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ON THE EXTREMALITY AND UNIQUE EXTREMALITY
OF AFFINE MAPPINGS IN SPACE

STEPHEN AGARD* and RICHARD FEHLMANN**

1. Introduction and historical remarks. In the beginning of the theory of quasi-
conformal mappings in the plane, Grotzsch considered the problem of finding a
mapping which is “as conformal as possible’ among all mappings from one rectangle
onto another one with fixed given side-correspondence [G]. The solution is the
affine mapping, and we call it an extremal mapping. Furthermore, it is the only
mapping with this property, wherefore it is called uniquely extremal. We scarcely
need point out how important it is in Teichmiiller theory that this mapping is not
only extremal but also uniquely extremal.

In space one can certainly pose the analogous problem. But now the question
of how to measure the “distance” from a quasiconformal mapping to the class of
conformal mappings becomes more of an issue. Whereas in the plane, the ratio
of major to minor axes of the infinitesimal ellipses which are mapped on circles
provides a widely accepted standard, in higher dimensions several ‘“dilatations”
have been used, which reflect in various ways the values of the intermediate axes
of the infinitesimal ellipsoids. Initially the above mentioned “linear” dilatation was
still in use, and E. Zimmermann attacked the rectangular box problem with respect
to this dilatation in his papers in 1955 and 1959 for the case of three dimensions,
[Z,,Z,]. He succeeded in proving the unique extremality of the affine mapping
in the unit cube only in the very special case where two sides of the image box have
the same length. Then in 1962 R. Kiithnau showed that the affine mapping is extremal
in general, but that there exist infinitely many extremals when the sides of the image
box are all different [K].

Kiithnau also considered the problem with respect to the “inner” and “outer”
dilatations, which were just creeping into the literature [N, V, Sa]. Again he found
that the affine mapping is only one extremal among infinitely many, except for
very special cases. For example, in three space the affine mapping is the only mapping
which is simultaneously extremal for both inner and outer dilatations, but even this
property is not true for dimensions greater than three.
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In 1975, L. Ahlfors introduced a new dilatation which is due to C. Earle [Ah].
As Ahlfors noted, a crucial test for this “logarithmic” dilatation is whether the
affine mapping is extremal for the rectangular box problem. In 1980 the first author
showed that in three-space the answer is affirmative provided that the dilatation is
small [Ag,].

In the present paper we make two advances. First, extremality is retained
by the affine mapping (with small dilatation) in any dimension. Second, the affine
mapping is in addition uniguely extremal (under the same proviso). The questions
raised are substantial: many of the methods used are precise, yet the nonextremality
is not exhibited for any affine mapping. We begin with a review of the definitions
of the various dilatations, a precise statement of the problems to be considered,
and an application. The proofs of the main results occupy the central Sections 3,
4, 5, and we conclude with some remarks on the limitations of the method.

2. Dilatations and extremal problems. A scalar dilatation is best viewed as a
numerical quantity K associated to each matrix A€GL (n, R). Thus we write
K[A], and by its magnitude infer how close 4 is to a conformal matrix. More spec-
ifically, as is well known, there exist orthogonal U, ¥V such that UAV is diagonal, i.e.,

UAV [’11

det"d

0
]:diag(l) (I, % =1).
0 i,

These numbers A are not unique, but their squares are unique, as the eigenvalues
of the positive definite symmetric normalized dilatation matrix

ATA

XAl = oo

in which the columns of ¥ are the eigenvectors of A74.

By adjustments in U, ¥ we can further assume the A’s are all positive, which
we do in practice and throughout this paper. Most scalar dilatations, then, are func-
tions of the A’s, and we mention five for reference:

K, =max {A7}, the “outer” dilatation,
1
K; = max {A7"}, the “inner” dilatation,
K; = max {4,/4;}, the “linear” dilatation,
J

1 . . .
Ky = 72’;;1,1?, the Kreines, or “trace” dilatation,

K =exp ) ¢, 5_,log?4;, the Earle/Ahlfors or “logarithmic™ dilatation.

