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QUASISYMMETRIC FUNCTIOI{S OF EXTREMAL
GROWTH

A. HINKKANENI)

1. Introduction

In this paper we continue the study of the growth of quasisymmetric func-
tions started in [2] and [3] by W. K. Hayman and the author. An increasing homeo-
morphism/of the real line R onto itself is called K-quasisymmetric (r(-qs) if

(1.r) l=f,(:!'),,fQ)=*K- f(x)-f(x-r) -^-
holds for all x€R and ,>0. Following [2], we set

Nr(.K) : {flf is K-qs, f(-I): - 1, /(1) : 1},

where K>I, and
Mo(x, K): max {"f(x)l"f(lfo(&},
mo(x, K): min {"f(x)l,fe  fr(K)}.

Note that by [1], the class Nr(lK) is compact. Qs functions arose as boundary values
of quasi-conformal maps [1].

In [2], various estimates for Mo(x, K) and ms(x,K) were established. It
was shown that there are positive numbers a,L, dz, cL, cz, depending on K only,
such that

xn, < Mo(x, K) = crxn ,

c2xaz 3 ms(x, IO = *,
for x>1. Further, Hayman [3] showed that Mo(x,K)x-n, and mo(x,K)x-o,
tend to a limit as x+€ if (ogrK)/(1og(K*l)12) is irational, while if this ratio
is rational, then Mo(x,K)x-", and mo(x,K)x-', are asymptotic to a periodic
function cp of logn as .itr+6. The question whether or not g is constant was left
open, as well as the problem of the value of the limit.

In this paper we shall construct a piecewise linear function f€No(K), which
turns out to be the largest convex minorant of Mo(x,K) for x> -1. A similar
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construction leads to a function g€No(.K), which is the smallest concave majorant
of mo(x,K) for x> -1. There are infinitely many points x such tl:a,t f(x):
Mo(x,K) or g(x):ms(x,/O. If (ogK)/(log(K+l)12) is rational, these points

x occur at bounded distances.

Since / and g are defined by means of explicit formulas, these results can be

used to obtain information about the asymptotic behaviour of Mo(x, K) and

ms(x,K). For example, one can determine the above functiot g and show that
it is not constant. These applications will be developed in a later paper.

It turns out (see Theorem 3 below and cf. [2, Theorem l3]) that if K>1, then

there are infinitely many rational values x6 such that Mo(x,K) is not differentiable
at x:xo. Since Mo(x, K) is increasing, it is differentiable almost everywhere.

One could suggest that such a special behaviour at crurtain rational points might
partly be due to the way we have chosen to define qs functions by means of (1.1)

(i.e., by considering the line segments (x-t,x) and (x,x*l) of equal length,

while to obtain Mo(x,K) one essentially considers line segments whose lengths

have the ratio (x- 1)/). However, it is not so clear why there should be a qualita-

tive difference in the asymptotic behaviour of Ms(x,K) for different values of K.
So perhaps the most interesting feature of the results is that they allow us to study
these somewhat unexpected irregularities of extremal growth in greater detail, even

though it may be remarked that less precise information is usually sufficient for
applications.

Next we define the functions f and g and then state the theorems containing
our results.

For K>1, weset L:L(K):(K*|)12 and A:A(K):(K-'+t)lZ. We num-
ber the pairs (p,q) of integers pEl, 4>0 so that

(1.2) g;Pr f,ih = (Pz |az S ... .

Such an ordering is not unique if and only if Kq:Lp for some p and q, bat in
this case any ordering satisfying (1.2) could be chosen. However, to be definite,
in the proof of Theorem I the particular order, in which the pairs (p, q) for which
the numbers I? Lq are equal are taken in the descending order of p, will be con-
sidered.

