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ON THE EXTREMÄLITY AND UNIQUE EXTREMALTTY
OF AFFINE MAPPINGS IN SPACE

STEPHEN AGARD* and RICHARD FEHLMANN**

1. Introduction and historical remarks. In the beginning of the theory of quasi-
conformal mappings in the plane, Grötzsch considered the problem of finding a
mapping which is o'as conformal as possible" among all mappings from one rectangle
onto another one with fixed given side-correspondence [G]. The solution is the
affi.ne mapping, and we call i,t an extremal mapping. Furthermore, it is the only
mapping with this property, wherefore it is called uniquely extremal. We scarcely

need point out how important it is in Teichmiiller theory that this mapping is not
only extremal but also uniquely extremal.

In space one can certainly pose the analogous problem. But now the question
of how to measure the "distance" from a quasiconformal mapping to the class of
conformal mappings becomes more of an issue. Whereas in the plane, the ratio
of major to minor axes of the infinitesimal ellipses which are mapped on circles
provides a widely accepted standard, in higher dimensions several "dilatations"
have been used, which reflect in various ways the values of the intermediate axes

of the infinitesimal ellipsoids. Initially the above mentioned "linear" dilatation was
still in use, and E. Zimmermann attacked the rectangular box problem with respect

to this dilatation in his papers in 1955 and 1959 for the case of three dimensions,

lZr, Zr7. He succeeded in proving the unique extremality of the affine mapping
in the unit cube only in the very special case where two sides of the image box have
the same length. Then in 1962 R. Kiihnau showed that the affine mapping is extremal
in general, but that there exist infinitely many extremals when the sides of the image
box are all different [K].

Kiihnau also considered the problem with respect to the "inner" and "outer"
dilatations, which were just creeping into the literature [N, V, §a]. Again he found
that the affine mapping is only one extremal among infinitely many, except for
very special cases. For example, in three space the affine mapping is the only mapping
which is simultaneously extremal for both inner and outer dilatations, but even this
property is not true for dimensions greater than three.
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ln 1975, L. Ahlfors introduced a new dilatation which is due to C. Earle [Ah].
As Ahlfors noted, a crucial test for this "logarithmic" dilatation is whether the

affine mapping is extremal for the rectangular box problem. In 1980 the first author
showed that in three-space the answer is affirmative provided that the dilatation is

small [AgJ.
In the present paper we make two advances. First, extremality is retained

by the affine mapping (with small dilatation) in any dimension. Second, the affine

mapping is in addition uniquely extremal (under the same proviso). The questions

raised are substantial: many of the methods used are precise, yet the nonextremality
is not exhibited for any affine mapping. We begin with a review of the definitions
of the various dilatations, a precise statement of the problems to be considered,

and an application. The proofs of the main results occupy the central Sections 3,

4, 5, anLd we conclude with some remarks on the limitations of the method.

2. Dilatations and exhemal problems. A scalar dilatation is best viewed as a
numerical quantity K associated to each matrix A(GL(n,R). Thus we write
KIAI, and by its magnitude infer how close I is to a conformal matrix. More spec-

ifically, as is well known, there exist orthogonal U, V s'uch that UAV is diagonal, i.e.,

UAY
d;w- [:';.] - diae(,1) ([I::t Är:1).

These numbers l, are not unique, but their squares are unique, as the eigenvalues

of the positive definite symmetric normalized dilatation matrix

ATAxlAl:fu
in which the columns of V are the eigenvectors of ArA.

By adjustments in U, V we can further assume the l.'s are all positive, which
we do in practice and throughout this paper. Most scalar dilatations, then, are func-
tions of the .l's, and we mention five for reference:

Ko : max {,ti}, the "outer" dilatation,

Kr : max {,ti-'}, the o'inner" dilatation,

Kr' : M {}'Jlil, the "linear" dilatation,

1

K, : i Zi_rL?, the Kreines, or "trace" dilatation,

Kp: exP the Earle/Ahlfors or "logarithmic" dilatation.

only if all 2's equal one, a fact
we observe : XIUAVT: XIAVI,

,n Z';:rlogz Ai,{
Each of these has

which is obvious for all
K=1, with equality if and
except Ky. For K, however,
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and trace X[AV]:11ace X[l]. Thus

KrIA|: lrru""diag(il,12, ..., fi): +fiacn Xl(tAyl

, ]- trace x[Al : + (),,, a!,)l detzr" A.

This makes K,7 very attractive in the sense that one need not process A tn any way
(other than to calculate its determinant).

It is well to note that for A:diag(l, 1, ...,1) (,r,>l), we have Ko:1,-1,
I

Kt=),, Kt:Å, Kr:T(12{"-rlt"*1n-l\),-21"), and the normalizing constant c, in
n

Ks is chosen (nl(n-l)) so that KE is also ,1. Thus when n:2, all are equal to 1,
except for K, which is ()'+U)")12.

We further recall some of the most basic inequalities:

(2.1) Mg)lKo=M(r*)= &M(r),
alKt < fi* = Krd,

tn which ,l' is a path family, M the modulus, c the radian measure of an
angle between two smooth curves, and M(f*), a* the corresponding quantities after
transformation by l([G-V], [Agr]).

For a quasiconformal mappingf and given dilatation K,the differential matrix
f '(u) belongs to GL (n, R) for a.e, u, and the eigenvalues ,tf for X[f '(u)l are meas-
urable functions, so we obtain the measurable dilatation function

Ky(u): Klf'(u)|.

