin and G(z,0,t)=z(1+2tz72+z"*2 [n any case the initial
coefficients of G(z,s,t)=z+ . ¢,z " are

¢, =t—is(l—logs),

Ca =0,
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and
cy = % [1—s2—12+25%log s+s%(log s)?] —ist(1+logs)
with the appropriate limits for s=0.

If feZ, and Yy=foG™%, then one obtains the following inequalities by com-
bining Lemmas 2.2 and 2.5.

Lemma 2.6 (Jenkins [4, Corollary 13]). If f(z)=2z+b,/z+... belongs to X,
then
119 . 1 2 2
Re {b3 +5 b1+4zsb1} = 5 +3s°—2s%logs.
Equality holds if and only if f(z) is one of the functions G(z,s,1t).
We now define the diamond region mentioned earlier. For e 3=s=1, define
A(s) = Y 1—s%*—sarccos s+is(3+logs).
This parametric curve appears in the first quadrant of the complex A-plane and
intercepts the axes at A(e™ %)=} 1—e~®—e 3arccos(e™3)~.92303 and A(1)=3i.
The diamond region is obtained by reflecting the area enclosed to the other three
quadrants. See Figure 4.

A-plane

3

1—e=% —e~%arccos (e~?)

Figure 4
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Theorem 2.7. If f(z)=z+>r,b,z™" belongs to X, and A is in the diamond
region, then we have the sharp inequality

(2.4 Re {by+4b,} = 2+ 2 (Re )2~ (Im 2)*+062+20 |Im 2|
where o is the unique solution of the equation
2.5) s(3+log s) = |Im |

in the interval [e”3, 1].
If, in addition, A is real, then

(2:6) Re {b;+1b;} = 5 +e S+3 22
and equality holds only when f(z) is G(z,e™3, 1) or its conjugate Gz, e 3, 2). If

1 lies in the upper half-diamond, then equality holds in (2.4) only for f(z2)=G(z, 0, Re ).
If 1 lies in the lower half-diamond, then equality holds only for f(2)=G(z,0,Re A).

Proof. By Lemma 2.6 we have
Re {by+4b;} = Re{bs+ 3 b3-+4ish,} —Re {3 bi+(is—2) b.}
=1 43s2-2s2logs+3 (Im b;)* — 5 (Re by)?
+(Re )(Re by +(4s—Im ) Im b,
for 0=s=1. Applying the inequality
=1
—1x2+(Re)x = 7 (ReA)?
to —(1/2)(Re b,)*+(Re 1)(Re b,), we obtain
Re{by+4b;} = + +3s2—2s2log s+ (Im by)*+5 (Re A2 +(4s—Im A) Im b, .

Assume now that Im A=0. If Im A=>0, then it is sufficient to consider only
the case Im b, =0 by Lemma 2.4. If Im A=0, then Ti) is also an extremal func-
tion whenever f is, and so we may again assume Imb;=0. Since the function
—s(1—logs) is strictly decreasing from O to —1 in the interval [0, 1], there is a
unique s such that

Imb; = —s(l—logs) =Img;.

With this choice for s we have
Re{by+1b;} =+ — 5 s2+s*log s + 5 s*(log s+ = (Re A)*+s(1—logs) (Im 2).

Although we do not know s, we may bound our functional by max,_,, h(s) where
h(s) denotes the expression on the right hand side. In fact, this provides an upper
bound whenever Im A=0.

Assume now that A is also in the diamond region. By analyzing h'(s)=
(log s)(3s+slog s—Im 1), we see that there is a unique solution s=¢ in [e73, 1]
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of the equation
s(3+logs)=ImA

as long as 0=Im A=3 and that A is increasing for 0=s=¢ and decreasing for

o=s=1. Consequently,
Re {b;+4b,} = h(o)

where g€[e73, 1] saticfies ¢(3+1og o)=Im A. Using the latter equation to eliminate
the Icgarithms in 4(c), we cbtain the result (2.4). Furthermore, if Im A=0, then
o =e¢"? and (2.4) reduces to (2.6).

If A is in the diamond and Im A=0, then it is possible to choose s=¢ to
satisfy (2.5) and to chcose x=Re b; to be Re A. In this case all inequalities become
equalities so that the estimate (2.4) is sharp. In addition, equality occurs in Lemma
2.6 so that f must be the function G(z, o, Re 1). To remove the assumption that
Imb;=0 when ImA=0, we must also allow the extremal function -G_(E,_cm
when 4 is real.