(1.3)

As usual, we write (fr):mll(nl(*-,?)t).
We Set Xo:l and, for fr>1, we Set

xn: t + z;:,(oo* f:- 
1) 

2crk+L

We define f(0)- 0, f(l): 1, and

{tr*f:- 
1) 

Kou(K*r)nu,(1.4) f(x,):r+2Zi:, n>1.
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We take f to be continuous and linear on fXn_r, Xol, n>7, and we set f(x)-x,
0<x<1, and f(-x):-f(x). Thus the slope of/ on fXn_r,X,l equals K|"L'L".

Similarly, we number the pairs (P, Q), P>1, Q>0, so that

K-P,' AQ, > K-P, AQz = ".. .

yn - | + zi,:, ( 
P,,*Qx- 1) 

zeu*I,

s(Y.) : L +2 Z;:, ('* *E:- 1) 
K-Pu(l + rlK)o*,

and take g to be linear and continuous on each fY,_r,Irl. Further, we set g(x):*,
0<x<1, and g(-x): -S(x). Thus the slope of g on [I,-r, I,] equals K-P"Aa".

Now we are ready to state our results.

Theorem l. Suppose that K>1. Then f and g belong to No(K). We haue

(1.8) f(x) : Mo(x, K)

for x:X,-r*j2e.+t for att n>t and o=i=("+;;-l), ona

(1.9) g(x) : mr(x, K)

for x:Yn-t*i2a"+r for atl n>t and o=r=(A *8:-').

From Theorem I we deduce the following results:

Theorem 2. For a fixed K, the function f is the largest conuex minorant of
Mn(x, K) and thefmction g is the smallest concaue majorant of mo(x, K) for x> -1.

Theorem 3. If the slope of f changes at x:Xn, then Mo(x,K) is not dif-
ferentiable as a function of x at x:Xo. If the slope of g changes at x:yo, then
mo@, K) is not dffirentiable as a function of x at x:Y,.

It turns out that if (log,lQl(logl(K+l)l2l) is rationatr, then there are more
points x than those mentioned in Theorem 1 where (1.8) or (1.9) is valid.

Theorem 4. Suppose that K>l and that

(1.s)

We set Yo:l,
(1.6)

(t.7)

(1.10)

wherepandqare
Mo(rr, K), there is

(1. 1 1)

logK p
los 1/{,.+ r)121 q

positiue, relatiuely prime integers. Then if zr=l and -f(rr)-
ct point zz with f(rr)-MoQr, K) ond

zt< zzt 4*22e+P
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Further if zr=l and g(zr):mn(zs, K), there is a point zawith g(za):ms(za, K) and

(1.12) Zs< za€ zr*2zerzt.

If the left hand side of (1.10) is irational, Theorem I implies that between

Xo-rand Xn,there are points x, where (1.8) holds, at a distanca2q"tt from each

other. As n+6, this distance has lower limit 2 and upper limit -.
Theorems I and 3 may be considered as extensions of [2, Theorem l3]. There

we had the first few pieces of the present functions f arl.d g.

In Sections 2-4 we prove Theorems I to 4.

I wish to thank the referee for his detailed comments on the exposition.

2. The principle of construction of/and g

2.1. We explain the construction of/in detail. The construction of g is similar.

The proofs of the theorems are based on this construction.

So/is to be odd and piecewise linear, with increasing slopes for x>-1, and

with /(x):x for -l=x=l. Following [2, Section 7], we will call the points,

where the slope of/changes, critical points. Below, also some otherpoints, where

the slope is redefined even though it might not always change, will be called critical.

The positive critical points are denoted by *,, n>0, xo-l, and the slope

between xr-1 and x, is denoted by sr. We set §o:1, and we take §r:K, xt:3.
Thus by f(-x):-f(*), /is now defined for lxl=3.