The quantity Klfl:llKrll-:esssupKr(rz) is then a measure of how "close to
conformal" is the mapping I The inequalities (2.1) remain valid for f, althottgh
ttre latter only makes sense at vertices of differentiability. We note that Ky(er) is
independent of conformal change in the variable u, and therefore these quantities
make sense on a Riemann surface, or more generally an n-manifold with conformal
structure class.

If a class Q of quasiconformal mappings is specified, one may pose the problem:
calculate

K*(Q) : inf {Klfl f(Q\,
and try to find all the extremal f, i.e., those f(Q with Klfl:K*(Q). If such an/
is unique, it is then called a unique extremal.

Two problems which motivated much of the subsequent theory were the prob-
lems of Teichmilller and of Grötzsch. The problem of Teichmiiller originates with
tori: given two tori §, ? let Qbe a class of quasiconformal mappings f: S*7,
and try to find the extremals. We shall comment more on the subtleties of this prob-



90 SrrrnrN Acano and Rtcnanp Frnr,MANN

lem in another article, but for now we take two normalized n-tuples

d : (ar, az, .,., an), b : (br, br, ,.., b) (IIi:, ai : | : IIi:, br)

of positive numbers and consider the class Q of mappings of .P with the reproducing

property
f(u+ate):f(u)abiei (i : 1,2,...,fl) all u).

Here, {ey€2,...,en} are orthogonal unit basis vectors in Rn.

If we set )"i:bifai, we see that the linear map f^ which takes )uiei to

)u;Aie, is a member of the class Q. The Teichmilller problem to which we refer

is then simply stated: is/, extremal or uniquely extremal in O? (For uniqueness

one must normalize, for example by requiring ./(0):0, which we do implicitly
throughout.)

The related Grötzsch problem assumes, rather than the reproducing property,

the simpler requirement that f map the rectangular box

Co: {u:0=ur4ai, all i)
onto the rectangular box C 6:f/C,) with face-correspondence

{a, : 0} * {w; : 0}, {ur: o,\ * {wr: bi}.

As is well known, and as it is shown in [Agr], if/competes in a Grötzsch problem,

it induces by reflection an extension with the same dilatation which competes in a
related Teichmiiller problem (e; replaced by bt). We therefore make very few

additional comments about the Grötzsch problem in this article, except to observe

that extremality or unique extremality for the Grötzsch problem follows from the

corresponding property for the Teichmiiller problem.

A third problem istheboundaryualueproblem. Given a domainD and a mapping

g: D-Rn, one considersthe collection Q of mappings f: D*R" whicharehomeo-
morphic, quasiconformal in D, and with

flao : glao.

An extremal is said to be "extremal for the boundary values glro" and the ques-

tion is often whether or not a given qc mapping g is extremal for its own boundary

values.
This question in the plane has been studied in great detail and with great success

in a long series of papers by E. Reich and K. Strebel. (See [R] for a good bibliography

of their work.) One usually assumes that g is a so-called Teichmiiller mapping to
begin with, since this is often a necessary condition for extremality. Little is known

about this problem for n=), although Ahlfors [Ah] has proved one theorem in
this direction for mappings of the unit ball and the dilatation KB.

To highlight the importance of unique extremality, we prove for any dilatation
K whose essential boundedness implies the essential boundedness of the outer dilata-

tion Ko:
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Theorem 2. If the affine mapping f^ aboue is uniquely K-extremal for the

Grötzsch problem, then f^ is uniquely K-extremal for its own boundary aalues on any

bounded domain D.

Proof. By the scale invariance of the problem, we may assume that the bounded

domain D lies inside the rectangular box C,. Given .f(Q, we define a new mapping

f: C,*gu 6t

i@)

Now it maybe perfectly obvious, thanks to the geometry of O,thatf is quasicon-

formal. Obvious or not, the methods of proof in a theorem of J. Väisälä [Vr, Theo-
rem 2l make it so that f is indeed quasiconform al in C o, and furthermore

Klil = Klf^] if and only if Klfl = Klf^1.

9t

(2.2)

Since / competes in the Grötzsch problem, it follows by the K-extremality of /,
that K[f^]=Klfl. But should nonequality occur, then it follows by Q.2) that
Klfl=R[f^]. On the other hand, should equality occur, then by the unique K-ex-
tremality, we have f:f^, hence .f:-f," in D, and Klfl:Klf^]. A

We observe that without the unique extremality, it is not even possible to deduce

extremality, for a priori

Klfl:.tt,rlp K7@) = K[ftl

is compatible with XIft:Klf^l.
In summary, the unique extremality is a highly desirable property for a given

dilatation. Coupled with subsequent results regarding K6, Theorem 2 gives a space-

formulation of one of the most basic Reich-Strebel foundations [St].
We note that this particular property for/, (unique K-extremality for its own

boundary values) has been proved by O. Taari [T] for the outer dilatation, even

only requirin g that D have finite n-volume. The results by Taari and Kiihnau taken

together show that our condition (unique K-extremality for the Grötzsch problem)

is not necessary for unique K-extremality for the boundary value problem when

K:Ko. On the other hand, we certainly know of no other proof for K:Kn.

3. Axiomatic approach to the Teichmiiller problem. We now become more specific.

Having used ez as a prototypical variable in .R', we also work in

Rn* - {, - (xr, xr, ..., xn)i xi = 0}.

