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LINEARLY LOCALLY CONNECTED SETS
AND QUASICONFORMAL MAPPINGS

M. F. WALKER

1. Introduction

The purpose of this paper is to study the linear local connectivity of sets in
Euclidean n-space in relation to their boundaries, and to prove that linear local
connectivity is a quasiconformal invariant which characterizes quasiconformal
mappings.

The notion of linearly locally connected sets arose in the work of F. W. Gehring
and J. Viisili [7] in their investigation of quasiconformal mappings in Euclidean
three-space, and appeared, under the name of strongly locally connected sets, in a
paper of Gehring [3] as a means of proving that a quasiconformal mapping of a
Jordan domain D in three-space onto the unit ball can be extended to a quasi-
conformal mapping of the whole space if and only if the exterior of D is quasi-
conformally equivalent to the unit ball. Since then, the concept has been used [4],
[5], [6] in studying the univalence of analytic functions and in characterizing quasi-
disks.

2. Notation

For each integer n=1, let R" denote Euclidean n-dimensional space, and R"
the one-point compactification R"U{c}. Points of R* will be denoted by letters
such as P, Q, x, y. The coordinates of x will be (x, ..., x,), |P| denotes the norm
of P, and B"(P,r) is the ball {x: |[x—P|<r} in R". For aset ECR", E, C(E),
OE will denote the closure, complement and boundary of E. If P<R" and E, F
are sets in R”, then d(P,E) and d(E, F) denote the Euclidean distances from E
to P and F respectively. The Euclidean diameter of a bounded set E is denoted by
diam (E).
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3. Definition and examples

3.1. Definition. A set ECR" is c-locally connected, where 1=c<oo, if,
for each PcR" and each r=0, each pair of points in EnB"(P,r) is joined by a
continuum in EnB"(P, cr), and each pair of points in EN\B"(P, r) is joined by
a continuum in EN\B"(P, r/c).

E is linearly locally connected if there is a number ¢, 1=c=<o for which E is
c-locally connected.

Quasidisks, uniform domains, the complement in R* (n=3) of the quasi-
conformal image of a ball are all linearly locally connected sets.

It is easy to check that any linearly locally connected set is connected, locally
connected at each point of R" and free of cut-points. If E is c-locally connected
and ¢,>c, E is ¢;-locally connected.

4. Boundary and closure relations

4.1. Proposition. Let E be a set in R". Then
(@) if OF is c-locally connected, so is E,
(b) if E is c-locally connected, so is E.

Proof. (a) Let P+ o and r=0 be given, and x, y€ EnB"(P,r). If B"(P,r)CE,
then the segment [x,y] joins x, y in EnB"(P, cr). If not, then dENB"(P,r) is
non-empty, so there are (possibly trivial) segments in EnB"(P,r) joining x, y
to points X, JEQENB"(P,r). The c-local connectivity of QE yields a continuum
y in 9ENB"(P, cr) joining X, y, so [x, X]Uyu[y, y] is a continuum joining x, y in
EnB'(P, cr).

A similar argument applies to x, y€ ENB"(P, r).

(b) If x, y€ EnB"(P, r), there are sequences (x,,), (y,,) in E with lim,,_ . x,,=x,
lim, e Y=y, and we may assume x,,, y,€ ENB"(P, r+1/m). By the c-local con-
nectivity of E, x,, and y,, can be joined by a continuum y,, in EnB"(P, c(r+1/m)).
Let

Fk = U;O:k Vm and F= m::l Fk'

Then F,cEnB"(P,c(r+1/k)), and (F,) is a decreasing sequence of compact sets
containing x and y. Thus F is a compact set in EnB"(P, ¢r) containing x, y.

To show F is connected, we first show that, for each ¢=>0, F, is e-connected
for each k=k,, where k, is such that |x—x,|<e whenever m=k,. For, if
0., Q,€F, and k=k,, then, for i=1,2 we have integers k;=k and Q{Eyki
with |Q;—0Q/|<e. As V> Vi, AIC continua, they are e-connected, so there is an
e-chain from Q; to Q, via Qf, x, Q; in F,. F, is thus ¢-connected.