Each slope sn, n>1, will be of the form I{lLq for integers P>1, 8>0. We

define p'r, q', so that sn:I<p'"Lsl.. We set pi:|, qi:O.
Suppose that xi and s; have been defined fot l<i=n and that s,<s,*, for

all i. Thus/is defined for lxl=x,. Suppose further that the construction has been

made so that for every N, l=N=n, there are ;:4* and 7:7, such that 0<i,
j=N,

and 
xn-xi: xt-(-x)

f(- xi, Xi, xy) : K,
where 

f(x, y, z) : lf(z)-f(il1fif0)-f(x)1.

For y'[:l, we can take ir:jr-O, since

f(-xo, ro, reJ : fel,1, 3) : 79.

We must define s,*r>sn and x,*1, keeping in mind thatf is to be K-qs' Set

i:ir, j:jo so tlat xn-x1:x;*x; and

Q'D ftxi'x;' x) : K'
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Thus we require that

Q.2) f (-xi*r, xi, xo*(x1+t-x)) = K
and

Q.3) f (-*i, xr*r, x,*2(x1*r-x,)) = K.

Since the slopes are to be increasing, we are going to have f(x,*A)=f(x,)+Asn*r,
a>0.

We can write (2.2) as

f (x, * (x i *, - x t)) - f (x ) + f 1x,) - f (x,)

= K(f(x ) af (x,*,)) : K {f (x ) +f (x 1) -lf (x ) - f (x i Å)).
By Q.1), this reads

(lr;1r -:fu)s,*, < Ks;+r(*;*r -x.;),
i.e., so*r<K.ir+r. Similarly, (2.3) gives

2(x,*, -x,)s "*r+ 
K(f(x) +f(x))-(f(x,*J -/(xJ)

=- K {f (x, * r) - f (x,) + f (x,) +/(x)}
or s,*r<(rK*l)s4rl2. We take sr+l to be as large as to satisfy these two condi-
tions, i.e.,

sz+1 : min(Ks;+r, (K*l)sr*r/2).

lf Ksi+t<Ls;*r, where 7:(K*l)12, or if Ksi*r:L,s;*, and pi*r*l=pi*r.,
we set xnal:xn*(xi*r-x;), in+t:i* jr+r:jn*|, p'n+r:p'i+r+1, Q'o+r:Ql+y and
we say that the slope s,*r was constructed from §y+r. If rs;a1<Ks;ar, or if Lsi+r:
Ksi+t and p'r*r+l=p!*r, we set xot,1:xr*2(xi+r-xi), i,a1:i,*1, jn+r:jn,
p'n+r:pi+t, g'r+t:4i+r*1, and say that Jr+1 was constructed from s;*r. In the
former case, we have f(-xr+!t xit xn+t):K, and in the latter case

.f(-xi, xia1, xral) : K,

as required to continue the construction. Clearly sn*1:Kp Lq for p:pi*r, e:glr+r.
To prove that sr*r>sn, we note that this is equivalent to

Q.4) Ks, E min (rKs;+r,Is,*r),

if J,:K,s;, in which case Ksr=Zsi+r by the definition of ,sn, and to

Q.5) Zs; < min (Ks;+r, trsi*r)

if Jr:1,s,, in which case Zs,=Ksr*1. But J;s§;11 and sTss;+, by assump-
tion, so thatQ.4) and (2.5) are true, and thus §,+l=Jn. Since x,*r-x,>2, this
construction defines an increasing homeomorphism/of R.

The fact that/is the function defined in Section 1 by means of (1.3) and (1.4)
will be proved in subsection 4.2.
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2.2. The function g is constructed by taking E(x):x for - 1<x41, g(-x):
-g(x), and by defining critical points xnall,d slopes s, as before, lvith xo:so:1,
xt:3, st:llK. Suppose that xi and s,, l=i=n, have been defined with s,*r<s,
for all i, and suppose that f(-xi,xi,xn):UK for some i,i with 0=i,i=n and

xn-xi:xi*x;. We note that f(-xo,xo,xr):f(-[,1,,3):llK. We also define

P'r, q', so that sr:J(- P'" lq'".
To define sr+1, we note that the conditions corresponding to (2.2) and (2.3) are