We denote by ff+ the
For any pQR, x€Rf ,

xO: (1, 1, . . ., 1) which

set {r€ R'* i llrn=r x, > 1}, with its bound ary lf (IIx, - 1).

we denote the point (*!,, xl,, ..., x'r) by xp. In particular,
we call l, and also x-L-(l lxr, 1lx2) ..., llxn), We say
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x=! ff x1=yi for each i. Finally, we shall denote by f; the point

(xr, ..,, Xi-u Xi+tr..., Xr)€Rfr,

in which the coordinate x; is omitted.
We define a function ä: GL (n, R)ty* as follows: ä[l] is the point x€.ff+

whose coordinates are the diagonal entries of XIA). Suppose now that )"':(1?r, ..., 11)

are the eigenvalues of XlAl. Then we say that ),2 is a representatio^e of A. We also
consider the point set

9( 2): {ölAYl: V€O(n)|.

If we temporarily assume ),r>).r>...>)"n, then it is clear that for any x(9Q"2),
we have the relation Zi=rA:Z{=r1?. Less obvious but also true are the
inequalities

Zi-,*r= 2:=,)"7,

for each set of indices {å, ie, ...,io}. From these we infer:

Proposition3.l. The set 9(12) is a subset of the conaex lwll of the permuta-
tions of )u2.

Proof. We had devised a simple proof of this fact, but apparently these matters
arise in other areas of mathematics. The interested reader may consult [M-O,
Corollary 83, p. 231.

We now formulate a set of axioms relating a dilatation K and a real valued
function @ defined on ff*. We assume

Al. @ is related to K in the sense that there exists a strictly increasing func-
tion s: [], -)*4* such that

iD(Lnrn-t1: a(KlAl)

whenever )'2€// is a representative of A(GL(n,R).
y''z. A is convex on a convex subset 89tr*.
43. The pait (iD,d) has the property that the conditions

lz€E^// ) f )ntn_L€E

x€9(L2)f imPlY l*'1'1'-'115, u'd

iD (f rz<"- t>, 
= @ (}n t " - L).

44. O(x)=O(y) whenever x(Eaff and x=y.

Lemma 3.2. Assume that a dilatation K has an associated ftmction iD satisfying
axioms Al-A1. Assume that f^as aboue is the linear map with matrix diag(l).
Assume that LzQE^ff, that f competes with f^ in the Teichmilller problem, and
that qz(E wheneuer q2 is a representatiue of f'(u) (a.e. u(C). Then Kffl>
KIfÅ,
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Proof. Due to the reproductive nature of/, one can see that

volf(C) : volft(C,): vol Ca : 1.

Hence, setting Jt:detf', we have

, : f r.rr.
We also have

bt€i: I"i a,f@r,fr)d.u1 (all fri, all i).

Integrating over {fi1: u€C"} (a set of (n-l)-volum" Ua), we find

.b,),iei- är,: I"^0,1

hence by the modulus inequality and Hölder's inequality,

)"i = (l 
",Lta,,rlt), 

= (l 
" "p#!1)'-'

or, as points in 1f,*,

(3.0) Ln/n-L = I".6,,r"-,rrr'r.
By A3 we see |tn-LEEnff, and by A4 and (3.0):

(3.1) iD(Aa-r1 = o U 
",önta(n-t) 

(f ')).

Now let qz(u) be a representative of f '(u). We have assumed e2€8. By A3 we know

and 
öntz("-L) (f ,(u))€8, q"t"-t (u)€E,

(3.2) o(ött2(n-t)(J''Qg) = o(q.r,-r1u1) @.e. ueC).

From (3.1), Jensen's inequality, and (3.2), we infer

iD (1 r " - 11 

= a U r,ön 
t 2(n - t) ( f ')) = I 

" "@ 
(6 rz<" - t» 

1y )) = I 
" "iD 

(q", " - 
r\,

hence in summary
iD (Ar, -r1 

= "i? åyn 
A (q"r" - 1 (u)).

Finally by Al, it follows that

a(KlfÅ) < ess sup u(xr1u1),

and since a is strictly increasing, we finally conclude K[fx|=KIfl. A

Example. For the outer dilatation Ko, one may take

ös(x) : max {x;}, a(u) : urln-L, E : .*+.
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The details are straightforward, and as we comrnented in the introduction, the
extremality of the affine mapping for the outer dilatation has been studied.

However, our main thrust is toward Ks. Here, for each c<213 and r suffi-

ciently large, we develop a system @u 8", a satisfying axioms Al-44. We first
present the formulae and a summary of the argument, leaving the technical details
(Lemmas 4.1 and 5.1) to the next sections. Thus for x€Ri1 (n >3), set

{t(xt, x2,..., x,-r) : 2i-llog2 x; *1og2 (IIi:i *r).

Back in R!, set

V (x) : max {ry' (f,), { (ir), ..., r\t (*)).

Evidently for x(ff, all competitors are the same, and thus

(3.3) Y (x) : Zi:rlog'xt (x(tr).

Lemma 5.1. {r has conuex subleuel sets

g": {x€Ril: rlt(x) =- s7

for c=213. For each c<2f3, there is a number p(c) such that for t>p(c), the

ftmction qr(x):expt/,116 is conaex in 9".
Taking this result for granted, we now define for c-213, t>p(c):

E": Oi:r,{x: *99"1;

iDr(x) : max {pr(.fr), er(*r), ..., qr(*)} - exp tl/V(u|;

a(u) : YtE'

Proposition 3.3. The trio {@r,E",u} satisfy axioms A1-A4.

Proof. Axiom Al is clear from the construction and (3.3). Next, Lemma 5.1

together with the relation
Q,(x): max {9,(f')},

where each constituent is convex in {x: ii€0"}, shows that @, is convex k 8".
For Axiom A3, we make use of the self-evident identities

(3.4) V (xt) : p'Y (x), iL,(x') : liä,(x)lp.

