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QUASISYMMETRIC FUNCTIONS OF EXTREMAL
GROWTH

A. HINKKANEN?)

1. Introduction

In this paper we continue the study of the growth of quasisymmetric func-
tions started in [2] and [3] by W. K. Hayman and the author. An increasing homeo-
morphism f of the real line R onto itself is called K-quasisymmetric (K-gs) if

I St
.0 X = T0—Se-0

holds for all xéR and #=0. Following [2], we set
No(K) = {f|f is K-gs, f(=D) =-1, f1) =1},

=K

where K=1, and
My(x, K) = max {f(x)| f€ N, (K)},

my(x, K) = min {f(x)|f€ No(K)}.

Note that by [1], the class N(K) is compact. Qs functions arose as boundary values
of quasi-conformal maps [1].

In [2], various estimates for M,(x, K) and m,(x, K) were established. It
was shown that there are positive numbers oy, o, ¢;, ¢y, depending on K only,
such that

x4 = My(x, K) = ¢ x*n,

Cox% = my(x, K) = x%

for x=1. Further, Hayman [3] showed that M,y(x, K)x™* and my(x, K)x %
tend to a limit as x—~< if (log K)/(log (K+1)/2) is irrational, while if this ratio
is rational, then M (x, K)x~* and my(x, K)x~* are asymptotic to a periodic
function ¢ of logx as x—oo. The question whether or not ¢ is constant was left
open, as well as the problem of the value of the limit.

In this paper we shall construct a piecewise linear function f€Ny(K), which
turns out to be the largest convex minorant of My(x, K) for x=—1. A similar
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construction leads to a function g€ Ny(K), which is the smallest concave majorant
of my(x,K) for x=—1. There are infinitely many points x such that f(x)=
My(x,K) or g(x)=my(x,K). If (logK)/(log(K+1)/2) is rational, these points
x occur at bounded distances.

Since f and g are defined by means of explicit formulas, these results can be
used to obtain information about the asymptotic behaviour of M,(x, K) and
my(x, K). For example, one can determine the above function ¢ and show that
it is not constant. These applications will be developed in a later paper.

It turns out (see Theorem 3 below and cf. [2, Theorem 13]) that if K=1, then
there are infinitely many rational values x, such that M,(x, K) is not differentiable
at x=x,. Since M,y(x, K) is increasing, it is differentiable almost everywhere.
One could suggest that such a special behaviour at certain rational points might
partly be due to the way we have chosen to define gs functions by means of (1.1)
(i.e., by considering the line segments (x—z,x) and (x,x+¢) of equal length,
while to obtain M,(x, K) one essentially considers line segments whose lengths
have the ratio (x—1)/2). However, it is not so clear why there should be a qualita-
tive difference in the asymptotic behaviour of M,(x, K) for different values of K.
So perhaps the most interesting feature of the results is that they allow us to study
these somewhat unexpected irregularities of extremal growth in greater detail, even
though it may be remarked that less precise information is usually sufficient for
applications.

Next we define the functions f and g and then state the theorems containing
our results.

For K=1, weset L=L(K)=(K+1)/2 and A=A(K)=(K~'+1)/2. We num-
ber the pairs (p, q) of integers p=1, g=0 so that

(1.2) KML% = K2L% =....

Such an ordering is not unique if and only if K7=L* for some p and g, but in
this case any ordering satisfying (1.2) could be chosen. However, to be definite,
in the proof of Theorem 1 the particular order, in which the pairs (p, g) for which
the numbers K?L? are equal are taken in the descending order of p, will be con-
sidered.

As usual, we write (rg)zm!/(n!(m—n)!).

We set X,=1 and, for n=1, we set

(1.3) Xn — 1+Z:=1 (pk +qqkk_ 1]211;(('1.

We define f(0)=0, f(1)=1, and

(1.4) fX)=1423"_ (pk"'qqkk_l][("k(K-l-l)qk, n=l.



Quasisymmetric functions of extremal growth 65

We take f to be continuous and linear on [X,_,, X,], n=1, and we set f(x)=x,
0=x=1, and f(—x)=—f(x). Thus the slope of f on [X,_;, X,] equals K?Lin
Similarly, we number the pairs (P, Q), P=1, Q=0, so that

(1.5) K PipQ =K P f%= .
We set Y,=1,
w (PetOp—1
(1.6) Y, = 1+2k=1[ k QQkk ]2Qk+1,
n (PetOp—1Y ., —
(L7 sy =142 30, (O kg,

and take g to be linear and continuous on each [Y,_;, ¥,]. Further, we set g(x)=x,
0=x=1, and g(—x)=—g(x). Thus the slope of g on [Y,_;, ¥,] equals K~ FnA%,
Now we are ready to state our results.