f (-xj+tt xi, x,+(x;+l-ri)) = llK,

xn*2(xr+r.-xr)) = IlK,

which lead to Jn..1-J;4rfK, s,*r>tlJ;-p1, r€spoctively, where A:(|+UK)/2 as

before. We set sn11:IrläX (sia1lK, 1.sr*r). If s;a1/K= Asr*r, or if s;a1/K:
1si*, and pi*r*l-:p'ia1, we set xnal:xn*(xi*r-xi) and define Pi+y L'n+r

as before, and otherwise we set xnal:xn*2(:ri*r-xi). Thus we have

f (- xi t xi+tt

f(-x j+tt xi, xn+t) _ UK

in the former case, and f(-x1t xi+Lt xn+l): UK in the latter
that sz*lSsn, so that the construction can proceed in the same

the construction of g.

2.3. For later reference we sumrnarize the main points

of f. If i:i* j:jn, and Kti+l< Ltr*", or Kr;+l- Lsr*,
we set

caso. It also folicws
way. This completes

in the construction
and pi *1+ I =-pi*r,

(2.6) in+t:in, jn+1 : jn+|, P'"+1 : pj*1 +1, q;+1 _ Qj*r,

§n*1 : Ks;+rr Xn+r.- Xn*(x;nr-xi),

while otherwise we set

(2.7) in+t : in+ 1, jn+t : jn, pir+1 : Plnr, A'"*r - Qi*t+ 1,

Sz+1 : LSr*r, Xn+L: xnl2(Xia-x).

This implies that io * - and 7n * - as n + @. Since every new slope is obtained

by multiplying a previous slope by K or L, it follows that every slope is of the form
I?Lq for integers p=7, q>0. We have p>l since sr:K.

By inspection of the construction ofl, we observe that every interval fx^-r, x*7

is used twice in the construction of / on a new interval lxn-r, x,l. This happens

when in:1n and when jr:ffi. We also see that every numbet KpLq as above occurs

as a slope of f on some interval.
Similarly, every slope of g is of the form K-PAQ for integers P>7, Q>0,

and every such number K-PtLa occurs as a slope of g on some interval.
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3. Proof that f and g are K-qs

3.1. We have to show that "f,CeNo(K). Clearly f(-»:Sel):-l and
f(l):g(l):I. We show that /is K-qs. For g, the proof is similar and we omit it.

By 12, Lemma4l it suffices to show that llK=f(x,y,z)=K when z-y:
y-x>O and at least two of the points x, !, Z are critical. By symmetry, we may
assume that y>Q. There are six cases to consider:

10

2a

30

40

50

60

x:xit !:Xi, z-Zxi-Xi, j+tSi,

-1<X-2Xt-Xj, !:Xi) z:Xj, i+l=j,

X-*Xj, !:Xi) Z-2Xi*X;,

x-2xr-Xj=-1, !:xi, z:xit ,+1 =j,
rf --xj,!:f,txr-xi), ,:*r, j=i.

some of these cases reduce to others, and some of them are so similar that we do
not treat all of them in detail.

3.2. Sincetheslopes of f areincreasingfor x=-1, itfollows that f(x,y,r)=I
inallthecases 10to60. If ,r>0, thisisobvious. If x<0, then, since .y=0, wehave
f(z) -f(y) = f(z - y) and f(y) -f(x) :f(y) +f(lxl)=fly + lxl) :f(y - x). Since z -!:!-x, this impiies that f(x,y,z)>|. It remains to find an upper bound for
.f(x,y, z)-

3.3. Consider the case 10, and let i be fixed. Since the slopes of f are increasing
for x>-7, the functions lf(x*t)-f(x)lt-' and t[f(x)-f(x,-t)j-, are
increasing functions of I for 0<t<xi*1. Thus to get an upper bound for
f(x1,xi,2x1-x) for this fixed i it suffices to replace x, by -1:-xo. Hence
10 reduces to 40.

