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0. Introduction

In this article we study the coefficient functionals bz+)uU and br*Lb, rn
the class ^E of univalent, analytic functions/inb:{z: lzl>tl with the normaliza-
tion

(0.1)

In general, ,t will be a complex constant.

We divide the paper into four sections. In Sections 1 through 3, we apply results
from Jenkins' general coefficient theorem to describe the extremal functions for the
linear functionals br*Lb, and br+Lbr, respectively. By analyzrng the associated
Schiffer differential equations, the extremal values of the functionals are expressed

at least implicitly. Finally, in Section 4 we discuss a coefficient conjecture for .X that
originates from a paper by Chang, Schiffer, and Schoberf2l. It is related to the
nature of singularities lying on the trajectories of quadratic differentials associated

with linear extremal problems.

1. The functional bz+ )'bL

Let L be a continuous linear functional defined on the space of analytic func-
tions in D with the topology of locally uniform convergence. .L is assumed to be

nonconstant on ä and Z(l):9. We say/is a support point of E for Lif Re Z(/)=
Re Z(Er) for all C in .E. It is known (e.g., [0, Corollary 10.15]) that the omitted set

of a support point / consists of finitely many analytic arcs lying on trajectories of
the quadratic differential fQlU-w)) dwz. The trajectories of this quadratic dif-
ferential are analytic arcs on which .L(l(f-w))dw2>0.

In this section we shall study the functional L(f):br+1"år, where ). is a
fixed complex constant. In this case L(U(f-w)):w-bo+,1 so that the associated
quadr atic differential is

(1. 1) (w - bo* 7) dwz.
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We shall refer to

-1o2nb, : ; {;. f(et) do

as the conformal center of the omitted set ofl
The following result of Jenkins [4, Corollary 9] will be useful.

Lemma l.l. Let f(Z haue the expansion (0.1) and map b onto the comple-
ment of arcs lyr.ng on trajectories of the quadratic differential (w-bs*X)dwz. Then
Re {cr{,lcr}<Re {br+,lår} fo, all g(z):saco*c1fz*... in Z. Equatity holds only
if g:f*k for some constant k.

Since it is irrelevant what the value åo is, we choose bo- ).. The resulting quad-
ratic differential is w dwg. Its critical trajectories are three rays emanating from
the origin w:O at angles 0, 2n13, and4nl3, respectively. The case where the omitted
arcs lie on the critical trajectories is completely contained in the following theo-
rem and corollary of Jenkins [4, Corollary l0] and Kirwan and Schober [6, Theo-
rem 7 and its corollaryl.

Theorem 1.2. If f(Z has expansion (O.l) and ),:Ql3)(a+b+c), where lal:
läl: lcl: I and abc:|, then

Re {å, -1-r.ä,} 
= ? * * V"f - +Re f.B}.

For each such ). this inequality is sharp only for translations of

f(r) : zl(l + al z) (t + b I z) (1 + c I z)I:zts.

The relation 1:Ql3)(a+å+c) gives a one-to-one correspondence between the
points a, b, c of modulus one with abc:l and values /, inside and on the hypo-
cycloid with cusps at the points 2eznkilt, k:0, 1,2. The special case

extends in an elementary way

Corollary 1.3. If f€»,

R.e {b, +2ez"kitsbr} = 2

to the lbllowing.

t=2, and k 0, 1,2, then

Re {b, +teznkitabt) = t.

This inequality is sharp only .for traulations of f(z):21"-2nkilar-1.

The purpose of this section is to study the situation where the omitted arc lies
on a noncritical trajectory. Lemma 1.1 shows that any arc of conformal radius 1

lying on a trajectory of w dwz is the omitted set of a support point/in .E supporting
L(f):br+).br, where ,X is the conformal center of the arc.
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Assume that f maps D onto the complement of an arc lying on a noncritical
trajectory of w dwz. Parametrizing the arc by w:f(eiq), we obtain

f @t\li eto f ' (eto)l''= o'

The Schwarz reflection principle gives

4t

(z - e'n), (z - ei§)' @ - reiY) l, - + r'r)(r.2) f(r)[rf'(z)' : q(z) - z3

where a, B,y are real numbers and 0<r<1. In addition, q(z)=O on lzl:1.
The function / maps (llr)eit to the origin w:0, which is the zero of the

quadratic differential w dwz. Since the boundary slit lies on a noncritical trajectory,

the zero (llr)etv must lie in Ö. Hence we have 0<r<1.
The substitution of expansion (0.1) into (1.2) gives the following:

(1.3) I : 
"2i(a+6+77,

(1.4) -Ä:2(ein+",\+lr+l)",r,

(1.5) -bt: e2i6+ezi§ +eziv a4ri(a+f) Lr, (r**) (eio+eii1sir,

(1.6) ».bt+3bz: 2(ei"+ei0)(ei("+P) +ezit)

* (r**) (sziaqszi§ a4"i(a+f))sit.