If indeed 12(8", then so is every permutation of ).2, and hence the entire convex
hill /{ of these permutations lies in E".Berng convex, O, takes its max on ff at
the extreme points, where it is obviously constant. Thus for x€?(Lz), we have

x(tr (Proposition 3.1) and

(3.s) iD,(x) = @,(1').

Using (3.4), we gain the important conclusion

iD, (f I z(" - tt1 : lO, (x)l t 2(n -') 
= titr, Q,\fL I 2(n - L) : iD, (ff I " -'),
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and moreover

y (l,r,-ry : #ff y ez) = ffi = r.

The last inequality is simply because nl2@- 1)= 1, but suffices to give the inclusions
of Axiom 43. tr

We remark that the inclusions also follow from the weaker assumption Y()"2)=
 (n-l)zclnz, but we have not been able to give an independent proof of (3.5) under
this weaker assumption, which is not adequate to place ),2E8, rf n>3. More
seriously, for c suffi.ciently close to 213, the number 4(n-l)zclnz may exceed 213,

at which point all hope is lost. We would consider this a minor improvement in
any case. See Section 6 for additional comments on the limitations of our method.

Finally, Axiom A4 is a consequence of Lemma 4.1, which it is not necessary

to state here. tr

Theorem 3. If Kl[f^l=exp l[nl6@4, then f^ is Kr-extremal for the Teich-
milller and Grötzsch problems.

Proof. To apply the arguments above, it is only necessary to show that our
condition will imply that ),2(E" for some c<.213. Hence we require

.rIl 2

Krlf^\- exp tl c,v (1) : exp {Tr". rn

expl/M.

We arrive at the point where /, is extremal among competitors f with Klfl=
exp{n1a1n-t1. But the others are no competition because Klf^l<exp;/nOA-
to begin with. tr

4. The uniqueness. The uniqueness proof now proceeds in three stages. First,
two technical lemmas regarding Y and Ks. We then formulate two more natural
axioms A4', A5 (satisfied by ilr) which, in conjunction with the first three axioms,
will make any extremal for the Teichmiiller problem into a "diagonal" map. Finally,
unique extremality in the class of diagonal mappings is proved. These steps, taken
individually, do not require that KE be small, and we anticipate further applications.

44. Preliminaries. We begin this section with the crucial lemma which assures

that both A4 and A4' are satisfied by (iD* 8", a). lt really only concerns our func-
tion Y, and we remark that the hypothesis in39o is weaker than x<y.

Lemma 4.1. Let xQlf,, normalizedby xr>xz>...>xn, and suppose V(tr+
with ,,>** Then Y(y)>V(x), with equality only if *n:9,.
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Proof. We write, for u:(ur,u2, ...,ur-r)€N-t:

g(u): Z',:i"j+å\:id,
and observe that in B:{u: ur>logxr]r, the inequality

Ds

7"A> 
: 2''+2 Z"i*lut = 2los4l2).i:lloe*i

> 2losx"+2)]:llogx; : 0

holds for every I (l=i=n- 1), and if for even one s;tch index i we have ur>logx;,
we get strict inequality. Hence we conclude that the function ui*g(u) is strictly
monotonic increasing for ufillogxi,*) provided that u(E. We find in con-
sequence:

Y (y) =- rlt (f ") 
: g(log yr, log yr, . . ., log .y,-J

= g(logx1, logx2, ...,1ogxn-) : V(x),

where equality implies (in the second inequality symbol) *,:9n tr

We add the remark that under the given assumptions, it can happen tltat x,<yn
and Y(x):Y(y) occur simultaneously.

We next require a formula for K, in the diagonal but not normalized case.

Accordingly, we assume (e ni.

Lemma 4.2. logzK, [diag (E»: *T Z,-ilogz 1r1 r,.

Proof. Since both sides are independent of scale, it suffices at once to assume

€€lf,. Then set z,:leg(i, hence

Zi:rh:0, Z!:r"7 - -2),=, uiui,
and

Z i-1 (ui- ui)' : (n-t) Zi:t u7 -2Z r-i ltiut : , Zi=, u?.

Division by n-l makes the last expression into logsKr[diag(O]. tr

4B. Axiomatics for partial uniqueness. We propose the following axiom A4'
(which follows for @, by Lemma 4.1):

A4'The conditions xQ03, x=y imply O(x)=@(y), with equality only if
x;:y1 with the possible exception of the smallest x,.

In addition, we assume

A5 If / is K-extremal for the Teichmiiller problem, then 7-t is K-extremal
in the reversed Teichmiiller problem (å's and a's interchanged).

We note that A5 is true for K, or any dilatation K such that

KlAl: Klt-r1'
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Indeed, / competes in the Teichmiiller problem if and only if 7-t competes in the
reversed Teichmtiller problem. Thus the families for the two problems have col-
lectively the same spectrum of dilatations.

Lemma 4.3. Assume that (K,@,8) satisfy axioms A1,2,3,4,,5, thatf and
f^ satisfy the same conditions as in Lemma 3.2, and that Klfl:K[f^]. Then.f ,(u)

has a diagonal structure for a.e. u.