It now follows that F is 2e-connected for each ¢>0, and being compact, is a
continuum joining x, y in EnB"(P, cr).
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A similar argument applies to x, y€ ENB"(P, r).
Simple examples show that neither converse in Proposition 4.1 is true.

4.2. Proposition. If E is a uniformly locally connected set, and OE is c-locally
connected, then E is ¢ -locally connected for any c;=>c.

Proof. Let PR, r=0 and x,y€EnB"(P,r). If the segment [x,y] is in
EnB"(P, r), this is a continuum of the required type.

If not, let x,, y, be the first and last points of [x, yYJndE in passing from x
to y. As 0E is c-locally connected, there is a continuum y joining x, to y, in
OENB"(P, cr).

As E is uniformly locally connected, for any fixed ¢;>c, thereisa §=0 such
that, for any point Q of y, any two points of EnB"(Q, ) can be joined by a con-
tinuum in EnB"(Q, (c;—c)r). Since y is a continuum, there is a d/2-chain
%o=00, Q1 ---» Ow=Yo joining x, to y, in y.

We use this chain to construct a continuum joining x, y in EnB"(P, ¢;r).
For i=0,1,...,m, let A,=B"(Q;, ). Choose Py€[x,x,]nd,. If P, has been
chosen, let P, ,,€4,N4,.,NE if k=m-—1, and let P, ,€4,n[ys,y]. By the
local connectivity of E, there is a continuum y,CB(Qy, (c;—c¢)r)nE joining Py
to P.,,. Hence y,u...uy, is a continuum joining P, to P, in E, with each
point less than (¢;—c)r fromdEandso [x, xo]UyeV...UY,U[re, ¥] is a continuum
joining x, y in EnB"(P, ¢17).

A similar argument applies to x, y€ ENB"(P, r).

Remarks. 1. If, in Proposition 4.2, E is a domain, the conclusion holds with
C‘1=C.

2. For n=3, there are linearly locally connected domains whose boundaries
fail to be linearly locally connected.

4.3 Proposition. If D is a plane domain and 0D is c-locally connected, and
consists of more than one point, then D is a c-locally connected Jordan domain.

Proof™®. Since 0D is connected, locally connected and free of cut-points, Theo-
rem 9.9 of [8, p. 281] implies that D is a Jordan domain. Thus D is locally connected
at each boundary point, indeed uniformly locally connected, so from Proposition 4.2
and the subsequent Remark we see that D is ¢-locally connected.

4.4, Corollary. A domain DCR? is a quasidisk if and only if dD is linearly
locally connected and consists of more than one point.

Proof. This follows from a theorem of Gehring [6, p. 31] if we merely apply
Proposition 4.3 when @D is linearly locally connected.

Remark. In fact [F. W. Gehring], DcR? is a K-quasicircle domain if and
only if D is c-locally connected, where ¢ depends only on K.

*) Dr, Kari Hag has kindly pointed out this method of proof.
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5. Invariance under quasiconformal mappings

We begin with [3].

5.1. Theorem. If E is a c-locally connected set in R" and E’ is the image of E
under a Mébius transformation, then E’ is g(c)-locally connected, where g is the inverse
of the increasing function h given by

h() =242 -1, 1=t <oo,

For a detailed proof, see [12].

Thus linearly local connectivity is invariant under Mobius transformations.

In dealing with the effect of quasiconformal mappings, other characterizations
of linear local connectivity are sometimes more convenient.

If I' denotes a family of locally g-rectifiable arcs in R", and F(I') the family
of non-negative Borel-measurable functions ¢ for which f ,0ds=1 foreach yer,
we define the modulus of I', M(I') by

— 1 n
M(I) = ylgg P dm
where m denotes n-dimensional Lebesgue measure.