Theorem 1. Suppose that K=1. Then f and g belong to Ny(K). We have

(1.8) f(x) = My(x, K)

for x=X,_1+j2%% for all n=1 and Oéjé(p”_i_qi”—l], and
(1.9) g2(x) = my(x, K)

for x=Y,_1+j2%% for all n=1 and Oéjé(l)”_'_g:_l).

From Theorem 1 we deduce the following results:

Theorem 2. For a fixed K, the function f is the largest convex minorant of
My(x, K) and the function g is the smallest concave majorant of my(x, K) for x=—1.

Theorem 3. If the slope of f changes at x=X,, then M,(x,K) is not dif-
Jferentiable as a function of x at x=X,. If the slope of g changes at x=Y,, then
my(x, K) is not differentiable as a function of x at x=Y,,.

It turns out that if (log K)/(log [(K+ 1)/2]) is rational, then there are more
points x than those mentioned in Theorem 1 where (1.8) or (1.9) is valid.

Theorem 4. Suppose that K=1 and that

logK y
1.10 -
(10 logl(K+ D2~ g
where p and q are positive, relatively prime integers. Then if z;=1 and f(z;)=
My(zy, K), there is a point z, with f(z,)=My(z,, K) and

(1.11) 7y < 2y = 7, +2P+D,
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Further if z;=1 and g(z5)=my(zs, K), there is a point z, with g(z)=my(z4, K) and
(1.12) Z3 << Zy = Z3+22P+2p.

If the left hand side of (1.10) is irrational, Theorem 1 implies that between
X,_, and X,, there are points x, where (1.8) holds, at a distance 2%** from each
other. As n—oo, this distance has lower limit 2 and upper limit .

Theorems 1 and 3 may be considered as extensions of [2, Theorem 13]. There
we had the first few pieces of the present functions f and g.

In Sections 2—6 we prove Theorems 1 to 4.

I wish to thank the referee for his detailed comments on the exposition.

2. The principle of construction of f and g

2.1. We explain the construction of fin detail. The construction of g is similar.
The proofs of the theorems are based on this construction.

So fis to be odd and piecewise linear, with increasing slopes for x=—1, and
with f(x)=x for —1=x=I1. Following [2, Section 7], we will call the points,
where the slope of f changes, critical points. Below, also some other points, where
the slope is redefined even though it might not always change, will be called critical.

The positive critical points are denoted by x,, n=0, x,=1, and the slope
between x,_, and x, is denoted by s,. We set s,=1, and we take s;=K, x;=3.
Thus by f(—x)=—f(x), fis now defined for |x|=3.

Each slope s,, n=1, will be of the form K”L? for integers p=1, ¢=0. We
define p., g, so that s,=KrnLé. We set p;=1, ¢;=0.

Suppose that x; and s; have been defined for 1=i=n and that s;=s;4, for
all i. Thus f is defined for |x|=x,. Suppose further that the construction has been
made so that for every N, 1=N=n, there are i=iy and j=jy such that 0=i,
J=<N,

xXy—x; = Xx;—(—x;)

f(_xjs Xi» xN) = K,

f(x, 3, 2) = Lf@Q - —f ).

where

For N=1, we can take i,=j;=0, since
f(_an xO’ xl) =f(_ls 19 3) = K

We must define s,,;=s, and x,,,, keeping in mind that f is to be K-gs. Set
i=i,, j=j, so that x,—x;=x;+x; and

2.1) f(=x;, x;, x,) = K.
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Thus we require that

(22) f(_xj+19 Xi» xn+(xj+1_xj)) =K
and
(2.3) S X412, X +2(X41—x)) = K.