Since

q(err): -!6 ,,a*p*» ri,.,l!:L)rr", (';, ) lr -rr«r-»1, = 0,

we have

(1.7) ei(c+P+t) - l,

which is consistent with (1.3). Therefore, using (1.7) to eliminate 7 in (1.4) to (1.6),

we arrive at

(1.8) - ). : 2(eio + eia) +2se-i("+ F),

_ br : 
"ziu 

a szif + e-zi(a+ p, 
+Ori<"+ F) a4sl"-ia :Lu-i§1,

2lbl+3bz : s 
"o, #"o, -$LlL *4s[2 +cos (a -f)],

where
1t _1)t:T [r+,

satisfies s=1.
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Now it is easy to represent

1l
bz* ),h : i Q),bt+ 3b) +i xb,

: !"o'$"o, $@ + f stz+cos (a-f)I
)

* i letu + eu + s e- i(a + Prllezid + ezi F + e- zt(u + fi) + 4 ei(d + F + 4 s e- i' + 4s e- t Bl,

and after some simplification the extreme value of the functional is

(1.9) lrr : Re {bz*lbr} : llt ++rr+2cos(u- p)1"o"$"utry
2

+ t s[16 + I 2 cos (a - B) acos 3 (a *f)].

At this stage the extreme valae M depends on three real parameters d, p, and s.

Equation (1.8) provides two real equations on them. Next a length condition will be

obtained. This will determine M implicitly.
Using w:f(z), the differential equation (1.2) becomes

w dwz: ,@(+)'.
First, the left side generates the mapping

C : I: wttz dw - Z*,,,.

This mapping carries sectors O| and O| in the w-plane onto the upper and lower
half-planes, respectively, as shown in Figure 1.
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There is a branch cut along the positive real axis in the (-plane. An arc lying

a trajectory of w dwz in Ql, for example, is mapped to a horizontal line segment

Q?.

43

on
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For q(z)(d.zlz)2, there are double zeros at

one at (llr)etv in Ö. The critical trajectories of
in Figure2.

eio and eio on lzl-t and a simPle

q(z)(dzlz)z in lzl=1 ate simulated
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Figure 2

The mapping

(: I'our",,rm+
transforms QL, onto the upper half (-plane. The region al is mapped to a strip
just below the real axis. The positive real axis is again a branch cut. The arc on

the unit circle bordering A! is mapped to a horizontal line segment A'B' on the

lower edge of the strip. If we continue from Q! into Ql' atound the point ein, which

corresponds to A', therr O!' will be mapped onto the half-plane below the line A'B'.
In addition, the arc of the circle bordering Ol' will be mapped to a horizontal line

segment A'Bo.
We shall impose the restriction

t
\
\
\\

e2"

\\

(1.10)

This forces B' and B " to coincrde and continuations around the outside of the circle

lzl:l to agree. Thus we can sew O!' and Al' to obtain a single half-plane slit

along A'B'.
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The two figures combine to give a mapping/in .E from lrl=1 onto the w-plane
slit along al arc lying on a trajectory in Az-. By choosing other branches of the
square roots, the slit will occur in the other sections of the ra-plane.

If we assume that u<.p<.a*2n, then (1.10) becomes

(1. I 1)

(1.13)

f: lq@")l,.tz do : {;*'" lq(e")lrt, do.

This may be interpreted as a length condition since it says that the Euclidean lengths
of A'B " and A'B' agree. Since

lq @")l : 32 sin2 lE.)rrr, [ry) [s -cos (0 + a + fr)],

the length condition (1.11) can be written as

- {T I:,'" (+),,, [?) y;:e@+u+ g ae

: t/n I;*," ,i" (E., ) 
,"(ry){i:cos(o+u+§) ao,

or, more simply,

(1.12) fo*'",in(+),. (#)/;coile+d+D d0 : 0.

This equation provides the last constraint on the parameters a, §, and. s.
In principle, the problem

max Re {b, + 
^bL}

is now completely solved. If ,1. is fixed and not on the hypocycloid or rays covered
by Theorem 1.2 and Corollary 1.3, then )" may be parametrized by equation (1.8),
where a, P, and s satisfy the length condition (1.12). While this parametrization is
not immediately obvious from relations (1.8) and (1.12), it is a consequence of our
development. On the one hand, the problem (1.13) has a solution (1.9) that satisfies
(1.8) and (1.12). On the other hand, each choice of parameters a, fr, s satisfying
the length condition (1.12) generates a function f€E that is admissible for the
quadratic differential (1.1) with ,1 defined by (1.8). Therefore (1.9) is the solution
to the problem (1.13) for this choice of parameters. Let us summarize these con-
clusions.

Theo rem 1.4. Let u, f , and s be real rumbers satisfying a <. p < a * 2n, s = l, and

fn*,",m(+),* (#) /s_;ffi +"+iD do : o.
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If ) - -2eio -Zei§ -2se-i(d* 
§) , then

(1.14) max Re {b, + lb') -
Å,

!V*4s2 +zcos (a-0lcos +cos ry
2+; s[16 +t2 cos (u- §) +cos 3 (e +B)1.

Furthermore, euery complex )" not couered in Theorem 1.2 or Corollary 1.3 can be

obtained in this way.

The extremal functions for (1.14) have all been described up to translation by

our construction. Their omitted arcs lie on noncritical trajectories of the quadratic

differentials (1.1).

All real values of ).> -213 are covered by Theorem 1.2 and. Corollary 1.3.

Let us consider now just the real values 1<-213. In this case eig:e-'n and the

omitted arc for our extremal function lies symmetrically with respect to the nega-

tive real axis. Otherwise, we could switch the roles of e'o and eit to obtain another
extremal function, in contradiction to the uniqueness statement in Lemma 1.1.

When eif :e-i", the conditions (1.8), (1.9), and (1.12) can be simplified in
terms of x:cos c to

), : -2s-4x,
,)

7t : il5s + lOx + 8s2x + 24sx2 +8f),

!'o" t*-"o"0) /s -cos 0 do : o.