Proof. we study the case of equality in the proof of Lemma 3.2. we assume
1r=1r=...>).n, and we must have equality in the expression (3.1). Therefore by
A4' and, (3.0), we conclude that

),Ttn-l : f ll\tff"--t (i:1,2,J c a Jfl"-t
But this implies (reviewing the circumstances):

llL,e,ll : lll ,,0' fll : [ ,,lli,, f ll, (i :
and hence the vector Arf fulfills

..., n - 1).

lr2r..,)n-1),

0,f(u): \i(u)e, (a.e. u)

where (i@) is a real valued function with (;(z)>0 a.e.
This already makes f '(r) a.e. diagonal with the possible exception of the last

column, which column is of course associated to ).,, the smallest of the l.'s. Now
the inverse of such a matrix has exactly the same form. Yet in the reversed Teich-
miiller problem, /. is replaced by )"-r, and the "smallest" will now be U)tassociated
to the first column. In other words, lf'@)1-r:(f-r)'(w) is diagonal except for
the first column (a.e. w). These mappings preserve sets of measure zero, and so in
sum,,f is a.e. diagonal as soon as n>2. D

4c. The uniqueness for Kr. As a result of the previous sections, each K"-ex-
tremal/for the Teichmiiller problem when

Krlf^l < exp /M(4C.1)

has diagonal structure. This alone will be sufficient to complete the uniqueness
proof, i.e., we no longer make use of (aC.l).

The ACL property for/makes each coordinate function f for f(u) an absolutely
continuous function of ui only, and still:

(4C.2) ti' f,'td du,: 6. (i : t, 2, ..., n).

Let us set Ci:ft. We now apply Lemma4.2,with extremality, to conclude

(4C.3) Zi.1log21.1\ : (n-L)logz Kr(u) = (n-L)logz K"lf77: Z,.itogz Arl).,
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for a.e. u. The left side is

Z"'(roeff+rcef)'

: z'' if^t' # *zrcsffrcs f +rcr' fl
: ),.,rog2 # *r r,., rce ft rcr f, *2 ) i - itog fi "r f * z,.,roc' *'

Hence by (4C.3), we have a.e.:

Z,., toe' # +2 ),., tos f "t f, * 2 2,, ircs fi rcs f, = o.

The left side can be written

2,. ;tos' 
Ej, ! + zZ!:rtog $ tog f ,
nili j:1 "i 'ui

where the second term can be written as

2 Zi:,("rI Zi =J"sfl : 2 Zi:,bg f bg N,

since //irli:1. We therefore have a.e.:

(4c.4) Z,.,rre'#+2Zi:,bgfibs4 = o.

Now fix an integer k, l=-k<n, such that

and we define for r=i<n; 
lo=- | z 1**t

,, _ I{rz;€[0, a]: (i(u,) > )'r\ (l = i = k),

"i - t {uiclo, a,l: {(u) = ).,} (k < i < n).

We point out explicitly that (r(ur\=)', in U1 and (,(u)=)', in U,. Because

of (4C.2), each set U; has positive one-dimensional measure, and letting

U:Xi=rUr:{u: ui€U1for all i}, we have

(4c.5) Z::Joc*bst!>o (a.e. uQ(J).

By @C.Q we therefore conclude

Z,.ios' ff : o (a.e. u((J),
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or, for every pair i, j with f<7, we have

ry : *\"t) (a.e. (ui, ui)dt;x(J,).
^ilj\

Since the variables u, and ui appeff on different sides of this equation, we conclude
that there is a constant c with

('\u) 
- " (a.e. uietJi, afi i).

).i

For i:l we get c>'1, and for i:n we get c=1, so we infer

llu): ),i (a.e. ui(Ui, all i).

But then by the definitions of (Jr, (, and by (4c.2),we find (up to a set of one-dimen-
sional measure zero):

U, :10, ail (all i),

and hence C{u):h a.e. in 10, ai, so by the absolute continuity of fi we get
rt@):liui rn [0,a), which finishes the proof. We summarize:

Theorem 4. If the ffine mapping f^ satisftes

Kolfi -. exp{nl6@),
then it is uniquely Ku-extremal for the Teichmi)ller problem, the Grötzsch problem,
and for its own boundary talues on any bounded domain.

5. The convexity. Although the application of this section is to dimension
n-1, it is cumbersome and pointless to retain this notation. Accordingly we treat

points are to be thought of as column vectors. we use . for the traditional ,.dot,,

product x.y:) xgi:xr y. The differential of a real valued function is represented
as a row matrix, and the second differential as a square matrix M which operates
on pairs of vectors u, u by Drfu(x) u,u:?tr Mu. The unit sphere is s.

Recall that we are working with the function ry', whose formula is

*(x) : Zi:rlog' x;*logz y (r€i?i, I : IIi:rx;€R*).
Lemma 5.1. For 0=c<213, r! has conuex subleael sets

9": {x: rlr(x) = cl.

For 0<c<213, there is a nuntber p:p(c) such that for t-p(c), thefunction

Er: exp(tffi
is conuex in 9",
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Proof. The convexity of the sublevel sets is a by-product of the convexity, and

is really only used to establish the convexity of the domatn E" in Section 3. There-

fore, as observed in the earlier paper [Agr], (pp. 98 and 100) it suffices to show

(s.1)

whenever x lies on the level surface {(x):c.
Thus our first task is to analyze and evaluate the right hand side of (5.1), which

we denote by 0(x). We easily find matrix representations

ry=inr{W: D{t(x)u*ol

Dv(x)-rlryry.yY7

D'rL(r,: rlT
[ 

.'.'