Each of these has K=1, with equality if and only if all A’s equal one, a fact
which is obvious for all except K. For K however, we observe: X[UAV]=X[AV],
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and trace X[AV]=trace X[A4]. Thus

K [A4] = —hl—trace diag (43, /2, ..., A) = %trace X[U4v]

= %trace X[A4] = —,1; (2; af;)/det*" 4.

This makes Ky very attractive in the sense that one need not process 4 in any way
(other than to calculate its determinant).
It is well to note that for A=diag(4,1,...,1) (A>1), we have K,=A""1
1
KI=)" KL:}., KT=—
n
Ky is chosen (n/(n—1)) so that K is also A. Thus when n=2, all are equal to 1,
except for K which is (A+1/2)/2.
We further recall some of the most basic inequalities:

(A*»=DI" 4 (n—1)A~%"), and the normalizing constant ¢, in

2.1 MD)|Ky, = M(IT*) =K, M),
o/K; = o* = K a,

in which I' is a path family, M the modulus, o the radian measure of an
angle between two smooth curves, and M (I'*), a* the corresponding quantities after
transformation by A4([G—V], [Ag,]).

For a quasiconformal mapping f and given dilatation K, the differential matrix
S’(u) belongs to GL (n, R) for a.e. u, and the eigenvalues A? for X[ f’(u)] are meas-
urable functions, so we obtain the measurable dilatation function

Ky (u) = K[ f"(w)].

The quantity K[ f]=|K |.=esssup K;(u) is then a measure of how “close to
conformal” is the mapping /. The inequalities (2.1) remain valid for f, although
the latter only makes sense at vertices of differentiability. We note that K, (u) is
independent of conformal change in the variable u, and therefore these quantities
make sense on a Riemann surface, or more generally an n-manifold with conformal
structure class.

If a class Q of quasiconformal mappings is specified, one may pose the problem:
calculate

K*(Q) = inf {K[f]: feQ},

and try to find all the extremal f, i.e., those f€Q with K[f]=K*(Q). If such an f
is unique, it is then called a unique extremal.

Two problems which motivated much of the subsequent theory were the prob-
lems of Teichmiiller and of Grotzsch. The problem of Teichmiiller originates with
tori: given two tori S, T let Q be a class of quasiconformal mappings f: S—T,
and try to find the extremals. We shall comment more on the subtleties of this prob-



90 STEPHEN AGARD and RICHARD FEHLMANN

lem in another article, but for now we take two normalized n-tuples

a= (a17 Aoy weny an)a b = (bla b29 [EXH) bn) (]].in=1 a; = 1 = ]]'iﬂ=1 bl)

of positive numbers and consider the class Q of mappings of R” with the reproducing
property

flutae) = f(w+be; (i=1,2,..,n; al ).
Here, {e;,es, ...,e,} are orthogonal unit basis vectors in R".

If we set A;=b;/a;, we see that the linear map f; which takes Yue; to
Su;lse; is a member of the class Q. The Teichmiiller problem to which we refer
is then simply stated: is f, extremal or uniquely extremal in Q? (For uniqueness
one must normalize, for example by requiring f(0)=0, which we do implicitly
throughout.)

The related Grotzsch problem assumes, rather than the reproducing property,
the simpler requirement that f map the rectangular box

C,={u: 0=u,=a, all i}
onto the rectangular box C,=f;(C,) with face-correspondence
{u; =0} — {w; =0}, {u; =a} {w;= b}

As is well known, and as it is shown in [Ag,], if f competes in a Grotzsch problem,
it induces by reflection an extension with the same dilatation which competes in a
related Teichmiiller problem (e; replaced by 2e;). We therefore make very few
additional comments about the Grotzsch problem in this article, except to observe
that extremality or unique extremality for the Grétzsch problem follows from the
corresponding property for the Teichmiiller problem.