The latter could be written in terms of standard elliptic integrals, but it seems more

informative in this way. Theorem 1.4 reduces to the following in this case.

Corollary 1.5. Let §=1, ls:/fr"(cos e) /s-öosE' d0 I IZ" ls-cos0 d0, and

1- -2s-4x. Then

max Re {b, + AbLl- : 
?[5s * 10x * 8s2x + 24sx2* 8x3].

Furthermore) eoch ,t€(- oo, -213) is obtained in this wcty.

If s**-, then x*l and ),t-*. On the other hand, if s*1, then after
some integrations one finds that xt-ll3 and so )"*-213. From these observa-

tions one has the final statement in Corollary 1.5 directly.
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2. The functional bB+ lbl for ,1 in the diamonil region

For the convenience of computation and without loss of generality, we restrict
our consideration of the functional L(f):$s*),h to the subclass )6 of those

functions in ) with the constant term missing. Since L(U(f-w)):w2-br+)", the
omitted arc of a support point for such a functional lies on trajectories of the quad-
ratic differential

(2.1) l*'-(br- l)J dwz

We shall need a few technical results before coming to the problem itself. The
structure of the critical trajectories of the differential (w2- p) dw' will be analyzed

first. Next, we show the oddness of the extremal function based on the uniqueness

statement in the extended form of Jenkins' general coefficient theorem [5]. A special

case of the general coefficient theorem is then applied to show that for ,1 lying in
a symmetric "diamond" region, the omitted arcs of a support point contain the

t\ro zeros of the quadratic differential (2.1). In this case we are able to solve the

extremal problem

(2.2)

fairly explicitly.

The quadratic differential (r'-tidwz, p*0, has simple zeros at t/i. lt
p is purely imaginary, the two zetos are connected by a finite straight line trajectory

through the origin. This can be easily demonstrated by substitutng w:l/ttt, -l=
t< 1, into the quadratic differential. The following converse result has been implicitly
shown in Schaeffer and Spencer's monograph [9, Chapter l3], Ahlfors' book [1,
Chapter 81, and Pfluger's article [8]. Our proof is different from theirs.

Lemma 2.1. If the zeros of (w'-p)dwz, p#0, are connected by a critical
trajectory, then p must be purely imaginary.

Proof. There is only one finite critical trajectory jonine li and -fi. Other-
wise, two such trajectories would enclose a simply connected domain free of sin-

gularities. This domain would be mapped aV (:lhllF-pdw onto a bounded

domain with a real boundary.

A trajectory joining 
1/ p and, - y'p must be symmetric with respect to the

origin. Otherwise, its negative would be a second trajectory joining {i and -{i.
Consequently, there is an odd function f(z\:Bz+§rlz*..., f=0, mapping ö
onto its complement. The function / satisfies

§u (2, _ ,zia14

q?* Re {b' + lb.^.,,

lf!)'- ttilzf '(z)l' : q(z) - 24
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for some real u, and q(z)=O on lrl-1. On the one hand,

6§+raia - q(eit) do < o.

On the other hand, a comparison of the z2 terms on both sides gives

P : 4§'e'i"'

which is evidently a purely imaginary number. I
Next we show that the extremal functions for L(f):br+)'b, are odd. For

that purpose we shall use the following special case of Jenkins' general coefficient

theorem [4, Theorem 3]. Very important for us will be the final uniqueness state-

ment, which is taken from the extended form of the general coefficient theorem as

found, for example, in [5]. Note that the quadratic differential (2.1) has a pole of
order six at infinity.

Lemma 2.2 (Jenkins 14,5)). Let r! be uniualent in a domain admissible for the

quadratic dfferential (w'-p)dwz and regular apartfrom a pole at infinity where

it has the expansion

t@):,+ff+ff*#*....
Then

(2.3) Re {e, +(U2)d,?- Fa} = 0.

If equatity holds in Q.3), then {r is a translation along the taiectories of (w2- trt) dwz.

If equality holds in Q.3) and ar:O, then rlr(w):w.

Lemma 2.3. If f is an extremal fmction for the problem Q.2), then f is odd.

Proof. Let f(z):s*btlz*bzlz2*... be extremal for the problem Q2) afi
define g(z): -f(-z). Then

fu (w) :g(,f-,(r) : * -+ -'u'*-lu'u' - ...

is admissible for the quadratic differential (wz-p)dwz with P:br-).. Since

equality holds in Q.3) and orr:0, we conclude from Lemma2.2that rlt(w)=w.
That is, / is odd. I

The oddness of / can also be proved using the geometric ideas as presented

in the Lemma of a paper by Charzyiski and Schiffer [3] and in an article of Kubota

[7]. See also Pfluger [8], who has considered a problem very similar to ours.

The following lemma contains additional a priori information.

Lemma 2.4. If f(z):z*brlz+... is extremal for the problem (2.2), then

(Re ä)(Re l)=0 and (Im år)(Im.l)=0.

1 rzn

2rcJ o
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Proof. Compare Re {ås+,2,år} with Re {6s-),5} and Re {6r+1,5r}, which
arise from i f 1i4 and, f1.4. I

The omitted arcs of extremal functions for our present problem have two pos-
sible configurations. The first configuration contains a straight line segment con-
necting the two zeros of (w'-p)dwz. The second is a single arc symmetric with
respect to the origin. They are indicated in Figure 3 for Im p<0.

Align the pictures so that the 0's are of the same leight.