Consider 20 for a fixed i. The previous argument shows that to get an upper
bound for anyT considered, it suffices to replace x by -l and z by 2xi* l. Thus 20

reduces to 40.

3.4. Consider 30 for fixod i andT'. We want to show that if f(x,y,z)<K for
x, !, Z as in 40 and thus as in 10, then the same is true in 30.

lf y-y^ for some m,then 30 reduces to 10 and thus to 40. If not, suppcse that
xm<!<xm+r, and write J.+r:S, !-x-:ör,

First we show that s;EZ,S. There are /=0 and q>m s;trch that xn-x*:
x^*x1 and f(-x1,x^,xo):K. We can choose q and / so that xq+L-xq:
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2(x.a1-x-) and sn+r:I§-*,., by taking q and I larget than originally, if nec-

essary. Further, we have

*r - x^ : x*- x i *2(y - x^) = x* - x i *2 (x* *r- x*)
and hence

Z: xi= 2x^*xq+t-xq: xr-*1*xq+t-xn3 xq+r,

so that s1=- s oq1: Lsm+r: Z§.
Returning to f(x,y,z), we note that if xr<x* and if .f(x,y,z)=K it 10, then

f(xi, x*, xi-zör\ = 
K,

which reads for the Present x, !, z,

f (z - 2ö ) - f (z) + f (z) - f (v)+ ä, § = x {f (v) - f (x) - ä, s }.
Hence

(3.1) f(z)-f(y) = x{f(y)-f(x)}+ {f(r) -f(z -2ö,)}-2ö,L5.
Sincn z:xi€Ia+r, the slopes of /up to z do not exceed §a+rSZS, which implies

that
f(z)-f(z-zäJ = 2ä1.1§.

This together with (3.1) gives f(x, y, z)=K.
lf xi:x*, it suffices to show that the ratio of the largest and smallest slopes

of f onL*^,r) does not exceed I(. This ratio is at most sr+tls^+t:-L<K. Thus

f(x,y,z)=K also in this case.

3.5. Consider 40 for a fixed i. First we take j:/ so that for some n, xn-xi:
xi*x1 and .f(xorlrzo):K, where xo: -xt, !:xi, zo:2!-xo-x' Suppose then

that x:-xy for some 7, O=j<l and t}rat z:Zy-x. From the construction

of f it follows that for every interval (-x*, -x*-t), l=m=-|, there is an interval

.I, of length x*-xm-t contained in [1, zo] such that I*^Ik:o for m#k, the

left endpoint of l*is smaller than that of loif m=k, and the slope of/on 1. equals

Ks.. Between l^and I*a1,the slopes of/lie between Ks. and K§.*r. It follows that

fe) -f(z) = K {f(x) -f(x)},
so that since f(zo\-f(y):K{f(v)-f(xo)}, we have

f (z) -f (y) = K {f (y) -f (x)t.

Similarly for m=l*I, there is an interval 1. with the above properties con-

tained b lro,-). Therefore f(z)-f(zJ=K{/(xJ-f@)), so that f(x,v,z)=K.
This gives the desired upper bound in the case 40, and the case 50 is similar.

3.6. Consider 60 for a fixed 7'. Note lhat xr-xi>Z for i>i so that y>l'
First we take i so that with zo:xi a.rLd. zo-!o:!o-x, x:-JCy, wo have yo:a,

for some I and' f(x,yo,zo\:K. For every interval (x^,x*+t), m>/, there is an

interval l^clzs, -) of length 2(x^a1-x^) such that l*aly:o fot m*k, the
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left endpoint of I* is smaller than that of 1o if m=k, and the slope of f on 1. equals
Ls^*r. For 0<m<\ there are intervals l*cfl, zo] with the same properties. It
follows that if z>zo, thea

f(z) -f(z) = 2L {f(y) -f0)),
and if z<zo, then

f@) -f (r) > 2L {f(y) -f(y)},
so that in any case .f(x,y, z)=K. Thus"f is K-qs.