Since the slopes are to be increasing, we are going to have f(x,+A)=f(x,)+A4s,.1,
A=0.
We can write (2.2) as
S0+ 001 =%7) = () +/ (%) —f(x)
= K(f(e) +/(xp40) = K{F ) +10e) —LF ) —f (x4 D1}

By (2.1), this reads

(11— XD S 41 = K541 (xj41—%)),
ie., $,+1=Ks;.,. Similarly, (2.3) gives

2(X41=X) 8u 01 HK(F () +/(x) = (f(xi4) = (%))

= K{f(xi400) —f00) +1(x) +/(x,)}
or 5,.1=(K+1)s;;,/2. We take s,,; to be as large as to satisfy these two condi-
tions, i.e.,

Spe1 = min (Ksj4q, (K+1)5;41/2).
If Ksj,i<Ls;yy, where L=(K+1)/2, or if Ks;,,=Ls;; and pj ,+1=p],,,
we set xn+1=xn+(xj+1_xj)9 Int1=Ins Jur1=Jnt 1, P;+1=P}+1+1a qr/z+1=q;‘+1’ and
we say that the slope s,,; was constructed from s;,,. If Ls;,1<Ks; 4, orif Ls; =
Ks;y1 and pl o +1<piq, we set X, 1=X,+2(Xj11—X), lys1=ln+1, Jjos1=Jps
DPri1=Piy1> 4ni1=49i41+1, and say that s,,,; was constructed from s;,,. In the
former case, we have f(—x;.1, X, X,+1)=K, and in the latter case

J(=Xj, Xig15 Xp41) = K,
as required to continue the construction. Clearly s,,,=K?L? for p=p, ., g=q,.,.
To prove that s,,,=s,, we note that this is equivalent to
.4) Ks; = min (Ks;.q, Ls; 4,),
if s,=Ks;, in which case Ks;=Ls;,,; by the definition of s,, and to
(2.5) Ls; = min (Ks; 41, Ls; 1)

if s,=Ls;, in which case Ls;=Ks;,;. But s;=s;,; and s;=s5;,; by assump-
tion, so that (2.4) and (2.5) are true, and thus s,,,=s,. Since x,,,;—x,=2, this
construction defines an increasing homeomorphism f of R.

The fact that f'is the function defined in Section 1 by means of (1.3) and (1.4)
will be proved in subsection 4.2.
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2.2. The function g is constructed by taking g(x)=x for —1=x=1, g(-x)=
—g(x), and by defining critical points x, and slopes s, as before, with x,=s,=1,
x;=3, ;=1/K. Suppose that x; and s;, 1=i=n, have been defined with s;,;=s;
for all i, and suppose that f(—x;, x;, x,)=1/K for some i, j with 0=i, j<n and
X,—x;=x;+x;. We note that f(—xo, Xy, X;)=f(~1,1,3)=1/K. We also define
Dly gl so that s,=K—7n A%,

To define s,,,, we note that the conditions corresponding to (2.2) and (2.3) are

f(_xj+19 xi9 xn+(x1+1—xj)) = l/K,
f(-xj’ Xit+1s xn+2(xi+1"‘xi)) = ]./K,

which lead to s$,11=5;+1/K, $,+1=45;.,, respectively, where A=(1+1/K)/2 as
before. We set s,,y=max (s;.1/K, As;y1). If s;./K=As;.q, or if s;,,/K=
As;yy and ph,+1=ply, we set X,,1=X,+(x;41—x;) and define pj.;, Gnit
as before, and otherwise we set x,,,=x,+2(x;4+1—x;). Thus we have

S(=Xj415 X, Xp11) = /K

in the former case, and f(—X;, X;41, X,+1)=1/K in the latter case. It also follows
that s,,,=s,, so that the construction can proceed in the same way. This completes
the construction of g.

2.3. For later reference we summarize the main points in the construction
of f. If i=i,, j=j,, and Ks;y;<Ls;yy, or Ksjii=Lsiiq and P}+1+1§p;+1a
we set

(26) in+1 = itn jn+1 =jn+19 pr,t+1 = p_;'+1+13 qr’|+1 = q_;+19

Spe1 = KSjp1, Xpp1 = xn+(xj+1_xj)a

while otherwise we set
2.7 Ipe1 = Int 1 i1 =Jns DPn+1 = Di+1s ‘Ir:+1 = q,-’+1+1,
Sut1 = LSig1s Xpr1 = X, +2(Xi41—X).

This implies that i, and j,—~oo as n—co. Since every new slope is obtained
by multiplying a previous slope by K or L, it follows that every slope is of the form
KP L1 for integers p=1, ¢=0. We have p=1 since s;=K.