--a, // 

-t--Yt,

I

I

,

I
I
l,-
t yy

/\

p purely irnaginary

Next we develop the values
see that these values of A lie in
method of Jenkins [4J.

\

p not purely irnagin ary
Figure 3

for Ä that produce the first configuration. 'We shall
a diamond-shaped region. We shall make use of a

Lemma 2.5 (Jenkins [4, Lemma 4]). Let Q@) dwz be the quadratic differ-
ential (wz*4is)dwz with 0=s<1. Then there is a family of odd functions
G(z,s,t)€Zo which are admissibte for Q@)dwz and *op b onb the complement
of the straight line segment joining 2fisa"ita' and -21/3e8"ita tugether with arcs
of the other trajectories from these points. The real parameter t measures the amount
of translation along these other trajectories and satisfies the inequality

ltl= /l-s,-sarccoss.
For s:l only the straight line segment occurs. For s:0 the line segment degen-
erates to the origin and G(2,0,t):s71*2tz-za7-e7rtz. In any case the initial
cofficients oJ' G(z,s,t):212- ,cnz-n ere

cL : t -is(l -log s),

cz:0,



Low order coefficient estimates in the class.I

and
c, : * ll - sz - * q2s2 log s as2 (log s)21 - isr(l *log s)

with the appropriate limlts for s=0.

lf f€»o and rlt:foG-l, then one obtains the following inequalities by com-
bining Lemmas 2.2 and 2.5.

Lemma 2.6 (Jenkins [4, Corollary l3]). If f(z):z+brlz*... belongs to Eo,
then

ne {a, +* u1.++xt } = * *3s2 - 2sz log s.

Equality holds if and only if f(z) is one of the functions G(z,s,t).

We now define the diamond region mentioned earlier. For e-3<s=1, define

,1(s) : /t -s,-s arccos s*is(3 *log s).

This parametric curve appears in the first quadrant of the complex .tr-plane and

intercepts the axes at ),@-r:fi - s=d- e-s arccos(e-s)=.92303 and /,(1):l;.
The diamond region is obtained by reflecting the area enclosed to the other three
quadrants. See Figure4.

,t-plane

l@ -e-l.arccos(r-r)

49
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Figure 4
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where o

(2.5)
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Theorem 2.7. If f(z):z+ZZrb,Z-n belongs to Zs and )u is in tlrc diamond

region, then we haae the sharp inequality

Re {bu + Lb} = + + +(Re ).)'-* (t* 1)'+ oz +2o lTm 1l

is the unique solution of the equation

s (3 *log s) : llm ,tl

in the interual [e-t, lJ.

If, in addition, I is real, then

(2.6) Re {b, +}'b} = + *e-u +f, l'
and. equality hotds only whenf(z) is G(z,e-',^) or its conjugate G(Z,e-s,)L). If
)," lies in the upper half-diamond, then equality holds in Q.4) only for .f(z):G(2, o, Re,t).

If ). lies in rhe lower half-diamond, then equality hotds only for f(z):GCz,o,NN.

Proof. By Lemma 2.6 we have

Re {b, +,1å,} : R. {b, + * b? + isbL) -ne {i ai + i+is - ,1) ä1}

= f, +ls, -zs'z log s +f (lm bJ'z - + (Re bJ2

+(Re,X) (Re åJ +(4s -Im L) rm b1

for 0<s<1. Applying the inequality

-f x'+1ne,l)Jc = +(Re,l)'z

to -(t/2XRe år)z+(Re,t)(Re år), we obtain

Re {0, +,1är} = f; + 3 sz -2s'z log s +} (Im å'} +} (ne,l)'z + (4s - Im,i) Im br.

Assume now that Im,t=O. If Iml=0, then it is sufficient to consider only

the case Im år<0 by Lemma 2.4. tf Im l.:0, then f() is also an extremal func-

tion whenever f is, and so we may again assume Im br<Q. Since the function

-s(l-logs) is strictly decreasing from 0 to -l in the interval [0,1], there is a
unique s such that

Im b, : -s(1 -log s) : Im cr.

With this choice for s we have

Re {b, +,lbr} = + - +s2 + s2 log s * } s'z (log s)' + } 1n",l)'z + s (1 - log s) (Im Å).

Although we do not know s, we may bound our functional by maxo=,=1 å(s) where

å(s) denotes the expression on the right hand side. In fact, this provides an upper

bound whenever Im /'=0.
Assume now that ,1 is also in the diamond region. By analyzing h'(s):

(ogs)(3s*slogs-Im.å), we see that tirere is a unique solution s:o in [e-',1)
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of the equation
s(34logs): Iml.

as long as 0<Im )"=3 and that h is increasing for 0<s=o and decreasing for
o=J< l. Consequently,

Re {br+,lår} = h(o)

where o(le's,1] satisfies o(3+1og o):Im ,1. Using the latter equation to eliminate
the lcgarithms in å(o), we cbtain the result (2.4). Furtherrnore, if Iml:0, then
o:e-t and (2.4) reduces to Q.6).

If ,1 is in the diamond and Im,l.>0, then it is possible to choose r:o to
satisfy (2.5) and to choose .x=Re ä, to be Re,1. In this case all inequalities become
equalities so that ttre estimate Q.$ is sharp. In addition, equality o@urs in Lemma
2.6 so that/must be the function G(2, o, Re,t). To remove the assumption that
Imär=g when Im2:0, we must also allow the extremal function WA
when .1 is real.