Finally, if 4 is in the diamond and Im A<O0, then all results follow from what
has been proved by taking complex conjugates. [}

Geometrically, we have the following situation. Starting from A=0, there
are two extremal functions G(z, e 0) and its conjugate G(z,e™3,0). Let us
take G(z,e73 0), whose omitted set consists of a diagonal line segment joining
2e™32%4 and —2e73/2¢°™/* plus two symmetric arcs protruding from these two
points. We truncate the arcs symmetrically and dilate the remaining set to have
conformal radius one. The length of the line segment becomes 4ge~%2, 9=>1. The
new mapping function G(z, ¢%¢73 0) becomes the support point for L(f)=
bs+1b; with A=[30%e 3+ g%e~ 3 log (g2e™®)]i. If the two arcs are translated in
opposite directions along the trajectories of (w?+4g%e~3/) dw?, then the mapping
function is G(z, ¢%¢™3, Re A) with

[Re 1| = V1 —g%®%—g%e~3arccos (g%e™?).

It is the support point for L(f)=bs+Ab, with Im A=[3g%e™3+ g%e~3 log (o2e™?)].
Finally, when the length of the straight line segment is extended to four, the mapp-
ing function is G(z, 1,0)=z—i/z. It is the support point for L(f)=b,+ 3ib,.

Corollary 2.8. If feX, and t=3, then Re {byxith}=t. Equality occurs
only for f(z)=zFi/z.

Proof. Re {b;+ithb,}=Re {by+3ib,}+(1—3) Re {ib;}=3+(t—3)=¢. Equality
occurs only for f(z)=z—i/z. The other choice of signs can be obtained by con-
jugation.

The following theorem shows that we have exhausted the cases of the first
configuration in Figure 3.
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Theorem 2.9. A support point for the functional L(f)=bs+Ab, is admissible
for some quadratic differential (w*—p) dw? with u purely imaginary (and nonzero)
if and only if A lies in the diamond plus the imaginary axis.

Proof. In one direction, if A lies in the diamond, then Theorem 2.7 shows
that any support point must be admissible for some quadratic differential
(wtt4ic) dw? with o€[e™, 1]. If A lies on the imaginary axis, but not in the dia-
mond, then Corollary 2.8 implies that the only support points are f(@)=zFilz,
which are admissible for (w2+4i) dw?, respectively.

Conversely, suppose that f(z)=z+c¢;/z+... is a support point and is admis-
sible for (w?+4is)dw? with O<s<1. Then fis odd by Lemma 2.3 and must be
one of the functions G(z, s,¢) from Lemma 2.5. At the same time, Schiffer’s dif-
ferential equation asserts that f=G must be admissible for the quadratic differen-
tial [w?—(c,—A)] dw?. Since the omitted set for G splits at the zeros of W+ 4is) dw?,
we conclude that [w?—(c;—A)] dw? must have the same zeros, and so 4is=—c¢;+A.
Together with the condition (Im¢;)(ImA)=0 from Lemma 2.4, this is just the
parametrization for A in the diamond.

If f is a support point, hence odd, and admissible for (w2+4is) dw* with s=1,
then f(z)=z—i/z. At the same time the Schiffer differential equation becomes
[w2—(—i—2A)] dw?=0. At the origin, the quotient

_ [wW2+i4Aldw®  i+4
(W2+4is)dw? — 4is

shows that A lies on the imaginary axis.
The cases for s<0 can be proved similarly or by reflection. ||

In conclusion, when A lies in the diamond or on the imaginary axis, the cor-
responding support points are admissible for quadratic differentials (w?+4is) dw?,
in fact, with |s|=e~3. When 1 lies outside the diamond and the imaginary axis,
the corresponding support points are admissible for some quadratic differential
(w2—p) dw? with p=b;—2 lying off of the imaginary axis, except possibly p=b;—2
=0. However, the case p=b,—A=0 cannot occur because of Corollary 4.5. We
remark that the proof of Corollary 4.5 depends on earlier sections only in the exam-
ple constructed in the proof of Corollary 3.2.

3. The functional b;+ b, for A outside the diamond region

We now turn to the case where A lies outside the diamond region and imaginary
axis. In this case we shall integrate the differential equation

3.1) Wr—p)ydw? =0

and convert the extremal problem into a maximum problem with few parameters.
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A support point for the functional L(f)=b;+Ab, must satisfy a differential
equation of the form (3.1), in fact, with u=b,—A. For A outside the diamond and
imaginary axis we have the important information at the conclusion of the previous
section that it is sufficient to assume Re u>0. Thus we are in the situation of the
second configuration in Figure 3.