5.2. Definition. Given two sets F,, F, in R", the extremal distance, A(Fy, Fy),

between F,, F, is defined by
Cyos 1/(n—1)
—— n—
MEo, B = (222

where I' is the family of arcs joining F,, F; in R" and ¢,_, is the (n— 1)-dimensional
measure of the unit (n—1)-sphere 0B"(0, 1).

We note that A(F,, F;) is invariant under Mobius transformations.

5.3. Definition. A set ECR" is linearly locally connected (in the extremal
distance sense) if there is a number s>0 such that, if F,,, F; are continua in R"
with

A(Fys Fy) = s,
then EnF; can be joined by a continuum in EN\F;_;, for i=0, 1.

We relate this definition to the original (Euclidean) definition of linear local
connectivity by means of rings.

An open connected set RCR" is a ring if C(R) consists of two components,
which we usually denote by C,, C,. We define the modulus of a ring R as

mod R = A(Cy, Cy).

If R={x: a<|x—P|<b} where 0<a<b<<o, then

mod R = log%.
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The n-dimensional Teichmiiller ring R;(u) is the ring with complementary com-
ponents the segment

fx: —1=x%=0, x,=...=x, =0}
and the ray

Xru=sx=00, x,=...=x,=0},

where u>0. For such u, we define the function ¥, by
log ¥, (v) = mod Ry (u).

Note that ¥, is increasing and ¥,(1)=>1. See [1] and references therein.
The link between the two definitions of linear local connectivity is provided by

5.4. Lemma. Let F,, F, be continua in R" with «¢F, and
)-(Fm Fl) = IOg 'I’”(C),

where c¢>1. Then for any PEF,, there is a number r>0 such that the ring
{x: r<|x—P|<rc} separates F,, F, in C(F,UF,).

Proof. Since A(F,, F;)>0, F,, F; are disjoint, so Lemma 3.5 of [7] implies
there is a ring R with complementary components C,, C; such that, for i=0, 1,
0C;CF;,cC;. As every arc joining F,, F, joins C,, C, it follows easily that

A(Fy, F) = A(Cy, C)) = mod R.

Let r be the radius of the smallest ball with centre P containing C,. The extremal
property of the Teichmiiller ring ([10] for R?, [2] for R3 and [9] for R") then implies
the result.

5.5. Theorem. 4 set E is linearly locally connected in the Euclidean sense
if and only if E is linearly locally connected in the extremal distance sense.

Proof. Suppose E is linearly locally connected in the extremal distancs sense,
with constant s. Given PER" and r>0, let Fy=B"(P,r) and F,=C(B'(P, ré*)).
Then A(F,, F;)=s, so any two points of ENF; can be joined by a continuum in
ENF;_;. Therefore E is e*locally connected.

For the converse, let E be c-locally connected, where we may assume c¢=>1,
and let F,, F, be continua in R" with A(F,, F;)=s, where s=log ¥,(c).

Suppose first that ¢ F,. Choose P¢F, and r as in Lemma 5.4, so that
{x: r<|x—P|<rc} separates F,, F; in C(FyuF,). Then EnF,cEnB"(P,r),
and so is in a continuum in EnB"(P,rc)c E\F;; and EnF,c ENB"(P, rc) is in
a continuum in EN\B"(P, r)CE\F,.

If «¢F;, let M be a Mobius transformation such that ¢ M(F;). By Theo-
rem 5.1, M(E) is linearly locally connected, so the above argument applies to M (E).
The conclusion follows because M~ is a homeomorphism.

Remark. It is evident from the proofs of Lemma 5.4 and Theorem 5.5 that
the definition of linear local connectivity in terms of extremal distance is equivalent
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to the analogous definition in terms of rings: a set ECR" is linearly locally con-
nected if and only if there is a number s=0 such that, for each ring R with com-
plementary components Cy, C;, and mod R=s, ENnC; isin a component of ENCi-;
for i=0, 1.