Finally, if ,t is in the diamond and Im l.<0, then all results follow from what
has been proved by taking complex conjugates. I

Geometrically, we have the following situation. Starting from ).:0, there
are two extremal functions G(2, e-3,0) and its conjugate G(z,e-g,0). Let us
take G(2, e-s,0), whose omitted set consists of a diagonal line segment joining
2e-sl2e8nil4 and -2e-slz"8"i/a plus two symmetric arcs protruding from these two
points. We truncate the arcs symmetrically and dilate the remaining set to have
conformal radius one. The length of the line segment becomes  qe-alz, q>1. The
new mapping function G(z,q2e-a,0) becomes the support point for L(_f):
bs+)"bl with 1:[3Sze-3*qze-alog(aze-s)]i. If the two arcs are translated in
opposite directions along the trajectories of (w2*4q2e-si) dwz, then the mapping
function is G(2, Q,€-s, Re /.) with

lRe,tl = l/@ - qz e-s arc cos (q2e-ay.

It is the support point for L(.f):br+ 1ä, with 11y1 ):l3pze-e+ Q2e-s log (g2e-8)1.
Finally, when the length of the straight line segment is extended to four, the mapp-
ing function is G(2,1,0):z-ilz. It is the support point for L(.f):br+3ibr.

Corollary 2.8. If f€Do and t>3, then Re {brtitbr}=t. Equality occurs
only for f(z):zTilz.

Proof. Re {br+ttbr}:Re {åa+3ibLl+Q-3) Re {rå1}=3+ (t-31:1. Equality
o@urs only for fQ):z-ilz. The other choice of signs can be obtained by con-
jugation. I

The following theorem shows that we have exhausted the cases of the first
configuration in Figure 3.

51
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Theorem 2.g. A support pointfor thefunctional L(f):br|),b1 is admissible

for some quadratic dffirential (w'-p)dwz with p purely imaginary (and nonzero)

if and only if )' lies in the diamond plus the imaginary axis.

Proof.In one direction, if ,1 lies in the diamond, then Theorem 2.7 shows

that any support point must be admissible for some quadratic differgntial

(wzJrftio\ dwz with o(le-s,l1. If ,t lies on the imaginary axis, but not in ttre dia-

mond, then Corollary 2.8 implies that the only support points are f(z):zTil7,
which are admissible for (wzt4i)dwz, respectively.

conversely, suppose that f(z):2+crlz*... is a support point and is admis-

sible for (w2+4ts)d.w2 with 0<s<1. Thenf is odd by Lemma2.3 and must be

one of the functions G(2,s, l) from Lemma 2.5. At the same time, Schiffer's dif-

ferential equation asserts that f:Q must be admissible for the quadratic differen-

tial lwz - (cr- L)l dwz. since the omitted set for G splits at the zeros of (w2 * 4is) dwz,

we conclude that lw2-(cr-l)ldwz must have the same zeros, and so 4ls: -cr*),.
Together with the condition (Im cr)(Im,l)=0 from Lemma 2.4, this is just the

parametrization for ,1 in the diamond.

If/is a support point, hence odd, and admissible for (w2+4is)dwl wilh s>1,

then f(z):7-i17. At the same time the Schiffer differential equation becomes

lwL-(-i-1))dw2=0. At the origin, the quotient

^ lw2+i+11dw2 i+L
v < @2+4ail 

:vl{

shows that.l. lies on the imaginary axis.

The cases for s<0 can be proved similarly or by reflection. I
In conclusion, ,trhen å lies in the diamond or on the imaginary axis, the cor-

responding support points are admissible for quadratic differentials (w2*4is)dwz,

in fact, with lsl=e-3. When,1. lies outside the diamond and the imaginary axis,

the corresponding support points are admissible for some quadratic differential

(wr- tD dwz with F:bt- )u lying off of the imaginary axis, except possibly F:br* I
-0. However, the case F:bt-)":O cannot occur because of Corollaty 4'5' We

rernark that the proof of Corollary 4.5 depends on earlier sections only in the exam-

ple constructed in the proof of Cotollaty 3.2.

3. The functional br* hb, for Ä outside the diamond region

We now turn to the case where l, lies outside the diamond region and imaginary

axis. In this case we shall integrate the differential equation

(3.1) (*'-p)dwz >o

and convert the extremal problem into a maximum problem with few parameters.
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A support point for the functional L(f):St*),b1 must satisfy a differential
equation of the form (3.1), in fact, with fi:bt-).. For,t outside the diamond and
imaginary axis we have the important information at the conclusion of the previous
section that it is sufrcient to assume Re p + 0. Thus we are in the situation of the
second configuration in Figure 3.

If/ satisfies (3.1), then

lf@)'-tit l'(z)l' : q(z\ : Zf,:-oqor*

where q'-o:Qy and q(z)=O on lzl:1. For an odd function f,acomparison of
the coefficients of zk on both sides shows that

4r=1,

Qs:4r:0,

4z: - F,

4o: -4bs-2b?+2pbt.

Since /' vanishes at the two opposite points *ei"lz corresponding to the tips of
the slit, q can also be written as

for some g>1 and real B.In fact, g is strictly larger than one by Lemma 2.1. We
h&ye e2i"e2it:q-n:1, and so ei§:*.e*i". The negative sign is the correct one
since

and 
lt : - 4z - 2"ia -2'"-ia

2bs*b?.- pb, : -* Qo : 2r -cos 2u.

Note that the correspondence between p and reio is one-to-one.