If f satisfies (3.1), then

f@2—ullzf'@F = q(2) = Ji__, a2

where g_,=q, and ¢(z)=0 on |z|]=1. For an odd function f, a comparison of
the coefficients of z* on both sides shows that

q4= 19
g5 =¢q, =0,
92 = —U,

qo = —4b;—2b24+2ub,.

Since f” vanishes at the two opposite points +e* corresponding to the tips of
the slit, ¢ can also be written as

1) = (e (1—ee?:) (1-+ 93

for some ¢=1 and real f. In fact, g is strictly larger than one by Lemma 2.1. We
have e**¢*#=q_,=1, and so e=zte ™ The negative sign is the correct one
since

0 = @ - 1-9 (1-7) <0.
So the final form of ¢q is
q(2) = (2—e"P(1+2re "z 24~ % 2z7% with r= %(e +—2—] > 1
In addition,
U =—q,=2e*—2re~ ™
and
2bg+b}—ub, = —5 g, = 2r—cos 2.

Note that the correspondence between p and re* is one-to-one.
If we choose the zero z=i}g e ™*? to correspond to the zero w=}pu, then
integration of the differential equation

W — z dz
fﬂ' Ywi—pdw = f”/;e_m/z q(2) -
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for w=f(z) leads to the relation

[ w2
w2}l —,uw‘2——l2ilog —%— (2+271 —,uw*z—yw'z)]

_ pla2 .
= (zz-l—e"“)S——lzf- log (—]/rz_—zl— (S+1 +re“°‘z"2)]
i rS+r ez
——1lo ——:_—_.—']
2 | R

where S(z)=(1+2re *z72+e™ 2z~ 412, We substitute f(z)=z+2,-,b,z"" into
the left side of the relation. The expansion around e is

2

pop, 4z
2242b; —— ——log—+

—Ze“‘z2 I r+1
Vrr= IIOg r—1

and a comparison of the constant terms gives

—zz+e’°‘+re"°‘-—log +..

bl_ io ﬂlOg _.ue ”’1 r+1

2Vr—1 8 -1
It will be convenient to use polar coordinates for —pu/2=(re™"*—e')=Re".
Then b;=A+iB where

A = cos oc+%R(cos ) log%——‘%—R(aﬂz) siny

1

B—smoc+lR(smy)log R +-—R(oc+y)cosy

R= V1+r2—2r cos 2o

r+1
y = —arctan - tan «f.

1
We shall use the formula 2bg;=2r—cos 26—b?—2Re"’b; to express
by+Aby =r— 2 cos20—~ b2 +(A—Re") b,
in terms of the parameters for b;. That is,
Re {by+4ib} =r— % cos 20:—-;— A2+% B2+ (Re A—Rcosy)A—(Im A—Rsiny)B.

Each complex p with Re u##0 generates such a functional value, and the maximum
is among them.

Since the maximum of our functional is the same for A and 1, it is no loss of
generality to assume Im A=0. By Lemma 2.4 we may then also assume Im b,=0.
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It follows that we need only consider u with Im p=Im {b;—A}=0. Therefore we
shall restrict 0=a=7n and —n=y=0.

Until now we did not specify the periods for « and y because we did not specify
branches for the logarithms. That we have ultimately made the correct choices
can be verified as in [9, pp. 223—225] by a continuity argument letting r—1.

One further restriction is possible. If we replace « by m—a, then y is replaced
by —m—y, the expression A changes sign, and B is unchanged. As a result, in the
expression for Re {b;+1b;} only the term (Re )4 changes sign. If we replace
it by its absolute value, then we may restrict 0=a=n/2. Moreover, & cannot be
n/2 since we assumed Re u=0. Let us summarize and at the same time eliminate
R from the formulas.

Theorem 3.1. If A does not belong to the diamond region or imaginary axis, then

1 1 1
max Re{b;+4b;} = omax {r—? cos20—— A*+5 B*+|4Re )|

r>1

—B[ImA|—(r—1)A4 cosa—(r+1)Bsina}

V1+r2——2rcom

A =cosoc—|——é—(r—1)(cosoc)log =] +—;—(r+1)(oc+y)sincx,

V1+r2—2rcos2o
+rr+1r0052a +-%—(r—1)(a+y)cosoc

where

B = sin a~%(r+ 1)(sin o) log

and
r+1
r—1

y = —arctan [ tan oc] € (—n/2,0].