By inspection of the construction of f, we observe that every interval [x,,_, X,]
is used twice in the construction of f on a new interval [x,_;, x,]. This happens
when i,=m and when j,=m. We also see that every number K¥L? as above occurs
as a slope of f on some interval.

Similarly, every slope of g is of the form K=%7A¢ for integers P=1, Q=0,
and every such number K=* A2 occurs as a slope of g on some interval.
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3. Proof that f and g are K-qs

3.1. We have to show that f,g€Ny(X). Clearly f(—1)=g(—1)=—1 and
Sf()=g(1)=1. We show that fis K-gs. For g, the proof is similar and we omit it.

By [2, Lemma 4] it suffices to show that 1/K=f(x,y,z)=K when z—y=
y—x=>0 and at least two of the points x, y, z are critical. By symmetry, we may
assume that y=0. There are six cases to consider:

1° X=X; Y=X, z=2-—%;, j+1=1,
20 —l=x=2x-x;, y=x, z=x; i+l=]j,
30 x = Xxj, y=%(xi+xj), z=2x;, j+1=i,
40 X==X; Y=, z=2x+Xx;,

50 Xx=2-x;<-1, y=x, z=ux;, i+l=j,
6° X=—X;,y= %(xi—xj), z=x;, j<I.

Some of these cases reduce to others, and some of them are so similar that we do
not treat all of them in detail.

3.2. Since the slopes of f'are increasing for x=—1, it follows that f(x, y, z)=1
in all the cases 1° to 6°. If x=0, this is obvious. If x<0, then, since y=0, we have
J@—=f0=fz—y) and f)—f)=fW)+f(x)=f(r+|x)=f(y—x). Since z—
y=y—x, this implies that f(x,y,z)=1. It remains to find an upper bound for

S, 2).

3.3. Consider the case 1°, and let ; be fixed. Since the slopes of f are increasing
for x=—1, the functions [f(x;4+1)—f(x)]¢™" and [f(x)—f(x;—1)]"* are
increasing functions of ¢ for O<r=x;4+1. Thus to get an upper bound for
S(xj5 xi, 2x;—x;) for this fixed 7 it suffices to replace x; by —1=—x,. Hence
19 reduces to 4°.

Consider 2° for a fixed i. The previous argument shows that to get an upper
bound for any j considered, it suffices to replace x by —1 and z by 2x;+1. Thus 2°
reduces to 4°.

3.4. Consider 3° for fixed i and j. We want to show that if f(x,y,z)=K for
X, ¥, z as in 4° and thus as in 1°, then the same is true in 3°.

If y=x,, for some m, then 3° reduces to 1° and thus to 4°. If not, suppose that
Xp<V<Xn+1, and write s,.1=S, y—x,=95,.

First we show that s;=LS. There are /=0 and ¢=m such that Xg— Xy =
Xnt+x, and f(—x;, x,,, x,)=K. We can choose ¢ and / so that Xge1—Xg=
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2(Xp+1—Xnm) and s,.1=Ls,41, by taking g and / larger than originally, if nec-
essary. Further, we have
X=Xy = Xy —=X;+2(V = Xp) = Xy —X;+2 (X 11— Xm)
and hence
Z =X = 22Xy F X1 — Xy = Xg— X+ X101 X = Xya1s
so that s5;=s,41=LSy+1=LS.
Returning to f(x, y, z), we note that if x;<x,, andif f(x,y,z)=K in 1° then

f(xj9 Xoms xi—261) = K,
which reads for the present x, y, z,

f(z=28)—f@)+f(D~f () +6,8 = K{f(»)=f(x)— 6,5}

Hence

(EXY) f@—=f) = K{f0) —f)}+{f(2) —f(z—261)} 26, LS.
Since z=x;=X,41, the slopes of fup to z do not exceed 5,+1=LS, which implies
that
f(2)—f(z—26,) = 26,LS.

This together with (3.1) gives f(x, y, z)=K.

If x;=x,, it suffices to show that the ratio of the largest and smallest slopes
of f on [x,,,z] does not exceed K. This ratio is at most Sy4+1/8m+1=L<K. Thus
f(x,y,2z)=K also in this case.

