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1. Introduction

The purpose of this paper is to study the linear local connectivity of sets in
Euclidean n-space in relation to their boundaries, and to prove that linear local
connectivity is a quasiconformal invariant which charactertzes quasiconformal

mappings.
The notion of linearly locally connected sets arose in the work of F. W. Gehring

and J. Väisälä [7] in their investigation of quasiconformal mappings in Euclidean
ttrree-space, and appeared, under the name of strongly locally connected sets, in a
paper of Gehring [3] as a means of proving that a quasiconformal mapping of a
fordan domain D in three-space onto the unit ball can be extended to a quasi-

conformal mapping of the whole space if and only if the exterior of D is quasi-

conformally equivalent to the unit ball. Since then, the concept has been used [4],
[5], [6] in studying t]re univalence of analytic functions and in characterizing quasi-

disks.

2. Notation

For each integer n>1, let Rn denote Euclidean n-dimensional space, and Ro

the one-point compactification R'u{-}. Points of R'will be denoted by letters

such as P, Q, x,y. The coordinates of x will be (xr, ...,xn), lPl denotes the norm
of P,and B(P,r) istheball {x: lx-Pl=r} inR'. Foraset.EcR', E,C(E),
åE will denote the closure, complement and boundary of E. If P€R' and E, F
are sets in R', then d(P,E) and d(E,F) denote the Euclidean distances from.E
to P and F respectively. The Euclidean diameter of a bounded set .E is denoted by
diam (E).
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3. Deffnition and examples

3.1. Definition. A set EcRn is c-locally connected, wherc l=s<.*, if,
for each P€.P and each r>0, each pair of points tn E^B"(P,r) is joined by a
continuum in E^B'(P,cr), and each pair of points in .A\,B'(P,r) is joined by
a continuum in E\,B'(P, r/c).

E is linearly locally connected if there is a number c, \ = c <, - for which .E is
c-loc,ally connected.

Quasidisks, uniform domains, the complement in Rn (n=3) of the quasi-

conformal image of a ball are all linearly locally connected sets.

It is easy to check that any linearly locally connected set is connected, locally
connected at each point of R" and free of cut-points. If .E is c-locally connected
and cr>c, ,E is crJocally connected.

4. Boundary anil closure relations

4.1. Proposition. Let E be a set in Rn. Then
(a) if 0E is clocally connected, so is E,
(b) if E is cJocally connected, so is E.

Proof. (a) Let P** and r=0 be given, and x,y(EnBo(P,r). lf B'1P,r1cE,
then the segment [x,y] joins x,y h EnB"(P,cr). lf not, then |E^B'(P,r) is
non-empty, so there are (possibly trivial) segments n EIB"(P, r) jotning x, y
to points x,y<08^8"(P,r). The c-local connectivity of 0E yields a continuum
y in \EaB"(P,cr) joining t, ,, so [x, -]uyu[!,.y] is a continuum joining x, y in
Eofr(P, cr).

A similar argument applies to x,y(\B"(P,r).
(b) If x, y€EnB*(P,r), therearesequences(x*),(y-) inEwith lim.-- x*:x,

lim***y*:y, and we may asflrme x^,y^(EnBn(P,r*llm). By the c-local con-
nectivity of E, x* and y^ can be joined by a continuvm ym im EIB"(P, c(r+llm)).
Let

F*:U|,:r,^l* and F: OLrFr.
Then FpcEnB"(f,cQ+Uk)), and (fo) is a decreasing sequence of compact sets

containing x and y. Thus F is a compact set in En.B'(P, cr) containing x, y.
To show F is connected, we first show that, for each e>0, Fo is e-connected

for each k=ko, where ko is such that lx-x*l=e whenever m>ks. For, if
Q,r.,Qr€Fx and k>ko, then, for i:1,2 we have integers kt>k and Qi€l*,
with lQt-Qil<e. As "l*,, !*, are continua, they are e-connected, so ttrere is an
e-chain from Q, to Q, via Qi, x, Qi in F1,. Fo is thus e-connected.