If we choosethe zero z:i{de-i"tz to correspond to the zero y:{1,, then
integration of the ditrerential equation

lh lWa d* : !',,ti*,",,{ sd +

q(z) : (z'-.eio)'(l - qei§z-) (, -å eilz-r)

Q(eiorzl : (eif -ei1z1, -nl (, _å) = o.

So the final form of 4 is

q(z): (22-er\z(lq2rs-io2-zl.e-ziaz-4) with , : l(n*|) = ,.
In addition,
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for w:f(z) leads to the relation

*z 1@ - trorff e*, {l - w4 - u* -,)l

: (22 I ei\ s - t rorSffi A + r + r"-'. r-')J

-*',rlWl
where s(z):(1q2re-i"z-z)rs-ziar-4)1/2. We substitute f(z):z+23=rbnz-n into
the left side of the relation. The expansion around * is

,,+zt,-$ -$rceff * ...

: zz+ei,+r"-*-!t rffi-f;bgfr+.. ,

and a comparison of the constant terms gives

br: rr,_*rce#_*,"r#l
It will be convenient to use polar coordinates for -pl2:(re-i"-ein):prir.

Then br:/*iB where

14 : cos *+! n(cos y) 

"r*-*Ä(a*y) 
siny

.B : sin **l a(sin y) tog rfu *å 
^(a+y) 

cos y

a:t/@
y : -arctan(f1,rr 11.

We shall use the formula 2bg:)v-*s2u-b!-2Rei'b, to express

b I + xU : r - * cos 2u - * t? + (l' - Re't) b l

in terms of the parameters for br. That is,

Re {br+,tbr} : r-*cos2a-f,,1'+f, a'+(Re l-R cos y)A-(1m,1-R sinT),8.

Each complex p with Re p*0 generates such a functional value, and the maximum

is among them.

Since the maximum of our functional is the same for ,t and X, it is no loss of
generality to assume Im,1=0. By Lemma 2.4we may then also assume Imå1'<0.
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It follows that we need only consider p with Imp:16 {b1-X}=0. Therefore we

shall restrict O=a=n and -n=y=O.
Until now we did not specify the periods for a and y because we did not specify

branches for the logarithms. That we have ultimately made the correct choices

can be verified as in [9, pp.223---225] by a continuity argument letting r*1.
One further restriction is possible. If we replace aby n-a, then y is replaced

by -n-y, the expression I changes sign, and B is unchanged. As a result, in the

expression for Re {br+Abr} only the term (Re }')A changes sign. If we replace

it by its absolute value, then we may restrict 0=a=n12. Moreover, a cannot be

nl2 sitce we assumed Re p*0. Let us summarize and at the same time eliminate
R from the formulas.

Theorem 3.1. If 1 does not belong to the diamond region or imaginary axis, then

q?" Re {b, + AbL.. -

-B llm il-@-l)A cos d,-(r* I)B sin a)

A- cos a+| fr- 1) (cos a) 1og I
r_ t 

'- -- + Z(r*1)(a+7)sina,

B -sina -+(r*l)(sina)log ++@-l)(a+y)coso(
,ll

,*=2i,r{'- } cos 2u-* e' ++ Bz +l/ Re 
'11

where

and

y : *arctan(#+,"" lr{-nlr,ot.
A particularly important choice for ,t is .X:1.

Corollary 3.2. MaxroRe {br+ år}= 1.00124.

Proof. Choose a:0.03508 and r:1.01710 as competitors for the maximum
in Theorem 3.1. I

The numerical values in Corollary 3.2 were chosen by a search procedure.

They are, presumably, very close to the optimal ones. We remark that bL cannot
be real in this example since it was shown in [l] that

Re {å,+rär} = }1r+r'1

whenever å, is real and -1=t=1.
Corollary 3.2 shows that the Koebe function k(z):21U2 is not extremal

for the problem maxro Re {br+br}. This fact will be important in Section 4. On
the other hand, the following theorem shows that the Koebe function is extremal
when l. is real and somewhat larger than one.
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Theorem 3.3. There is a constant )"s, 1=)t"o<2, such that

(3.2) max Re {br1 )'br} : 1

for atl real ).=).o. For ).=).o the Koebefunction k(z):z*Uz is the only extremal

fwtction.

Proof. Consider first 1:2. By Lemrla 2.3 an extremal function .fQ):z+
brlz*... for the problem (2.2) must be odd, and so

f ({ez - z +2br*(2br+b?y z+...

is a function in .E. Therefore Re{2är*b!\=t, and since Re {ål}>2(Reår)3-1,
we have

Re {b, +2b,} : n. 
{4, 

+ } b?} *zne r, -} Re {b!} = * * * - <1 - Re b,)z = 2.

Although we shall not use it, note that equality o@urs only for k(z):7111r.
we have shown that(3.2) holds for ).:2. lf (3.2) holds for some.lo, then it

holds for all X=lo since

Re {br+.lbr} : Re {ba+,tobr}*(,1-,10) Re b, < 1o+()'-1) : X.

Furthermore, equality for some )">)"0 can occur only if Reår:| or if the func-

tion is the Koebe function.
By compactness of .Eo and corollary 3.2 there will be a least ,10 for which (3.2)

holds, and it must satisfy l<)'o=2. I
Theorem 3.3 asserts that the Koebe function is the unique extremal function

for 1=),o. We conjecture that it is the unique extremal function for l,:lo, too.