Xtxz

2 -1og xz!
T *2

we introduce the variables !i: xr! ' and consider

expressions a- -a(x) and B-B(x) with
the apparently simpler

2-a,
1

a

i

I log v,

L::;,[::]

1

2-a,

1

Now fix x€R!, and define for any vector uQN, the vector fi€R', in which

Iii:uJxi. It is very clear that

2a (x) . fr : D{t (x) u, 2{ir B (x) fi : D'rlt (x) u, u,

and so we may in fact consider the simpler problem R: calculate

(R) n@,8):iorffi: a.n*ol:r"rffi: a€s, a'u+ol,

which has the value 20(x) when a:a(x) and B:B(x).
Assuming that an absolute minimum is known to exist, the location and value

are easily found by Lagrange multipliers. The extremal configuration is among the

critical points (u, p) for

We find easily
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Hence, in addition to llullz:I we have the conditions

(5.2) (a. u)(e{ Bu)-(ur Bu)ar: pui(a. u)s.

We multiply by u, and sum in i:

0 : (a. u)(ur Bu)-(ur Bu)(a. u) : p(a. u)s.

Bat a.a:0 is disallowed, and therefore p:0. Now ef,B is the ith row of the
matrix B. With k:0, the equalities (5.2) read

(5.3) Bu : (a. u)wa,

hence operating on (5.3) with the so-called "adjugate,,, or transposed cofactor
matrix.B*, we find

(det B)u : (a. u)wB* a.

It follows for t}le extremal configuration, that either det8:0, or z is uniquely
determined (up to sign) and a multiple of B*a. The latter case (det.B#oy lives(recall ,B is symmetric)

w - 
ar,B,:.r lBr'a

(ar B* q1z

On the other hand, if det B is zero, then
former case the (nonunique) extremal vectors
eventually prove unacceptable.

Now we digress and discuss the general question of the existence of a finite
minimum. To this end we consider another problem in linear algebra. Here, aeRn
andB a symmetric nby n matrix are fixed. we call this problem p: calculate

(P) ((a, B): min {ur Bu: u€^S, au - O).

It is clear that problem p always has a solution, and that the value ( depends
continuously on the data (a,B) as long as a#0. B:ut we also claim that a suffi.-
cient condition for problem R to have a finite solution when a*0, is that ( be
positiae. For then urBu will be positiae everywhere on some compact set
{u(s: a.u=r}, and if urBu is indeed negative outside that set, we still have the
uniform lower bound

urBu I
@ 

> ;-min {ut Bu: z€,S} = --.
Finally, because ( is continuous, the collection

g: {(a,B): ((a,B)=0, a*0} isopen,with 09e_{@,8): a:0or (:91,
and the problem R has a finite value on g. Some routine calculations show that
sgn (ar B* a) is a partial indicator for g to the extent that

(5.4) ar B*a > 0 on g and ar B*a : 0 on 0g.

det B
arB*a'

either w:Ot or B* a- 0. In the
comprise Ker (B). The latter will
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Inourapplicationa,BateaswehaveSeen,continuousmapsfromR}.
We set 6:{x(Na: {(x)<213}, and we shall eventually prove (5B):

(5.4) ar B* a > 0 for x€ d\..{1}.

(This is why we rejected B* a:o earlier.) However, our real objective is to prove

that (a, B)(9 whenever x€d\{l}, and we accomplish this by proving the inclu-

sion EZXI: {x: ((a,B) =0}.
ma""a, io, u.ry fixed x€d\{l} and thanks to the identity (3.4) the path

p*xp(0=p-.-)liesentirelyinEforP=LanddepartsEatsomeuniquep:
pr1rl=i. if tni. path departs I for the first time at P:Pt(x), then p.>Q 31d
'<å,8>f*^> 

belongs to 09 with qrB*a(xPr):6 by (5'4')' But in this case xp'(d

by (5.4), and therefore PtzP*
We have thus proved that E9/, and we summarize the tentative conclusions,

it being understood that (5.4) is not yet proved'

Proposition 5.2. ProblemR has afinite oalue 0(x) wherrcaer x€E\{l\ and

indeed

0(x): |n(o{*),,8(x)) 
: ##,

Next, we pose one last problem s: calculate

(s) §@)_minto(x):{/(x)-c} (0=c< 213).

p is a continuous func-
the objective inequality

It is clear by our formulae

tion of c on (0,213). With
(5.1) now amounts to :

(5.5)

and by basic compactness that
all the calculations and labels,

r-tTE 
= §@).z

Evidently this inequality is established on any closed subinterval fcr, crle(0,213)

by the use of sufrciently latge t, hence the condition t=p(c) which appears in the

statement. Our task is now twofold:
(§ Low end analysis: Establish (5.1) for some t on some interval [0, cr].

(B) High end analysis: Prove inequality (5.4).

54. Low enil analysis. We find an effective choice is

cr : inf {t(r): detB(x) : o}.

Evidently c, is positive, and for {l(x)=c,, the eigenvalues of B are positive, B is
positive definite, and in particular invertible. Now the linear transformation
'M: KtN which carries u:)urei to a-)aiei (ui:logxi, ai:logy;) has
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matrix

tuf_

with eigenvalues I (multiplicity n-
quite simple: we have

1). The situation is

rL @) - Zu? +(Z u,)' : ttr Mu : u. a.