It now follows that F is 2e-connected for each e=0, and being compact, is a
continuum joining x, y in EaB"(P, cr).
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A similar argument applies to x,7€-E\B"(P,r).
Simple examples show that neither converse in Proposition 4.1 is true.

4.2. Proposition. If E is a uniformly locally connected set, and 0E is c-locally
connected, then E is crJocally connected for any c,>c.

Proof. Let P€R", r>0 and x,y(EnB"(P,r). If the segment [x,y] is in
E^B"(P,/), this is a continuum of the required type.

If not, let xo, y, be the first and last points of [x, y]a\E in passing from x
to y. As 0E is c-locally connected, there is a continuum y joining xo to yo in
LEaB"(P, cr).

As .E is uniformly locally connected, for any fixed c, =s, there is a ä =0 such

. that, for any point Q of y, any two points of EnB"(Q, ä) can be joined by a con-
tinuum in EnB'(Q,@r-c)r). Since y is a continuum, there is a ö|2-cbain
xo:Qo, Qr, ..., Q^:y, joining xo to yo in y.

We use this chain to construct a continuum joining x, ! h EnBo(P,crr).
For i:0, 1,...,ffi, let Åi:Bn(Qt,ö). Choose Pr(fx,xolnÅs. If P1 has been

chosen, let Pr*1QÅ1,n/k+LaE if k=m-l, and let P-*r1Å*a}o,!). By the
local connectivity of .E, there is a continuum yecB(Qt,,@1-c)r)aE joining Po

to &*r. Hence ?ou...uy. is a continuum joining Po to P* in .E', with each

point less than (cr-c)r fromlEandso [x,xs]uyru...ul*vl.!o,y] is a continuum
joining x, y in EIB"(P,crr).

A similar argument applies to x,y€,8\.8'(P,r).

Remarks. 1. If, in Proposition 4.2, E is a domain, the conclusion holds with
cL:c.

2. For n=3, lhere are linearly locally connected domains whose boundaries

fail to be linearly locally connected.

4.3 Proposition. If D is a plane domain and 0D is c-locally connected, and
consists of more than one point, then D is a cJocally connected Jordan domain.

Proof*). Since åD isconnected, locally connected and free ofcut-points, Theo-
rem 9.9 of [8, p. 281] implies that D is a Jordan domain. Thus D is locally connected
at each boundary point, indeed uniformly locally connected, so from Proposition 4.2
and the subscquent Remark we see that D is c-locally connected.

4.4. Corollary. A donwin DcRz is a quasidisk if and only if 0D is linearly
locally connected and consists of more than one point.

Proof. This follows from a theorem of Gehring [6, p. 31] if we merely apply
Proposition 4.3 when åD is linearly locally connected.

Remark. In fact [F. W. Gehring], DcRz is a K-quasicircle domain if and

only if D is c-locally connected, where c depends only on K.

*) Dr. Kari Hag has kindly pointed out this method of proof.
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5. Invariance under quasiconformal mappings

We begin with [3].

5.1. Theorem. If E is a clocally connected set in R" and E' is the image of E
under a Möbius transformation, then E' is g(c)locally connected, where g is the inuerse

of the increasing function h giuen by

h(t) : grlzql,-tlz-1, 1 < I <-.

For a detailed proof, see [2].
Thus linearly local connectivity is invariant under Möbius transformations.
In dealing with the effect of quasiconformal mappings, other characterizations

of linear local connectivity are sometimes more convenient.

If i- denotes a family of locally o-rectifiable arcs in R', and .F(f) the family
of non-negative Borel-measurable functions g for which L q ds=-l for each y€,1-,

we define the modulus of f , M(f) by

M(r) - Q" dm

where m denotes n-dimensional Lebesgue measure.