4. ProofofTheorem 1

4.1. We have already proved that f,S€No(K). Next we show that

(4 .1) f(x,) : Mr(x,, K)

for the critical points xnof f. The proof is by induction. For n:0,1, (4.1) is true.
Suppose that (4.1) holds for n=k. Then with i:,,,+1, j:j**, we have O=i,j<k,
Xp41-Xi:X;*X; and

(4.2) f(x,,*r) :7@)+K{f(xt)+f(x)\.

Suppose that h(No(K). Then by (1.1),

(4.3) h(xr*) = h(x)+K{h(x)-h(-x))

= Mo(xt, K)+K{Mo@* K)+Ms(xi, K)1,

since also -h(-x)eNo(K). By the induction assumption, the right hand sides
of (4.2) and (4.3) are equal, so that h(xo*)=f(xo+J for all h(No(K) and so

Mo(x,,*r., K)=f(xk+). The reverse inequality follows from the definition of
Mo(*,K) since f(No(K), so that (4.1) holds for n:k*l. This completes the
induction. Similarly it is proved that g(x):mo(xo, K) for the critical points xn of g.

4.2. Next we show that the function / constructed in Section 2 is the same as

that defined in Section I by means of (1.3) and (1.4). To do this, we provethatf
as defined in Section 2 has certain properties.

Let the pairs (po, q*) be as in (1.2), and let (pi,,q) be as defined in subsec-
tion2.l. Recall that if Kp*L'h, assumes the same value for several pairs (po,qo),
say for M=k=N, then these pairs occur in the descending order of p1,, i.e., p*>
pa+r>...=piv. We make the following induction assumption, which is clearly true
for n:1. In the list of pairs (pi,q'), k=1, we first have (pr,4), then (pr,qr)

repeated N2 times, and so on, up to (p*qr\ rcpeated No times, *fr"r" lf-:(§),
R:p**g*- 1, §:{r. Further, if the slope of/ is KpLq between successive critical
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points xandy,where x=y<xn, then

(4.4) Y-x :24+t.

We assume that this is true up to a certain n>1, and prove that it remains valid

if r is replaced by z* 1.

We recall that every nu mber I? Lq, P = l, {l > 0, occurs as a slope of /, as observed

in subsection2.3. We sat pnal:P,q,+r:Q. The new slope KPLo can be con-

structed from earlier slopes KP-l;o If P>2, and from KPLa-L if Q>1. In any

case P>2 ot Q>7, for otherwise P:1, Q:0, hence n*L:l, which is against

our assumption. We assume that P>2 and Q>1, for if this is not the case, then

the conclusion is obtained by omitting parts of the following argument. If the old

slope used is KP-LLa, then the distance between the new critical points is equal

to the earlier one, i.e., 2O+L. If the old slope is gPTQ-r, then the new distance is

twice the old one, which is 2(0-1)+1, so that the new distance is again 2o+r. The

number of intervals fx,n-t,x,] with the slope KP-LLo and with P'*:P-L, q|:Q
* ('* 8-1, and the number of those with the slope KPLT-L and p'*:P, q'^:

Q-l is ('.8-?), so that the number of new intervals lx^-r,x.l with the

slope KPLa and with p'^:P,q':Q is

lf I<p*Ls for all p, q, there is nothing else to prove. Suppose that K':Ij
for some relatively prime integers r, s-1. Then KPLa-KP-tLQ+s-...-KP-utLQ+us
where P-ur>l>P-(ull)r, and KPLQ-KP+tDQ-s-...-KP+u'LQ-u", where

Q-us>O>Q-(a* 1)s. By the induction assumption, the pairs (P*ur, Q-us), ... ,

(P+r,Q-s), each repeated a certain number of times, precede (P,Q) among the

@i,,q). Now among the pairs (pi,,q) for which KpLLsL:KP-'LQ, we have the

pairs (P-l,Q),(P-l-r,Q*s),... in this order, by the induction assumption.