A particularly important choice for A is A=1.
Corollary 3.2. Max; Re{b;+b,}=1.00124.

Proof. Choose a=0.03508 and r=1.01710 as competitors for the maximum
in Theorem 3.1. |}

The numerical values in Corollary 3.2 were chosen by a search procedure.
They are, presumably, very close to the optimal ones. We remark that b, cannot
be real in this example since it was shown in [11] that

Re {by+1b,} = 3 (1+1?)

whenever b, is real and —1=r=1.

Corollary 3.2 shows that the Koebe function k(z)=z+1/z is not extremal
for the problem max; Re{b;+b,}. This fact will be important in Section 4. On
the other hand, the following theorem shows that the Koebe function is extremal
when A is real and somewhat larger than one.
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Theorem 3.3. There is a constant Ay, 1<2Ay=2, such that
(3.2 max Re{bs+Ab} =4

for all real A=},. For 1>2, the Koebe function k(z)=z+1/z is the only extremal
Sfunction.

Proof. Consider first A=2. By Lemma 2.3 an extremal function f(z)=z+
by/z+ ... for the problem (2.2) must be odd, and so

f(V2)? = z+2b; +(2by+ bz +...

is a function in Z. Therefore Re{2b;+b}}=1, and since Re {bi}=2(Re b,)*—1,
we have

Re {b;+2b,) = Re {b3+% b%}+2 Re b, Re {b) = 5 +5—(1-Reb)t =2.

Although we shall not use it, note that equality occurs only for k(z)=z+1/z.
We have shown that (3.2) holds for A=2. If (3.2) holds for some A,, then it
holds for all A=4, since

Re {b;+1b;} = Re {bs+2ob} +(A—Ap) Re by = g+ (A—1p) = A.

Furthermore, equality for some A>1, can occur only if Reb,=1 or if the func-
tion is the Koebe function.

By compactness of X, and Corollary 3.2 there will be a least 4, for which (3.2)
holds, and it must satisfy 1<1,=2. [}

Theorem 3.3 asserts that the Koebe function is the unique extremal function
for A>41,. We conjecture that it is the unique extremal function for A=4,, too.
If this is true, then one can deduce from the representation for b, that Ay=
(¢*+3)/(e"—1)=1.0746.... This value corresponds to A=b;—u for the parameter
values «=0 and r=(e'+1)/(e"—1).

At this stage, we have shown for 4 in the open interval

(Y1—e=®—e~2arccos (e?), 49)

that the corresponding extremal functions map the unit circle onto part of a regular
trajectory of (w®—pu)dw? with u neither real nor purely imaginary (cf. the second
configuration in Figure 3). If Ay=(e'+3)/(¢*—1), then this interval is just
(.92203..., 1.0746...).

Another reasonable conjecture is that there are exactly two extremal functions
f(2) and 7(Z) for each A in thisinterval. If true, then it appears that the functional
L(f)=by+Ab,, for 1 in the first or fourth quadrant outside the diamond, can be
obtained via truncation from a unique A in this interval.
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4. A coefficient conjecture

In this last section we shall consider general linear problems for X. The omitted
sets for corresponding support points consist of finitely many analytic arcs. Points
of nonanalyticity or forking can occur only at zeros of the associated quadratic
differential L(1/(f—w))dw?. Various examples, as in Sections 1 and 2, show that
forking can occur. The purpose of this section is to conjecture that only one type of
forking can occur, to reduce this conjecture to some coefficient conjectures, and
to observe that we have already solved one of these conjectures in Section 3.

In contrast, in the familiar class S of normalized univalent functions in the
unit disk, the omitted set of a support point is a single analytic arc extending to .
The arc does not contain any of the critical points of the quadratic differential,
except possibly a zero at its finite tip. In this exceptional case the arc is a radial
line. This is due essentially to the fact that the omitted set can be transformed by
Mobius transformations to omitted sets of other functions in S. In X, the only
Moébius transformations allowed are trivial Euclidean translations.

Let L be a continuous linear functional with the same assumptions stated at
the beginning of Section 1. The omitted set I of a corresponding support point
feX satisfies L(1/(f—w))dw?=0. The function L(1/(f—w)) extends to a non-
constant analytic function of w in a neighborhood of I and hence has at most finitely
many zeros on I'. At a zero of order k=1 there can be at most k+2 arcs emanating
under equal angles from that point. If k=2, it was shown in [2, pp. 216—218]
that all k+2 arcs cannot occur. Furthermore, under additional hypotheses the
angle between arcs must be at least 2n/5.