Thus if t@):c, we have

We easily see

M-B - diag (a),

and therefore as regards the sup-norm, llM-Bll:max larl:OQlalD, and by the
usual methods we also find

Il;' r]

ti 1... '2)

1) and n+ | (eigenvector

Now, if rlr@):c, then

and

llM-'-a-,ll - ofloll).

ar B*a_ -aTB-ta-a,B-Ladet ^B
20 (x)

- ct . 114-t a *a . (B-r - 14-\a
:A.Lt*o(llall)

- c +o @etz1

- c(t + o(t/;)),

o(x)-+- 1(r+o({;))=
z'(r +o({;y 2c

for some t >0. This completes the low end analysis.

r-tl/;
T

58. High end analysis. Let us denote the quantity ar B* a by the symbot
E:q@). Our objective is to prove that 9(x)=0 when x(A{l}, and it clearly
suffi.ces to prove that r!(x)>213 when E@):0. (Recall that ,B**det(M)M-L
which is positive definite as x*1.) Accordingly, we develop various new indepen-
dent variables with which to describe the "constraint" g(x):Q, and use the method
of Lagrange to minimize ry' (as expressed in formulae involving the new independent
variables).

The first change is a simple translation: we set w:r-a. By this scheme
B:M-diag(a) goes over into J*diag(w), where J is the nby n matrix with
all ones. Adopting the symbols &, ..., J, for the usual symmetric functions of the
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w's*), and ,fl (or §(''r)) for the corresponding expression if w; is zero (or if w; and

wJ are both zero), one finds without difficulty that

sj2r+s[], -sl!!t...1
U+diag(w)l*: §(w): -s|,l:lt si'l'*s['-]'. 

I: '.J

(The easiest way to see this is to prove by induction that det(.r+aiag(w)):s,+
sn_r, and to verify by direct calculation that the matrix product U+diag (w)lts(w)l

is (sn+s,-r)l,. By symmetry, only positions (1, 1) and (1,2) need be checked')

Meanwhile, what of t!? one recalls tlat *:a'tt:a'M-ra' and easily ver-

ifies that

^- 
0 " t I 

I

" 
: fr({ - pd : nil2ns,-2(n* l)sf'r - 21

- p [s, (sj2 r * si2 J + ( s, + s, - r) - n (n * 2) s[2, + si2 r],

or in view of slD:5r-nr;, we find

(sB.o)

)
-! - 11n + l) w, - (s, + 1)1 : p [s1 (si2r + s[2 s) + ( s, + s, - r) - n (n t 2) si2' + sl2z]
n+L

for i:1,2, ...,n, as well, of course, as the constraint

(58.1) 0: s1(s,*sn-r)-n(n*2)s,*sn-1.

We consider first the possibility that two 11r's are zero, without loss of gen-

erality wnandwr-1. The constraint is no help or problem (J,:sn-r:O:.t[lr) and

the equations become
,)

nTT[(r + 1) w,-(sr * 1)] : t'(sl + 1)s122'

Thus we have the formulae (w-l-a, a-Mui:

I n -1 -1...r l-r n-l
M-1 - 

r Ln+t l-1 -1 n
1..t I '.

E : (l-w)r§(w)(1-w) : s1(sn*s,-)- n(n!2)sn*sn-1,

q : (t -w)r M-, (r-w) : #fus?-2(n *r)s, -2s, + zl.

The configuration which minimizes ry' subject to E:o may be found among

the critical points (w, p) for the function t - pE. In view of the obvious formulae

0spl0wr:sf;)-1, we find we must have

*§1 : ZiWi, §s: Er.ililiWi §rn: fliwi, §0:1-S[')
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But if i=n-2, then s[2, is also zero, so all such wi are equal to one another and
to the number a where 

@*L)u: §r*1 : (n-2)a*r,
henc,e a : I I 3, s r: (n - 2) I 3, s r: (n - 2) (n - 3) I 18, and

,L : #W# - 9#@ -'r"r', *nJ : ztt.

This configuration is uniquely minimal for rtr in all dimensions. We note that
two rr's are zero (the rest are ll3); hence two 4's are one (the rest are 213); hence
two tt's are ll3, (the rest are zero).

As wg pursue other possibilities we next assuae that exactly one )4, is zero,
without loss of generality wo. The constraint (5B.1) reads

0: s,_1(s1*l),

hence sr:-1. The equations (58.0) read (i<n, so:sfL,.:0):

2wt: 7111- 1)sj2r+s,-1+sj2rl : tsr-r.
In particular, these w's are equal to one another, and equal to -U@-l). We find
sr:(n-2)12(z- 1), and

,! : #p ^a +)t!ryr-2» 
+z+ nl : # > 2t3.

With none of the ra's equal to zero, one may write

ti2r: #, s{2r: ä-#
and the equations (58.0) become

fi7 r* *1) ws - (s1 + r)t :, [" (U * -J - n@ * 2)+1- +J
*, [-dt +(s,+',-r-#J

: r [-{,, + 1)#+t,*,,-J],

because the topmost expression on the right is zero by the constraint.
We now see that each w; satisfies the same cubic equation

2*" -l- 
) 1

L fr(st + t) *p(so + s'-)J x'z+p(§1* l)sn : Q'

from which it follows that either



106 SrrpnsN Acanp and RtcHanp Frnr,MANN

(I) all are the same (call them a); or
(II) there are exactly two distinct w's (call them a, fi); ot
(III) there are exactly three distinct w's, (call them a, B, y).

Before proceeding, we remind the reader that none of the trio a, fr, ^! are zeto.

Case (l): The constraint reads

0 : nu(a" *n{-t)-n(n*2)a" lna!-L

- nd:t-L(d;z-2u*t).

Hence a:1 and x:1, a point not under consideration.