A third problem is the boundary value problem. Given a domain D and a mapping
g: D—R", one considers the collection Q of mappings f: D—~R" which are homeo-
morphic, quasiconformal in D, and with

flop = glop-

An extremal is said to be “extremal for the boundary values gl,,” and the ques-
tion is often whether or not a given gc mapping g is extremal for its own boundary
values.

This question in the plane has been studied in great detail and with great success
in a long series of papers by E. Reich and K. Strebel. (See [R] for a good bibliography
of their work.) One usually assumes that g is a so-called Teichmiiller mapping to
begin with, since this is often a necessary condition for extremality. Little is known
about this problem for n=2, although Ahlfors [Ah] has proved one theorem in
this direction for mappings of the unit ball and the dilatation Kg.

To highlight the importance of unigue extremality, we prove for any dilatation
K whose essential boundedness implies the essential boundedness of the outer dilata-
tion Kj:

B
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Theorem 2. If the affine mapping f, above is uniquely K-extremal for the
Grétzsch problem, then f, is uniquely K-extremal for its own boundary values on any
bounded domain D.

Proof. By the scale invariance of the problem, we may assume that the bounded
domain D lies inside the rectangular box C,. Given f¢(Q, we define a new mapping
.7 : Ca_)Cb by
J@w)  (u€D),

Jw = {fl (W) (WECND).

Now it may be perfectly obvious, thanks to the geometry of D, that f is quasicon-
formal. Obvious or not, the methods of proof in a theorem of J. Viisila [V,, Theo-
rem 2] make it so that £ is indeed quasiconformal in C,, and furthermore

2.2) K[fl1=K][f,] if and only if K[f]= K[f3].

Since f competes in the Grotzsch problem, it follows by the K-extremality of f;
that K[ f;]=K] f]. But should nonequality occur, then it follows by (2.2) that
K[ f1=K[f,]. On the other hand, should equality occur, then by the unique K-ex-
tremality, we have f=f,, hence f=f, in D, and K[f]=K[f,]. O

We observe that without the unigue extremality, it is not even possible to deduce
extremality, for a priori

KIf] = ess sup K, () < K[}

is compatible with K[f]=K[f,].

In summary, the unique extremality is a highly desirable property for a given
dilatation. Coupled with subsequent results regarding Ky, Theorem 2 gives a space-
formulation of one of the most basic Reich—Strebel foundations [St].

We note that this particular property for f, (unique K-extremality for its own
boundary values) has been proved by O. Taari [T] for the outer dilatation, even
only requiring that D have finite n-volume. The results by Taari and Kiihnau taken
together show that our condition (unique K-extremality for the Grotzsch problem)
is not necessary for unique K-extremality for the boundary value problem when
K=K,. On the other hand, we certainly know of no other proof for K=Kp.

3. Axiomatic approach to the Teichmiiller problem. We now become more specific.
Having used u as a prototypical variable in R", we also work in

R’-li- = {X = (xla Xas eees xn): Xi = O}
We denote by o, the set {x€R%: [[L,x;=1}, with its boundary J#(IIx;=1).

For any p€R, x€R;, we denote the point (x}, x3, ..., x) by x”. In particular,
x=(1,1,...,1) which we call 1, and also x7'=(1/x, 1/x,, ..., 1/x,). We say
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x=y if x;=y; for each i. Finally, we shall denote by £; the point
(xls ceey Xio1s Xijt1s o5 xn)ER'-l;l,

in which the coordinate x; is omitted.

We define a function §: GL (n, R)—~, as follows: §[A4] is the point x€#,
whose coordinates are the diagonal entries of X[A]. Suppose now that A2=(42, ..., 12)
are the eigenvalues of X[A]. Then we say that A2 is a representative of A. We also

consider the point set
L3 = {6[4V]: VeEO(n)).