If D, D’ are domains in R", we say the homeomorphism f: D—D’ is a K-quasi-
conformal mapping of D onto I, where K=1, if, for each disjoint pair of continua
F,, F, with the ring R of the proof for Lemma 5.4 satisfying RcD,

& M(Fy, F) = A(f(Fy D), S0 D) = K (Fo, F)

The mapping f is quasiconformal if f is K-quasiconformal for some K=1.
For B"(P,r)cD, let

L(P,r) = max {|f(x)—f(P)|: [x—P|=r},

1(P,r) = min {|f(x)—f(P)[: [x—P|=r}

L(P,r)
(P, 7r) "~

and

H(P) = lim sup

Then it is known [11] that f is K-quasiconformal if

sup H(P) <<

PED
and

HP)=K
almost everywhere.
5.6. Theorem. Let D be R" or R" and f: D—~D K-quasiconformal mapping.

If ECD is c-locally connected, then E’=f(E) is c’-locally connected, where ¢
depends only on ¢, K and n.

Proof. If D=R", then we can extend f to a K-quasiconformal mapping of
R" by removing the singularity at «. So we assume D=R".
Let F,, F| be continua with

A(FL, F{) = Ks
where s=log ¥,(c). If f~Y(F))=F;, i=0, 1, then
A(Fy, F) =s

and so EnF; lies in a continuum in EN\F;_;, i=0, 1. Since fis a homeomorphism,
E’nF;] lies in a continuum in E’\F;_;, for i=0, 1. It follows that E is ¢’-locally

connected, where
¢ = ek = (¥,

If the domain D is a proper subset of R", the distance to the boundary plays a
role. We first prove
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5.7. Lemma. Let E be a bounded connected set in R" which satisfies the defini-
tion of c-local connectivity for all PER" and all ¥, 0<r=§ where 5=0 is fixed.
Then E is 2c(1+d/6)-locally connected, where d=diam (E).

Proof. Suppose PcR", r=0 are given.
(i) If EnB"(P,r)#0, then the connected set

E S EnB"(P,r+d) S EnB"(P, (1+d/)r),

so EnB"(P,r) is in the connected set EnB"(P, (1+d/5)r).

(ii) If ENB"(P,r)#0, then either r=2d, in which case ECC(B"(P,r—d))c
C(B"(P,r/2)), so that ENB"(P,r) lies in the connected set E\UB"(P,r/2); or
else 6<r<2d, when ENB"(P,r)CE\B"(P,d), and by hypothesis any two points
of this set are joined by a continuum in EN\B"(P, §/c)c EN\B"(P, ré/(2cd)).

The result now follows readily.

5.8. Theorem. Let D, D’ be proper subdomains of R*, and f: D—~D’ a K-quasi-
conformal mapping. If E is a c-locally connected set with ECD, then E’=f(E)
is ¢’~locally connected, where ¢’=c’(c, K, diam (E)/d(E, dD), n).

Proof. We first exhibit numbers ¢”>1 and ¢ =0 for which Lemma 5.7
applies to E”.

Since E’cD’, E’is bounded and 0<d(E’,dD")<w. Let ¢”=(¥,(c))¥, and
choose &' <d(E’,dD")/(c"+1).

Let P’¢€R", and O<r'=¢". If E'nB"(P’,r’)#0 then d(P’, E)=r’, and so
d(OD, B'(P', ' c")) = dOD', E)—(c"+ )i’ > 0.

Hence B"(P’,r’c”)cD’. Denoting by R’ the ring {x: r’'<|x—P’|<c”r’}, we see
that R=f"1(R’) has modulus at least
! mod R’ = ! logc¢” =log ¥,(c)
K - K g - g n .
But if R has complementary components C,, C;, where Co=f"1(B"(P’, ")), we
see ENC; isin a continuum in E\C;_; for i=0, 1. Since f is a homeomorphism,
E’'nB"(P’,r’) is in a component of E’nB"(P’,r’c”), and EB"(P,r'c")
is in a component of E’\B"(P’, r’).
Lemma 5.7 now shows E is ¢’-locally connected, where ¢’ depends on ¢, K and
diam E’/d(E’, dD’).
It now suffices to show that diam E’/d(E’,0D’) depends omnly on K,
diam E/d(E, dD) and n. For this, let o be the number such that