3.5. Consider 4° for a fixed i. First we take j=/ so that for some n, x,—x;=
x;4+x, and f(xo, y, z9) =K, where xo=—x;, y=x;, Zo=2y—Xo=Xx,. Suppose then
that x=—x; for some j, 0=j<I/ and that z=2y—x. From the construction
of fit follows that for every interval (—X,, —Xp-1), I=m=I, there is an interval
I, of length x,—x,_; contained in [1,z] such that I,nI,=0 for m=k, the
left endpoint of I, is smaller than that of I, if m<k, and the slope of f on I,, equals
Ks,,. Between I, and 1,41, the slopes of flie between Ks,, and Ks,, .. It follows that

f(z)—f(2) = K{f(x)—f(x)};
so that since f(z)—f()=K{f(»)—f(x,)}, we have
f@—f) = K{fO)—f)}-

Similarly for m=I+1, there is an interval I,, with the above properties con-
tained in [zy, ). Therefore f(z)—f(zg)=K{f(xo)—f(x)}, so that f(x,y,z)=K
This gives the desired upper bound in the case 4°, and the case 5° is similar,

3.6. Consider 6° for a fixed j. Note that x;—x;=2 for j>i so that y=1l.
First we take i so that with zy=x; and zy—y,=Yy,—X, X=—x;, we have y,=x
for some I and f(x, yo, 20)=K. For every interval (x,,, X,+1), m=l, there is an
interval I,C[zg, ) of length 2(Xp+1—X,) such that L,nI,=0 for m#k, the
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left endpoint of I,, is smaller than that of I, if m<k, and the slope of f on I,, equals
Ls,+,. For 0=m=I, there are intervals I,cC[l, z,] with the same properties. It
follows that if z=>z,, then

f(@)—f(z0) = 2L{f ) ()},
fz0)=f(2) = 2L{f (o) =/ ()}

so that in any case f(x,y,z)=K. Thus fis K-gs.

and if z-<z,, then

4. Proof of Theorem 1

4.1. We have already proved that f, g€ No(K). Next we show that
@“4.1 JGen) = My(x,, K)

for the critical points x, of f. The proof is by induction. For n=0, 1, (4.1) is true.
Suppose that (4.1) holds for n=k. Then with i=i ., j=j,., we have 0=i, j=k,
.xk+1—xi:xi+Xj and

(4.2) S = f0e) +K{f(x) +1(x)}-
Suppose that h€ Ny(K). Then by (1.1),
4.3) h(xg41) = h(x)+K{h(x)—h(—x))}

= My(x;, K)+K{M,(x;, K)+M,y(x;, K)},

since also —h(—x)€N,(K). By the induction assumption, the right hand sides
of (4.2) and (4.3) are equal, so that h(x;.,)=f(x;.,) for all h¢Ny(K) and so
My(xp11, K)=f(x;+1). The reverse inequality follows from the definition of
My(x, K) since f€Ny(K), so that (4.1) holds for n=k+1. This completes the
induction. Similarly it is proved that g(x,)=m,(x,, K) for the critical points x, of g.

4.2, Next we show that the function f constructed in Section 2 is the same as
that defined in Section 1 by means of (1.3) and (1.4). To do this, we prove that f
as defined in Section 2 has certain properties.

Let the pairs (p;, q,) be as in (1.2), and let (p;, g;) be as defined in subsec-
tion 2.1. Recall that if KP<L% assumes the same value for several pairs (py, q;),
say for M=k=N, then these pairs occur in the descending order of p,, i.e., py >
Pu+1>...>py. We make the following induction assumption, which is clearly true
for n=1. In the list of pairs (p;, q;), k=1, we first have (py, q;), then (pa,q,)

repeated N, times, and so on, up to (p,,q,) repeated N, times, where Nk=[§] ,
R=p,+q,—1, S=q,. Further, if the slope of f is K?L? between successive critical
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points x and y, where x<y=x,, then
4.9 y—x =21+

We assume that this is true up to a certain n=1, and prove that it remains valid
if n is replaced by n+1.