Case (ll): Assuming a pair (4, p) with relative frequencies k, m (k+m:n),
we have

s1 : ka*mp,

sz-r : kak-t B- +md;" Pil-t,

sn = dk fr^,

n (n *2) : kz + ruz +z(km + k + m)
and

- 1kazB+maBzlma*kB* I
E - q;k-r Bn-' lm g, * Bz1 

t (kz * mz _ n (n + 2)) afrl

_ d;k_t pn_L {kfi(a_I)z +ma(B _t)z +km(a_ fi)z}.

We see that the bracketed part of E is never zero because a*§. Hence E*0,
and this case does not o@ur.

Case (lll): The situation is similar, only the formulae are longer. With a, B, y

distinct, with relative frequencies k, m, p (k*m+p:n), we find

sr: kalmfr *py,

sr_1 : kuk-L B* ro a mak p^-tyo a puk fr. yr-r,

sr: ak p^yp,

n(n +2) - k2 +tnz + pz +2(km + kp +mp + k * m * p)
and

E - d:k -, Bm -, r, -, { 
r:;;i;";r+ff 

r, -:;I:;x !;l{r1
As before, the bracketed part of I is not zero, nor is E.

We conclude this section by pointing out the fact that in using Lagtange multi-

pliers as we have, we are potentially overlooking singular places in the constraint

locus, i.e., points x where E and gtad E are both zero. We have taken this liberty

because for any such points x*1, one can prove directly that t!(x)>213.
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6. Precision; an example. We fix a parameter a=1, and take O<e<l as

another parameter. We consider the four points in R|:

, : (og *e), a(t-s), 1, ..., ,,7fu)r*,

I : (a I - e), a (t*e), 1, ..., r, oL, 1, )r*,
* : (o, d, l, ...,r, ffi)r**,
, : (o, d, l, ..., ,, L;ro.

We calculate easily (with a:log a, and neglecting terms O(e):

Y(z): *(2): u"'lr*äffi!,
l6(t -3a)ezlv(r): l6a+! 6-,

iD,(,) : exp {tl v@} - "t{dal +'{af*zag1.
Our first observation is that if 3a-1, then for all sufficiently small e=0,

this number is strictly less than when e:0 (z:w). Under these circumstances,
then:

iLr(z) <. @,(w) : er(fr") : er(i) = @,(x).

On the other hand, it is fairly easy to see that x€7(z), and the preceding inequal-
ity then shows that the final inequality in Axiom A3 for ifi, may fail as soon as

3a>1, which amounts (etting e*0) to

Y(x) - Ao'=!: ?'9 - 3'
This same reasoning shows that the constant 213 whtch appears in Lemma 5.2

cannot be replaced by a larger number, no matter what the dimension. Indeed,
holding 3a=1, e sufficiently small, we see that *, is the midpoint of the line segment
in R'-1 joining 2n and !,. Yet

,1, $'") : rtt (2) < $ (i"\.

It follows that the sublevel set {x(R'-L: r!(x)={r(2*)} is not convex for e

sufficiently small. By appropriately varying a and e these sublevel sets include all
9,with c=213. tr
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Next, we observe that Lemma 3.2 and in particular the first displayed line

below (3.2) with the subslitution K:Ka, Q:(Dt, is basically the mean-power-

inequality for a competitor/in the Teichmiiller problem based onfi:

(6.1) {{ 
"Kr@)Au\''*

= Knlf^1 (*-t1t@7-

a

a(l * e)

--

Its importance for us was that under the circumstances Kr[/]<exp l/;iSel
we could let m-*, which as usual makes the left side approach llKll*:Knlf).

While we are not able to give an example (some/) where the inequality (6.1)

fails for any large m,we @t at least give an example (in contrast to the outer dilata-

tion) where the inequality (6.1) fails for all small m. We confine the discussion to
the case n:3.

We fix e=0 and a=1, and construct a piecewise affine mapping / which

competes in the Grötzsch problem baSed on /o:diag(w).

1 t;rt2l-
lr
I

III I

I

u l--
0 U2 I 0 a(l+e) a--r-

The unit cube in Rs is divided into four vertical quarters by the planes xt:112,
xz:U2, and in each we specify/' as follows:

In f' : diag {a(l+s), a(r+s), llo'\,

f' : diag {o(1 -e), a(l*e), llo'),

f' : diag {a(l -s), a(l -s), llo'll,

I,

in II,

in III,

in IV, f ' : diag {a(l +e), a(l-e),llazl'

It is clear that these can be sewed together to give a piecewise afrnef, whose dilata-

tion we now calculate with the aid of Lemma 4.2.

Quarter logz Ky

I j- frotz as(l +s)+log' a'(l+s)l

II, Iv *[,*'i*1logzas(l*e)+loszr'(1-r)J d^ft,+i(#-,)-]

uI f frosz as(l -e)+los' a'(l-s)l

Ki (up to o (r'))

"*lL +me ++ (m -1)r'J

as*[r- ms++(m-l)r,J .
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Integration of Kf over C amounts to

Ki (u) du - a3*

averaging these four cases:

l*-2+#] ',1 
+o(e,)['*+f,

which is, for suitable small e=0, less than a'*:KEl.fo). as soon as m<2-
llloga. This includes some ru>l as soon as log a=l(Kr>eB).

In the earlier paper [Agr], we were able to prove (6.1) for sufficiently large m
even when Kolfol:y'ä. fnis was possible in that case (n:3) because of a slightly
more precise estimate on the growth of E@) as r! (x)-)13 than we chose to attempt
in this already overlong paper. Such a thing may still be true. We have our sights
set higher however: we conjecture a mean inequality such as (6.1) may be true for
sufficiently large m without any further restriction, as it is for our example.
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