Various examples, as in Sections 1 and 2 show that simple zeros can occur on I,
but such zeros are the only ones known actually to occur. Therefore the following
may be reasonable.

Conjecture 4.1. The quadratic differential L(1/(f—w))dw?® corresponding to
a support point f of X can have only simple zeros on the omitted set T.

If the conjecture is true, then I' can fork at each simple zero in at most three
directions at equal angles. Note that forking actually occurs in only two of the three
directions for A on the boundary of the hypocycloid in Section 1 and for 4 on the
boundary of the diamond in Section 2.

In the following, we shall show that Conjecture 4.1 is equivalent to some coeffi-
cient conjectures. The method is similar to that of [2].

With no loss of generality, suppose that w=0 is a point lying in the omitted
set I' of a support point fin X for L. Assume that w=0 is a zero of order k for
the function L(1/(f—w)). This implies that L(f~H=0 for j=0,1,...,k and
that L(f*"1)0. Without loss of generality we can assume L(f~*"')=0. This
implies that the asymtotic directions of I' at the origin are a subset of the direc-
tions determined by the (k+2) roots of unity.
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We start by deleting a few, or possibly none, of the arcs of I' coming out from
w=0. Designate the further subcontinuum inside |w|=6 and containing w=0
by I';. Let F; map D onto the complement of I'; with the expansion F, s(2)=o0z+
O(1) at infinity. Then F; and the original f are related by a univalent “Schwarz
function” o satisfying Fyow=f in D. The function » maps D onto D minus a
few slits growing out from |z|=1. In addition, w’(<)=1/¢>1 and ¢—0 as §—0.

The function f;=(1/¢)F; is a support point for the functional L, defined by
L;(g)=L(egow). The omitted set for f; is denoted by y,, and it results from dilating
I'; by the factor 1/9. As §—0, y, approaches a set y, consisting of several radial
line segments of equal length emanating from the origin.

Let Y be univalent in the complement of y, and have an expansion y (w)=
w+27, ¢;(8)w™/ in a neighborhood of infinity. Then f;*=1of; serves as a varia-
tion of f; and so Re L;(f;")=Re L;(f;). In other words, Re L(f;*ow—fow)=0.
Since

fFow—frow = 37 c;(d)e'f
for | f|=>4, it follows that Re {37, ¢;(6)¢’L(f~7)}=0 if § is sufficiently small.
Since L(f~7)=0 for j=0, ..., k, we have

Re {110} L(f7*D+0(@*H =0
where L(f~*"%)is positive. Dividing by ¢***L(f~**) and letting 5 -0, we obtain
Re {¢+1}=0 for an arbitrary univalent function Y (w)=w+3;2 c;w™/ in the
complement of y,. Let us summarize:
If the omitted set I of a support point f for some functional L contains a k™ order
zero of its associated quadratic differential L(1/(f—w))dw? and if L((f—w)~*~")>0
there, then one concludes that

4.1) Rec,,; =0

Jor every function  analytic and univalent in the complement of v, with expansion
YyW)=w+3;2 c;w™7 in a neighborhood of infinity.

]
I

Yo

Yo

- -

Figure S
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Since X admits translations and rotations, we may assume that y, consists of
equal radial line segments emanating from the origin in a subset of the directions
determined by the (k+2)® roots of unity. For example, in Figure 5 the arc I' con-
tains a zero of order 2, and the four essentially different choices for 7y, are displayed.

The setting of the coefficient inequality (4.1) is quite similar to a result of Teich-
miiller [12]. Each assumption on the order of the zero and the geometric configura-
tion of y, implies a coefficient estimate (4.1). However, if we believe Conjecture 4.1,
then there is no reason why the coefficient estimates (4.1) should be true for k=2.
In fact, to verify Conjecture 4.1 it is sufficient to show that the estimates (4.1) are
false.

Conjecture 4.2. The estimates (4.1) are not valid for any k=2.

Thus Conjecture 4.2 implies Conjecture 4.1. In fact, it is sufficient to verify
Conjecture 4.2 when y, is the real interval [0,4]. Furthermore, for each integer k
and configuration y, that (4.1) is proved false there is a corresponding zero and
configuration that cannot happen for any support point of X.