We recall that every number K?L%, p=1, ¢=0, occurs as a slope of f, as observed
in subsection 2.3. We set p,.;=P, ¢,..=0Q. The new slope K" L2 can be con-
structed from earlier slopes K*~'L2 if P=2, and from KFL%~' if Q=1. In any
case P=2 or Q=1, for otherwise P=1, Q=0, hence n+1=1, which is against
our assumption. We assume that P=2 and Q=1, for if this is not the case, then
the conclusion is obtained by omitting parts of the following argument. If the old
slope used is KP~*L2, then the distance between the new critical points is equal
to the earlier one, i.e., 22*% If the old slope is K¥L2~", then the new distance is
twice the old one, which is 2@~P+!, so that the new distance is again 22*'. The
number of intervals [x,_1, x,,] with the slope K*~'L? and with p},=P—1, q;,=0
is [P+ Q—2) ' and the number of those with the slope KPL2~* and p),=P, ¢/,=

b

0—1 is (P+g:%), so that the number of new intervals [x,_;, Xx,] with the
slope K¥L2 and with p, =P, q,,=Q is

850 (8,

o 0-1
If KP»IL% for all p, g, there is nothing else to prove. Suppose that K'=L°
for some relatively prime integers r, s=1. Then KPLe=KF L8+ = =KF-w[0+®
where P—ur=1>P—(u+1)r, and KPL2=KF+[% 5= =KFP+"[%~*, where

Q—vs=0=>Q—(v+1)s. By the induction assumption, the pairs (P+vr, @—0s), ...,
(P+r, Q—s), each repeated a certain number of times, precede (P, Q) among the
(1., q}). Now among the pairs (p;,q;) for which KrxLf%=K"~'L% we have the
pairs (P—1, Q), (P—1—r, Q+5), ... in this order, by the induction assumption.
The pairs (P—1+4r, Q—s) etc. have already been used to obtain (P+r, Q—s)
etc. Similarly, among the pairs (py, g;) with KrL%=K"L?~" we have (P, Q—1),
(P—r,Q—1+s5) etc. left in this order. Following the procedure of constructing f
summarized in 2.3, when constructing the slope K¥ L2 we first have a choice between
using (P—1, Q) and (P, Q—1), and we first use up the pairs (P—1, Q). Then
we have a choice between (P—1—r, Q+s) and (P, Q—1), and we use the pairs
(P, 0—1). Continuing in this way we see that the pairs (P, Q), (P—r, O+s) etc.
in this order, each repeated a certain number of times, are among the (p;, qz)-
This completes the induction.

From what has been proved above it is obvious that the function f constructed
in Section 2 is indeed the same as that defined in Section 1 by means of (1.3) and
(1.4), and that (1.8) holds for the points x mentioned in Theorem 1. For g, the argu-
ment is similar. Theorem 1 is proved.
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5. Proof of Theorems 2 and 3

Proof of Theorem 2. For x=—1, the function f is clearly a convex minorant
of M,(x, K), since f€N,(K). Suppose that & is a convex minorant of f for x=—1,
and that x and y are two successive critical points of f. Then

h(x) = My(x, K) = f(x), h(y) = M,(y, K) = f(3).

Since f'is linear between x and y and % is convex, we have h()=f(t) for x=t=y.
Thus £ is the largest convex minorant of M,(x, K).

Similarly it is proved that g is the smallest concave majorant of my,(x, K).
Theorem 2 is proved.

Proof of Theorem 3. We consider f only, since the proof for g is similar. The
proof is the same as in [2, Theorem 13]. Suppose that f has left and right hand
derivatives s; and s, at X,, s;<s,. If My(x, K) is differentiable at x=X, with
left and right hand derivatives D_ and D,, then f(X,)=M,(X,,K) and f(x)=
My(x, K) for all x imply that D,=s, and D_=s;. Thus D_<D,, which is
a contradiction. Theorem 3 is proved.

6. Proof of Theorem 4

Consider first f. It follows from (1.10) that K?=IL?. Note that 1<p/g<2,
so g=2. We consider the solutions z of

6.1 J(@) = My(z, K),
and prove the following lemma.

Lemma 1. Let [vq, s, [vs, v4], [vs, vs] be the intervals on the positive axis
where the slope of f equals K*71L2, KP12~%, K*L2, respectively. Suppose that (6.1)
holds for z=z,, 1=k=N, and for z=u, 1=k=M, where v,=zi<z;<..<
Zy=vy and vi=uj<uy<...<tpy=vy. Then if 1=n=N, 1=m=M, the point
(6'2) z= U5+(Zn—zl)+2(um_ul)
is a solution of (6.1).