The pairs (P-l*r,Q-s) etc. have already been used to obtain (P+r,8-s)
etc. Similarly, among the pairs (pI,q!) with t<plLqL-gt7a-t we have (P,Q-D,
(P-r,Q-|+s) etc. left in this order. Following the procedure of constructing/
summarized ir-2.3,when constructing the slope KPLA we first have a choice between

using (P- l, Q) and (P, Q-l), and we first use up the pairs (P- l, Q). Then

we have a choice between (P-1-r,0*s) and (P,Q-l), and we use the pairs

(P,Q-l). Continuing in this way we see that the pairs (P,Q), (P-r,Q+s) etc.

in this order, each repeated a certain number of times, are among the (p'0, qi).

This completes the induction.
From what has been proved above it is obvious that the function/constructed

in Section 2 is indeed the same as that defined in Section 1 by means of (1.3) and

(1.4), and that (1.8) hclds for the points x mentioned in Theorem 1. For g, the argu-

ment is similar. Theorem I is proved.
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5. ProofofTheorems 2 and 3

Proof of Theorem 2. For x4-1, the function/is clearly a convex minorant
of Mr(x, K), since /€^6(&. Suppose that å is a convex minorant of/for x--1,
and that x and Jp are two successive critical points of I Then

h(x) = Mo(x, K) :.f(x), h(y) = Mo(y, K) :.f(y).

Since/is linear between x and y and h is convex, we have h(t)=f(t) for x<t=!.
Thus/is the largest convex minorant of Mr(x,K).

Similarly it is proved that g is the smallest con-cave majorant of mo(x, K).
Theorem 2 is proved.

Proof of Theorem 3. We consider f only, since the proof for g is similar. The
proof is the same as in [2, Theorem 13]. Suppose that f has left and right hand
derivatives s, and s, at Xn, §r<§2. If Ms(x,K) is differentiable at x:Xn with
left and right hand derivatives D- and D*, then f(X,):Mn(X,,K) and f(x)=
Mo(x,K) for all x imply that D*>sn and D-=sr. Thus D-=D*, which is

a contradiction. Theorem 3 is proved. !',

6. ProofofTheorem 4

Consider firstl It follows from (1.10) that Kq:U. Note that l=plq=2,
so q>2. We consider the solutions z of

(6.1) f(z) : M6(2, K),

and prove the following lemma.

Lemma l. Let fur,urf, lur,unl, fus,utl be the interuals on the positiue axis
where the slope of f equals KP-LLa, KPLQ-t, KPLa, respectiuely. Suppose that (6,1)
holds for 7-so, l=11=ltl, and for z:up; l=k<M, where Lr!:z!<zz<...<.
zN:uz and ur:ur-.Itz<...<!tM:uo. Thm if l=n=N, l=m=M, the point

(6.2) z: us*(zn-zr)+2(u*-ur)

is a solution of (6.1).

we have f(u)-f(u):K{f(ur)+f(ar)} by the definition ofl using this together
with the slopes of/ on the three intervals, we get

f(z) -f(u) : K {f (u) +f(u,)}

where z is given by (6.2), ut:us,*(u*-ur):u* &nd ar:ur-1-(zn-zr):2,. Since

z:u^ and z:zn satisfy (6.1), the argument used in 4.1 shows that (6.1) holds for
z givenby (6.2). This proves Lemma I.
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We shall now establish the upper bound (1.11) for the distance between two
successive solutions of (6.1).

We set V:2p*p-1. We Lrse Zr, Zrand d.:Zz-Zt=O as a generic nota-
tion for two successive known solutions of (6.1) and their distance.