Let us translate the statement (4.1) into a coefficient statement for the class .
Let ¢o(2)=z+2,.,a,z"" map D onto the complement of 9,, and let &, denote
its inverse function. If g(z)=z+ 2, b,z™" is an arbitrary function of X, then

Y W) = go@o(w) = Po(W) + 3, by Pe(W) ™" = w+ 27 cjw™

near infinity, and the statement (4.1) asserts that Re ¢;,;=0. Evidently,
k
Cerr = Drpr+m_1(dos s Ar) + 25 (05 ooy ax-b;

1
- Et—i—‘/‘lwl=1{ g(¢0(w))wk dw

for R sufficiently large. Each =; is a polynomial of its arguments and equals the
coefficient of w—*~1 in the expansion of &5’ at infinity.
Thus (4.1) is equivalent to the linear coefficient inequality

4.2) Re {bk+1+n_1+ Z’J‘_=1njbj} =0

for every g(z)=z+>,,b,z~" in XZ. Each configuration 7, yields a @, and coefli-
cients ©;. Of course, equality occurs for g=g,.
If we define the functional
1 k
4@ = %flw]:R g(@o (W) w* dw

for any g analytic in D (and R sufficiently large), then inequality (4.1) says that
Re A(g)=0 for all g in X, and equality occurs for g=¢,. In other words, the
presence of a k™ order zero on the omitted set of some support point implies that
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@, is a support point associated with the functional A. Since

. 1 .
—Jwk = k—j
©o(Po (W)~ Wk dw gl IR dw,

. 1

=J) — —
A =5 [
we have A(py* Y)=1 and A(p;7)=0 for all j#k+1. In this case the associated
quadratic differential A(1/(p,—w)) dw? would reduce simply to w* dw?.

We shall work out some examples. It is sometimes convenient to use the
formula
1 J %W

— g PoW) ki
2ni J jwl=r k+1 Qo(w)f“w dw

y=AG) = [ Bk dw =
j 1 Po(2)**1
= k1 ﬁf}zlﬂ' e 4z
for any R’=>1.

If y, is the symmetric k+2-star, then @q(z)=z(1+z *"%)¥*+® andso n_,=
—2/(k+2) and 7;=0 for j=1,...,k. In this case the inequality (4.2) becomes
Re b, ,1=2/(k+2). Since this inequality is known ([2]) to be false for all k=2,
it follows that the omitted arc I" for any support point cannot have a zero of order
k=2 at which it forks in all k42 directions. This is the argument given also in [2].

Next suppose that p, is the real interval [0,4] and ¢4(z)=z+2+1/z. Then

j 2k+2
A (k—j+1
sufficient to disprove inequalities (4.2) in this case. Thus the following conjecture
also implies Conjecture 4.1.

] for j=—1,1,..., k. In order to prove Conjecture 4.1 it is

Conjecture 4.3. For each k=2, there is a function g(z)=z+2" b,z™"
in X for which

k j 2k+2] 1 (2k+2
Re{bk+1+2f=1?+—1(k—j+1 i o ol (N

For example, for k=2 it would be useful to prove that there is a function
in 2 for which Re {b,+4b,+5b,}=5. Even this question remains open.

Finally, suppose that the order k=2x of the zero is even, that y, is the real
interval [—2,2], and that ¢,(z)=z+1/z. This situation arises when the omitted
set for some support point passes straight through a critical point. In this case
m;=0 if jis even and m;= 2%J_+1 (1/2(22 iJl+ 1)] if j is odd. Consequently, (4.2)
becomes

. 2v—1 2%-{—1) }< 1 (2%+1]
Re{b2”+1+ZV=1 2 +1 [%—v—l—l boy-af = 2+1\ % )
The simplest of these, for =1, corresponding to a zero of order 2 is

Re {b;+b,} = 1.
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However, in Corollary 3.2 we proved that this inequality is false. Therefore we
have the fcllowing theorem.

Theorem 4.4. Let f be a support point of a linear functional L. If the omitted
set T of f contains a second order zero of the quadratic differential L(1/( f—w))dw?,
then no subarc of I can pass straight through this critical point.

Corollary 4.5. If a support point f of a linear functional L is odd, then its
quadratic differential L(1/(f—w))dw? cannot reduce to w*dw®.

While Theorem 4.4 prevents the omitted arcs of a support point from passing
straight through a second order zero, it could stop there or possibly make a left or
right turn.
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