5.2. Definition. Given two sets Fo, F,inRn, the extremal distance, )'(Fo, F),
between Fo, F, is defined by

).(Fo, F): (#ö)"-"
where .l- is the family of arcs joining Fo, Fr in R' and o,-, is the (n- l)-dimensional
measure of the unit (r-l)-sphere 0B'(0,1).

We note that l(Fo, .FJ is invariant under Möbius transformations.

5.3. Definition. A set ,EcR' is linearly locally connected (in the extremal

distance sense) if there is a number s=0 such that, if Fo, F, are continua in Rn

with
,t(,tf,, ,F) > s,

then EnFi can be joined by a continuum in E\Fr-i, for i:0, 1.

We relate this definition to the original (Euclidean) definition of linear local

connectivity by means of rings.
An open connected set RcR' is a ring if C(R) consists of two components,

which we usually denote by Co, Cr. We define the modulus of a ring R as

modÄ : ).(Cs, C1).

11 .R:{x: a<lx-Pl<å} where O<a<b<.*, then

inf f
y€.rJ Rn

modR-l< b)sv
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The n-dimensional reichmiiller ring Rr(a) is the ring with complementary com-
ponents the segment

{rr, -L = xr= 0, xz-...-x, - 0}
and the ray

{x: u=Jf1 5e, x2-...=xn:0},
where z>0. For such z, we define the function Y, by

logY"(u): modRr(zr).

Note that Y, is increasing and y,(l)=l. See [1] and references therein.
The link between the two definitions of linear local connectivity is provided by

5.4. Lemma. Let Fo, Frbe continuainR" si1fu a(F, and

).(Fo, F) > log Y,(c),

wlere c>1. Then for any P(Fo, there is a number r>0 such that the ring
lx: r<lx-Pl<rc| separates Fo, Frin C(FovFr).

Proof. Since ,l(Fo, ^E')=0, Fo, F, are disjoint, so Lemma 3.5 of [7] implies
there is a ring R with complementary components Ce, C. such that, for i:0, l,
\CtcFrcCr. As every arc joining Fo, Frjoins Co, C. it follows easily that

)"(Fo, Fr): l(Co, CJ : modR.

Let r be the radius of the smallest ball with centre P containing Co. The extremal
property of the Teichmiiller ring ([l0] for Rr,l2l for Ro and [9] for R,) then implies
the result.

5.5. Theorem. A set E is linearly locally connected in the Euclidean sense
if and only if E is linearly locally connected in the extemal distance sense.

Proof. Suppose E is linearly locally connected in the extremal distanco sense,
withconstant s. Given P€Rtr and r>0, let Fo:Bo(P,r) and Ft:C(8,(P,rd)).
Then ,t(F,,4):s, so any two points of EaF, can be joined by a continuum in
A,Fr-,. Therefore .E is e'-locally connected.

For the converse, let E be c-locally connected, where we may assume c-1,
and let Fo, F, be continua in R, with ).(Fo, Fr)>s, where s:log p,(c).

Suppose first ttrat -€Fr. Choose P€Fe and r as in Lemma 5.4, so that
{x: r<lx-Pl<rc} separates Fo, F, in C(f.ufJ. Then EaFocEnB,(p,r),
and so is in a continuum in EnB'(P. rc)c\Fr; and EnFrcE\B,(P, rc) is in
a continuum in ^E\.B'(P, r)cE\Fo.

If -(Fr, let M be a Möbius transformation such that *€M(E). BV Theo-
rem 5.1, M(E) is linearly locally connected, so the above argument applies to M(E).
The conclusion follows because M-r is a homeomorphism.