The value of each slope can be written uniquely as K'LN, N>0, l<r<q.
Wewantto prove that d=2Y+1. If s, the slope between ZrandZr, satisfies s:K'LN,
N=-V, then d=2v+1. Namely, among all pairs (1, w) such that s:KtLn, t:r
is minimal and hence w:N is maximal. On the intervals where the slope of /is
r, any critical points of f are solutions of (6.1) by 4.1, and by (4.4) the distance

between two successive critical points on such intervals is at most 2w+L=2N+t=
2v+1. The proof that fl,=2v+r in general is by induction over the pairs (r, N),
with respect to the order of pairs defined by

(rr, lL) =. (r2, N2) if N. = N, or if ff, : N, and tr < rz.

Only the pairs (r, N) with N>V arc considered. Note that l=r=q for all
(r, N).

For (r,N):(l,Y) we have d=2Y+L, as mentioned above. Suppose that
this is true for all pairs before a certain pair (r, N)=(1, V), and let us prove it
for (r, N). We assume that lur,ur|, fur,acl, lus,uu) are the intervals on the posi-

tive axis where the slope of/is K"-llil, yrTN-L, K'ZN, respectively. If r:1, we

replace gt-tLN by KeLN-t. Note that llnen N>V*1, hence N-p=T+p-p>0.
By assumption, we have d=2v*1 on ltsr,url and [ur,an]. Hence there are

points zt-ul<zz<....<zN:Dz and ur:ur'-ll2<...<11*:ao, all of whiCh satisfy

(6.1). We assume that these include all critical points of f on these intervals. Further,
we have ziay-zi42Y+L, uiql-ui=Zv+t for l=i<N, l=j<M. By Lemma 1,

the points

w^n: rs5*2(u--ur\+(zn-zr), I = m = M, 1 = n= N,

are solutions of (6.1). Letmbe fixed and lelnvary from I to N. We see that d=2Y+L
onlwr6r,au] in any case, and on lu^r.,w^*r,rl for l=m<M provided thatzrl-21
:uz-ur>-2@^+t-u-), hence on luu,uul since each ru6 satisfies (6.1).

It remains to show that 2(u^a1*u^)=uz-ar. Since lu^,u^a1fclar, on], where

the slope of /is K.LN-L, we have anyway u^a1*u^-2(N-1)+1-2N (cf. ( .a).
Also [ar, ur] contains at least the intervals lxo-r., xnl corresponding to the pairs

7p',q'):(r-l,N) if r-l>1, or to (pi,,ql.):(q,N-p). Considering the num-
ber and length of such intervals, as obtained in 4.2, we see that

u2-h Z

if r>2, and otherwise

(6.3)

2N +L > 2(u*+t- um)['-'i,'-1) 2N+1 >

=(n*#_!r-1) ZN-p+t0z- Dt



We have q-l=-l and so

( (N-p)+(q- 1)'l (N-p +q-1)...(q+t)q( lr-p ):W

= 
(N-p llXnr-p)"'2' 1 : N-p*r = v-p+L : 2p.(lr-p)!

Hence ur-ur=2N+r>2(u^+t-il^). This proves Theorem 4 for f.
For g the argument is almost similar. Since

loe(UiQ p 
^--losT: -64 - o'

the role of q is taken by p-q and the inequality corresponding to (6.3) is

02-D1-(*-'h'l;u-')) 2N-p+t > 2N+1

for N>V:22p+2p-l if p-q-1>1. But if p-q:l:r, we note that luuuzf
contains at least the intervals lx,-r, xnl corresponding to the pairs (pi, qi):
Q,N-2p) with the slope K-zAIv-zp, where N-2p>Y*l-2p>0, so that

uz-ot>-(--if-X-t)z*-'o*'=-(v+r-2p)2N-zt+I-2N+1,

as required. Theorem 4 is proved.
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