We have f(v;)—f(vs)=K{ f(vs)+f(v;)} by the definition of . Using this together
with the slopes of f on the three intervals, we get

J(@)=f ) = K{f(v) +/ (v}

where z is given by (6.2), v,=vs+(u,,—u)=u, and vyg=v;+(z,—z,)=z,. Since
z=u, and z=z, satisfy (6.1), the argument used in 4.1 shows that (6.1) holds for
z given by (6.2). This proves Lemma 1.
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We shall now establish the upper bound (1.11) for the distance between two
successive solutions of (6.1).

We set V=2+p—1. We use Z,, Z, and d=Z,—Z;>0 as a generic nota-
tion for two successive known solutions of (6.1) and their distance.

The value of each slope can be written uniquely as K'LN, N=0, 1=r=gq.
We want to prove that d=2"*+1, If s, the slope between Z, and Z,, satisfies s=K"L",
N=V, then d=2"*'. Namely, among all pairs (¢, w) such that s=K'L"*, t=r
is minimal and hence w=N is maximal. On the intervals where the slope of f is
s, any critical points of f are solutions of (6.1) by 4.1, and by (4.4) the distance
between two successive critical points on such intervals is at most 2¥*!=2V*1=
2¥+1 The proof that d=2"*! in general is by induction over the pairs (r, N),
with respect to the order of pairs defined by

(ri, Np) < (e, Ny) if Ny< N, orif Ny=N, and r <r,.

Only the pairs (r, N) with N=V are considered. Note that 1=r=gqg for all
(r, N).

For (r, N)=(1,¥V) we have d=2""' as mentioned above. Suppose that
this is true for all pairs before a certain pair (v, N)=(1, V), and let us prove it
for (r, N). We assume that [vy, v,], [v3, v4], [v5, vs] are the intervals on the posi-
tive axis where the slope of fis K" 7LV, K"L¥=1, K"LM, respectively. If r=1, we
replace K" LY by K‘LY~?. Note that then N=V+1, hence N—p=2+p—p=0.

By assumption, we have d=2"*' on [v;,v,] and [v;,v,]. Hence there are
points z;=v,<zy<...<zy=v, and w;=vs<uy<...<uy =v,, all of which satisfy
(6.1). We assume that these include all critical points of f on these intervals. Further,
we have z;,,—2z,=2"%', u;,,—u;=2"*' for 1=i<N, 1=j<M. By Lemma I,
the points

W = Us+2 (U, —u)+(z,—21), 1=m=M, 1=n=N,

are solutions of (6.1). Let m be fixed and let n vary from 1 to N. We see that d=2"*!
on [wy, vg] in any case, and on [v,1, Wy1,1] for 1=m<M provided that zy—z;
=v,—0; =2(U,+1—U,), hence on [v;,ve] since each w,, satisfies (6.1).

It remains to show that 2(u,, .+, —u,)=v,—v,. Since [u,,, t,+1]1[vs, v,], where
the slope of f is K"L¥~, we have anyway u,+;—u,=2""D+1=2" (cf. (4.4)).
Also [v;,v,] contains at least the intervals [x,_,, x,] corresponding to the pairs
(s, q)=(@—1,N) if r—1=1, or to (p;,q,)=(q, N—p). Considering the num-
ber and length of such intervals, as obtained in 4.2, we see that

Vy—v; = [r_H];,N_l) N+ = N+ =D (y, 1 —u,,)

if r=2, and otherwise

+N—p—1
6.3) vz—vlé(q N—g )ZN“P“.
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We have g—1=1 and so
[(N—p)+(q—1)J _(N=p+q-1..(¢+1Dg

N—-p N-p)!
(N—p+1)(N=p)...2-1
= =N—p+1=V-p+1 =27,
—p)! P P

Hence v,—v;=2V*'=2(u,41—,). This proves Theorem 4 for f.
For g the argument is almost similar. Since

log(1/K) _ p
logA ~— p—gq =2,

the role of ¢ is taken by p—g and the inequality corresponding to (6.3) is

Vy— D, = (N_p-*_];r(f;q— 1)) IN=p+1 = ON+1

for N=V=2"%4+2p—1 if p—gq—1=1. But if p—g=1=r, we note that [v;, v,]
contains at least the intervals [x,_;, x,] corresponding to the pairs (p;,q)=
(2, N—2p) with the slope K~2AN~?", where N—2p=V+1-2p=0, so that

by = (N~]:\pr_—;§_lJ ON=20+1 = (4 | —2p) 2N =2 +1 = ON+1,

as required. Theorem 4 is proved.
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