Remark. It is evident from the proofs of Lemma 5.4 and Theorem 5.5 that
the definition of linear local connectivity in terms of extremal distance is equivalent
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to the analogous definition in terms of rings: a set .EcRn is linearly locally con-

nected if and only if there is a number s>0 such that, for each ring R with com-

plementary components C o, Cr,and mod R> s, EnC, is in a component of E\Cr- i

for i:0, 1.

lf D, D'are domains in R', we say the homeomorphism /: D*D' is a K'quasi'

conformal mapping of D onto D', where K>1, if, for each disjoint pair of continua

Fo, Frwith the ring R of the proof for Lemma 5'4 satisfying RcD,

1

i ^@,, 
F) = )"(f(Fon D), f(F,a D)) = K)'(Fo, F,).

The mappin g f is quasiconformal if / is K-quasiconformal for some K> 1.

For B'(P, r)cD, let

L(P't): max {lf(x)-f(P)l: lx-P I : '}'
t(P'r): min {lf@)-f(P)l: lx-Pl : r}

and

H(P):tm-sJrp##

Then it is known [11] that/is K-quasiconformal if

i?B 
a(r) = -

and
H(P) = K

almost everywhere.

5.6. Theorem. Let D be N or R" and f: D-D K-quasiconfotmal mapping.

If EcD is cJocally connected, then E':f(E) is c'Jocally connected, where c'

depends only on c, K and n.

Proof. lf D:R", then we can extend f to a K-quasiconformal mapping of
Ro by removing the singularity at -. So we assume D:Rn.

Let F[, F{ be continua with

).(F{, Fi) > Ks

where s:logY,(c). lf f-L(F;):Fi, i:0,1, then

,1(4,4) = s

and so .Enfi lies in a continuum in ,E\Fr-,, i:0, 1. Since/is a homeomorphism,

E'oFi lies in a continuum in E'\Fi-,, for i:0, 1. It follows that E is c'-locally

connected, where
c, : e"R: (yr(c)K.

If the domain D is a proper subset of R', the distance to the boundary plays a

role. We first prove
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5.7. Lemma. Let E be a bounded connected set in R" which satisfies the defini-
tion of c-local connectiuity for all P€P.3 and all r, 0<r<ö where 6>0 is fixed.
Then E is 2c(1*dlö)-locally connected, where d:diam (E).

Proof. Suppose P€l{, r>ö are given.
(i) lf EnB'(P,r)+O, then the connected set

E e_ E^8,(p,r*d) g znB"(r,0+dl»r),
so EnBn(P, r) is in the connected set EaB"(P,(1+dlö)r).

(ii) If E\B"(P,r)tL, then either r>2d, in which case EcC(B"(P,r-d))c
C(B'(P,rl2)), so that E\.B'(P,r) lies in the connected set E\8,(P,rl2); or
else ä<r<2d, when ,E\B'(P, r)cE\B'(P, ä), and by hypothesis any two points
of this set are joined by a continuum in .E\.B'(P,6lc)cE\8,(P, rål(zcd)).

The result now follows readily.

5.8. Theorem. Let D, D' be proper subdomains of N, and f: D*D' a K-quasi-
conformal mapptng. If E is a cJocally connected set with EcD, then E':f(E)
is c' Jocally connected, where c' : c' (c, K, diam (E) I d(8, 0D), n).

Proof. We first exhibit numbers c"=l and ä'=0 for which Lemma5.7
applies to E'.

Since .E'cD', E'is bounded and 0<d(E',0D'1=*. Let c":(Yo(c))K, and
choose 6' < d(E', \D')l(c" + l).

Let P'€PJ, and 0<r'=6'. Tf E'aBn(p',r')*0 then d(p',E')=r', and so

d(|D', B"(P',r'c")) = d(\D', E')-("" + I)r' > o.

Hence B"(P',r'c)cD'. Denoting by R'the ring {x: r'<lx-P'l<c"r'}, we see

that R:f-L(R') has modulus at least

f -oaa' : f tos c" :logYn(c).

But if R has complementary components Co, Cr, where Co:f-r(8"(P',r')), we
see EnC, is in a continuum in E\C1-1 for i:0, 1. Since / is a homeomorphism,
E'iB"(P',r') is in a component of E'^8"(P'rr'c), and E\B"(p',r'c)
is in a component of E'\B"(P',r').