L@ =5
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where @ is the distortion function of [11, p. 63], and let 6 =d(E, 9D). Consider a grid
of closed n-cubes Q meeting E, with disjoint interiors, of side-length ad/((¢+ l)l/;).
The number of such cubes clearly cannot exceed a bound depending only on n, K
and diam (E)/d(E, oD). If x,y€Q, then

od 1

d(Q, 0D) = d(x, 0D)—diam Q = 6 — T = 7l

so that
|x—y| _ diamQ _
d(x, D) — d(Q, D) ~ *
Denoting f(x), f(»), f(Q) by x’, ', O, we have

R I e 4 ( Ix—y| ] oy L
a7, 0Dy 407,00 = PK\aGe omy) = 0@ =5
by Theorem 18.1 of [11]. This implies
diam Q’ 1
—_— =
) @,y =2
Since E is connected, there is a simple arc y joining points x, y in E with
| f(x)—f(»)|=diam (E’). Clearly, y can be covered by a sequence 0O, ..., Oy of

cubes of the grid such that x€Q,, y€Qy and FunQy4,#0 where F=U_, Q;.
Let F,=f(F,). Simple geometric considerations show that

diam (F)) _ -
d(F,oD") =%

where my=1/2 and m,.,=3m/2+1/2, k=1, ..., N—1. But then

diam (E”) diam (Fg)
7 7 = 7 — = My,
d(E’, 0D") d(Ff,0D")

k=1,..,N,

a number with an upper bound depending only on 7, K and diam (E)/d(E, D).
The proof of Theorem 5.8 is complete.

5.10. Corollary. Let f be a quasiconformal mapping of the domain D onto
the domain D’ in R". If E is a linearly locally connected set with ECD, then f(E)
is linearly locally connected.

Proof. This follows from Theorem 5.6, Theorem 5.8 and the invariance of
linear local connectivity under Mobius transformations.

We have the following characterization of quasiconformal mappings:

5.11. Theorem. Let f be a homeomorphism of a domain D onto a domain D’
in R™. If f maps each c-locally connected set E with ECD\{} onto a c"-locally
connected set where ¢’ depends only on c, f and diam (E)/d(E, dD) (in case R*'CD,
we take the last to be 0), then f is a quasiconformal mapping of D onto D’.
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Proof. Write D;=D\{e, f (=)} and let PeD,. Choose a so that O0<g<
d(P,0D,)/2, where the last may be «~. For O<r<a/2, let P, P,c9B"(P,r) so
that the acute angle between the segments PP,, P, P, is at least n/4, and let P,
P, be the points of intersection of the rays P, P, P, P, with dB"(P,a). The set E
consisting of the segments P, P;, P,P, and the minor arc of the great circle of
0B"(P,a) through P;, P, is then cosec n/8-locally connected, and, by choice of a,
diam (E)/d(E, 9D)<1/2. Then f(E) is ¢’-locally connected, where ¢’ is independent
of P and the particular choice of E.

Now, if r is so small that

L +DLP, ) = I(P, a),

it is not difficult to show that
[f(P)—f(PY| = 3 (¢’ + DI F(P)—£(Py)|
from the ¢’-local connectivity of f(E). But then it follows that

L(P,r) =5 (+121(P, 1)
so that
L(P,r) 1

— | N = 2
H(P) = 11r£1_’s(}1p D) = 7 c+1)
for all points P€D;.
It follows that f|, is quasiconformal. But then f is quasiconformal on D,

since if €D or D’, =, f~1(e) are removable singularities.

Remark. We have only used the hypothesis of Theorem 5.11 when
c=cosec (7/8). When n=2, this can be sharpened to c=1.

I wish to thank Professor F. W. Gehring for his encouragement to write this
paper.
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