If this is true, then one can deduce from the representation for å, that ,l,o:

(ea+3)l(ea-l):1.0746.... This value corresponds to )":br-tt for the parameter

values a:0 and y:(ea*l)l(ea-l).
At this stage, we have shown for ,t in the open interval

({T=;--e-s arccos (e-), fo)

that the corresponding extremal functions map the unit circle onto part of a regular

trajectory of (wz-p)dwz with p neither real nor purely imaginary (cf. the second

configuration in Figure 3). If )"0:(ea+3)l(e4-l), then this interval is just

(.92303..., 1.0746...).
Another reasonable conjecture is that there are exactly two extremal functions

f(z) and j@ for each 7 in this interval. If true, then it appears that the functional

L(f):br+l,br, for,l in the first or fourth quadrant outside the diamond, can be

obtained via truncation from a unique .,' in this interval.
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4. A coefficient conjecture

In this last section we shall consider general linear problems for ä. The omitted
sets for corresponding support points consist of finitely many analytic arcs. Points
of nonanalyticity or forking can occur only at zeros of the associated quadratic

differential t(tlU-w)) dwz. Yaious examples, as in Sections I and 2, show that
forking c{rn occur. The purpose of this section is to conjecture that only one type of
forking can occur, to reduce this conjecture to some coefficient conjectures, and

to observe that we have already solved one of these conjectures in Section 3.

In contrast, in the familiar class ^S of normalized univalent functions in the

unit disk, the omitted set of a support point is a single analytic arc extending to -.
The arc does not contain any of the critical points of the quadratic differential,
except possibly a zero at its finite tip. In this exceptional case the arc is a radial
line. This is due essentially to the fact that the omitted set can be transformed by
Möbius transformations to omitted sets of other functions in §. In .8, the only
Möbius transformations allowed are trivial Euclidean translations.

Let L be a continuous linear functional with the same assumptions stated at
the beginning of Section 1. The omitted set .l' of a corresponding support point

/€^E satisfies L(U(f-w))dw2=0. The function t(tlj-w)) extends to a non-
constant analytic function of w in a neighborhood of .l' and hence has at most finitely
manyzeros on i-. At azero of order k>l there can be at most k*2 arcsemanating
under equal angles from that point. If k>2, it was shown in [2, pp. 216---218]

that all k+2 arcs cannot occur. Furthernore, under additional hypotheses the

angle between arcs must be atleast 2n15.

Various examples, as in Sections I and 2 show that simple zeros can occur on i-,
but such zeros are the only ones known actually to occur. Therefore the following
may be reasonable.

Conjecture 4.1. The quadratic dfferential L(11(f-w))dwz corresponding to

a support point f of E can haae only simple zeros on the omitted set f.
If tle conjecture is true, then ,l' can fork at each simple zero in at most three

directions at equal angles. Note that forking actually o@urs in only two of the three

directions for l. on the boundary of the hypocycloid in Section 1 and for .1 on the

boundary of the diamond in Section 2.

In the following, we shall show that Conjecture 4.1 is equivalent to some coeffi.-

cient conjectures. The method is similar to that of [2].
With no loss of generality, suppose that w:0 is a point lying in the omitted

set I of a support point/in E for L. Assume that w:0 is a zero of order k for
the function t(tl(f-w)). This implies that L(f-i):O for i:0,1,...,k and
that L(f-k-\*O. Without loss of generality we can assume L(f-k-\>O. This
implies that the asymtotic directions of .f at the origin are a subset of the direc-
tions determined by the (k+2)tb roots of unity.

57
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We start by deleting a few, or possibly none, of the arcs of I coming out from
w:0. Designate the further subcontinuum inside lwl=ä and containing w:0
by f o.Let Fo *ap D onto the complement of l', with the expansion FuQ):pz*
O(1) at infinity. Then F6 and the original f are related by a univalent "schwarz
function" ar satisfying F5oa:7 in D. the function al maps ö onto D minus a
fewslitsgrowingoutfrom lrl:t. Inaddition, a'(*)-Uq>l and g*g as ä*0.

The function fr:(llq)F5 is a support point for the functional Zu defined by
LaG): L(ogoar). The omitted set for S is denoted by 7r, and it results from dilating
i"5 by the factor Lle. As ä*0, y, approaches a set yo consisting of several radial
line segments of equal length emanating from the origin.

Let r! be univalent in the complement of yu and have an expansion ,lrfu):
w+Zi=oc;(ö)w-i inaneighborhoodof infinity. Then ff :r!o1( serves as a varia-
tionof f5 and so Relu(f,)=ReIr(,6). In other words, B':eL(f{oa*fuoo)=O.
Since

f{ o a -f6o a : Z7:o c r(6) qi 7- i
for f /l=ä, it follows that Re {Z;. c,(ö)piL(f-i)}=O if ä is sufficiently small.
Since Z(/-i):O for j:0, ...,k, we have

Re {co*r(ä)} Qk+,L(f-k-')+O1pe+e; = 0

where L(f-t-r) is positive. Dividing by oo*'L(f-t-r1 and letting ä*0, we obtain
Re {co*r}=O for an arbitrary univalent function ,lr(w):w+Zf=ociw-i in the
complement of yo. Let us summarize:

If the omitted set f of a support pointffor someftmctional Lcontains akb order
zero of its associated quadratic dffirential t(tl(f-w)) dwz and if L((f-w)-o-t) = 0
there, tlrcn one concludes that

(4.1) Re co+1 = 0

for euery fwtction {r analytic and tmiaalent in the complement of yo withexpansion
rl(w):w+Zi=ociw-i in a neighborhood of infinity.
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Since .E admits translations and rotations, we may assume that yo consists of
equal radial line segments emanating from the origin in a subset of the directions

determined by the (k+2)th roots of unity. For example, in Figure 5 the arc -l' con-

tains a zero of order2,andthe four essentially different choices for yo are displayed.