Lemma 5.7 now shows E is cllocally connected, where c' depends on c, K and
diam E'ld(E',0D').

It now suffices to show that diamE'ld(E',0D') depends only on K,
diamEld(E,0D) and n. For this, let a be the number such that

83
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(5.9)

where @ft is the distortion function of I t, p.63],and let 6:d(8, åD). Consider a grid

of closed n-cubes Q meeting E, with disjoint interiors, of side-length aöl((a+D{fi.
The number of such cubes clearly cannot exceed a bound depending only on n, K
and diam (E)ld(E,lD). lf x,y€Q, then

d(8,0D) = d(x,LD)-diamQ= r- ;f i : #
so that

lx-yl - diamQ -,il(x,0D) - d(Q,0D) - -'

Denoting /(x) , f(y), f(Q) by x' , y' , Q' , we have

##'ffi=@kffi#) ='ur'r:*'
by Theorem 18.1 of [11]. This implies

diamQ' 1ffi=T
Since -E is connected, there is a simple arc y joining points x, y in E with

lf@)-fU)l:diam(E'). Clearly, T can be covered by a sequen@ Qr,...,Qx of
cubesof thegridsuch that x(Q*y(Qn md F*nQ1,a1#0 where Fo:U\=rQt.
Let Fi:f(Fo). Simple geometric considerations show that

ffiffis*o' k:7'""N'

where mr:U2 and mo*1:3myl2+|2, k:1, ..., l{-1. But then

diam(E') < iiam(Fi)
d@Tw = d@i:d;T a ntn 

'

a number with an upper bound depending only on n, K and diam(E)ld(8,0D).
The proof of Theorem 5.8 is complete.

5.10. Corollary. I*t f be a quasiconformal mapping of the domain D onto

the domain D' in R". If E is a linearly locally connected set with EcD, then f(E)
is linearly locally connected.

Proof. This follows from Theorem 5.6, Theorem 5.8 and the invariance of
lifrear local connectivity under Möbius transformations.

We have the followingcharacteÅzation of quasiconformal mappings:

5.11. Theorem. Let f be a homeomorphism of a domain D onto a domain D'
in R". If f maps each cJocally connected set E with EcD\{-} onto a c''locally
connected set where c' depends only on c, f and diam (E)ld(E,|D) (in case NcD,
we take the last to be 0), thenf is a quasiconformal mapping of D onto D'.
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Proof. Write Dr:D1{-,"f-r(-)} and let P€DL. Choose a so that 0<a<
d(P,0D)12, where the last may be -. For O<r<af), let pr,pz€08,(p,r) so
that the acute angle between the segments PPr, PrP, is at least nl4, and let pr,
Pn be the points of intersection of the rays PrP, && with 08"(p,a). The set E
consisting of the segments PrPa, P4PL and the minor arc of the great circle of
ilB'(P,a) through Pr, Pn is then cosecz/8-locally connected, and, by choice of a,
diam(E)ld(E,0D)=112. Thenf(E) is c'-locally connected, where c'is independent
of P and the particular choice of .E

Now, if r is so small that

+@'+t)L(P,r) = l(P,a),

it is not difficult to show that

lf(P) -f(P,\I = f, (c' + t) lf(P) -f(p,)l

from the c'-loeal connectivity of f(D. But then it follows that

L(P, r) = ! (c' +l)2 l(P, r)
so that

H(p) :rim-sup tr* = [k'+r),
for all points P(Dr..

It follows that flr, is quasiconformal. But then f is quasiconformal on D,
since if *qD or D', *,f-t(-) are removable singularities.

Remark. We have only used the hypothesis of Theorem 5.ll when
c:cosec(z/8). When n:2, this can be sharpened to c:1.

I wish to thank Professor F. W. Gehring for his encouragement to write this
paper.
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