The setting of the coefrcient inequality (4.1) is quite similar to a result of Teich-

miiller [12]. Each assumption on the order of the zero and the geometric configura-

tion of yo implies a coefficient estimate (4.1). However, if we believe Conjecture 4.1,

then there is no reason why the coefficient estimates (4.1) should be true for k>2.
In fact, to verify Conjecture 4.1 it is sufficient to show that the estimates (4.1) are

false.

Conjecture 4.2. The estimates (4.1) are not ualidfor any k>2.

Thus ConjectlJre 4.2 implies Conjecture 4.7. ln fact, it is sufficient to uerify

Conjecture 4.2 when yo is the real interaal [0,4]. Furthennorc, for each integer k
and configuration yo that (4.1) is proved false there is a corresponding zero and

configuration that cannot happen for any support point of .8.

Let us translate the statement (4.1) into a coefficient statement for the class ^8.

Let cpo(z):z*)ioa,z-' map Ö onto the complement of 70, and let @o denote

its inverse function. lf g(z):slZZobnr-" is an arbitrary function of X, then

,!, (w) : go @o (w) : @o (w) + Z]:ob,iD s(w)-" : w * Z7:o c iw- 
i

near infinity, and the statement (4.1) asserts that Re c1*150. Evidently,

ck+r: bo*L+fi-t(ao, ... , ak+J* Z::LTEi(ao, ...2 ayr-)bi

: * I,*,:*s(i»o@))wh aw

for R sufficiently large. Each nl is a polynomial of its arguments and equals the

coefficient of w-k-L in the expansion of @;i at infinity.
Thus (4.1) is equivalent to the linear coefficient inequality

=0(4,2) ne {an+1+ TE-1+ Z::rnibi}

for every SQ):z*ZZob,Z-o in .8. Each configuration 7o yields a @o and coeff.-

cients zr. Of course, equality ocsurs for g=9o.
If we define the functional

^k) 
: * I,*,=*g(oo1w))wkAw

for any g analytic in Ö (and R sufrciently large), then inequality (a.1) says that

Re z1(g)=0 for all g in », and equality o@urs fot g:qo. In other words, the

presen@ of a #h order zero on the omitted set of some support point implies that
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Eo is a support point associated with the functional A. Since

Ä(E;l : * I,*,=R eo(@o(lr))- iwk dw : ,*L I,.,:^wk-i dw,

we have A(E;o-'):l and Ä(q;t):o for all j*k+l. In this case the associated
quadratic differential A(ll(Eo-w))dw2 woald reduce simply to wk dwz.

We shall work out some examples. It is sometimes convenient to use the
formula

1ni: A(z-) : * I,*,:^ @o(w)-rwk a, : fi 1,.,:* o*T,ffi wk+t dw

_ j I f Eo(z)o*, s.- k+1 2ni J p1:a, zi+L
for any R'= 1.

If 7o is the symmetric k*2-star, then Er(z):z(l+z-k-\2t(k+2) frtd so n-.:
-21(k+2) and zrr:0 for 7:1,...,k. In this case the inequality (4.2) becomes

Rebo*r=-2lgra21. Since this inequality is known (t2]) to be false for all k>2,
it follows that the omitted arc l- for any support point cannot have a zero of order
k>2 at which it forks in all k*2 directions. This is the argument given also in [2].

Next suppose that yo is the real interval [0,4] and eok):z-12+llz. Then

n,: -l , (2k+21 for 7: -1,1,...,k. ln orcler to prove conjecture4.l it is'"r k+t lk-j+r)
suffi.cient to disprove inequalities (4.2) in this case. Thus the following conjecture
also implies Conjecture 4. 1.

Conjecture 4.3. For each k>2, there is a function SQ):z*Z;=obnZ-n
in 2 for which

n"{a**,+zo,:,ffV!;;r1b,} = # (*;r)
For example, for k:2 it would be useful to prove that there is a function

in ^X for which Re {bs+4bz+5br}=5. Even this question remains open.
Finally, suppose that the order k:2x of the zero is even, that yo is the real

interval l-2,27, and that EoQ):z*llz. This situation arises when the omitted
set for some support point passes straight through a critical point. In this case

ii:O if j is even and nr---!-(, ,^:*'" '" 2x I I \llzQx -i + g) it i is odd' consequentlv' (4'2)

becomes

R" 
{a,,*, + ; : :,# (:::; r) u," -,1 = rh ? ;')

The simplest of these, for x:1, corresponding to a zero of order 2 is

Re {b, *br} = 1.
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However, in Corollary 3.2 we proved that this inequality is false. Therefore we

have the following theorem.

Theorem 4.4. Let f be a support point of a linear functional L. If the omitted

set f of f contains a second order zero of the quadratic dffierential L(U$-w))d*',
then no subarc of f can pass straight through this critical point.

Corollary 4.5. If a support point f of a linear functional L is odd, then its
quadratic dffierential t(tl(f-w))dwz cannot reduce to w2dw2.

While Theorem 4.4 prevents the omitted arcs of a support point from passing

straight through a second order zero, it could stop there or possibly make a left or
right turn.
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