If we temporarily assume A,=A;=...=4,, then it is clear that for any x¢€%(4?),
we have the relation 3, x;=23" ;. Less obvious but also true are the
inequalities
k k
2j=1 'xij = 2i=1 212’
for each set of indices {iy, iy, ..., §}. From these we infer:

Proposition 3.1. The set F(A?) is a subset of the convex hull of the permuta-
tions of A2.

Proof. We had devised a simple proof of this fact, but apparently these matters
arise in other areas of mathematics. The interested reader may consult [M—O,
Corollary B3, p. 23].

We now formulate a set of axioms relating a dilatation K and a real valued
function @ defined on 5, . We assume

Al. & is related to K in the sense that there exists a strictly increasing func-
tion o: [1, =)—>R, such that

®(A""=1) = ¢ (K[A])

whenever A2€ # is a representative of A€ GL (n, R).
A2. & is convex on a convex subset §S ..
A3. The pair (P, &) has the property that the conditions

Resn# ) rin=leg
} imply { and

X€FL(A?) xRV g
q;(xn/2(n—1)) = Q(},"/”_l),
A4, ®(x)=d(y) whenever x€éns# and x=y.

Lemma 3.2. Assume that a dilatation K has an associated function ® satisfying
axioms Al—A4. Assume that f, as above is the linear map with matrix diag (1).
Assume that 2*€EnH, that f competes with f, in the Teichmiiller problem, and
that q?c€& whenever q? is a representative of f’(u) (a.e. u€C,). Then K[f]=

KL/l
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Proof. Due to the reproductive nature of f, one can see that
vol f(C,) = vol f;,(C,) = vol C, = 1.

Hence, setting J,=det f’, we have
1=f o Jr

bie; = fo 9, fluy, @) du; (all 4, all i).

We also have

Integrating over {#;: u€C,} (a set of (n—1)-volume 1/g;), we find
b,
Aie; = Zei _fC., o f,
hence by the modulus inequality and Holder’s inequality,
- n_ lo £yt

Al = (_/’C 10 f1)" = (fc-—J}/n_—l_)
or, as points in #,,
(3.0) Jnin—1 éfc 5n/2(n—1)(f/).

By A3 we see A""~'¢&ns#, and by A4 and (3.0):

3.1 o=@ (f  8HD(f).
Now let g2(u) be a representative of f’(1). We have assumed ¢2¢&. By A3 we know

FROD(F@)EE, I DES,
and

3.2) 45(5”/2(”_1) (f’(u))) = @(q”/”_l(u)) (a.e. u€C,).
From (3.1), Jensen’s inequality, and (3.2), we infer
¢(}~n/n—1) = (fca Sn/2(n—1) (f/)) = fca Q(é”lz(”_l)(f')) = fca dj(qn/n—l)’

hence in summary
P (A=) = ess sup o(g"" (w)).
ucC,

Finally by Al, it follows that
a(K[f;]) = ess sup a(K, (u)),
and since « is strictly increasing, we finally conclude K[ f;]=K[f]. O
Example. For the outer dilatation K|, one may take

Py (x) = max {x;}, o) =u""Y, &=H,.
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The details are straightforward, and as we commented in the introduction, the
extremality of the affine mapping for the outer dilatation has been studied.

However, our main thrust is toward Ky. Here, for each ¢<2/3 and ¢ suffi-
ciently large, we develop a system &,, &,, o satisfying axioms Al—A4. We first
present the formulae and a summary of the argument, leaving the technical details
(Lemmas 4.1 and 5.1) to the next sections. Thus for x€ R’ (n=3), set

Y (o1s Xay oeey Xp1) = 2:’;11 log? x; +log? (]];:11 x;).
Back in R7,, set

¥ (x) = max {y (£, Y (£2), ..., ¥ (£,)}.
Evidently for x€, all competitors are the same, and thus
3.3) P(x) =27, log?x; (x€).
Lemma 5.1.  has convex sublevel sets
Do = {xe€RH: Y (x) = c}

for ¢=2/3. For each c¢<2/3, there is a number p(c) such that for t=p(c), the
Sfunction @,(x)=exptVy(x) is convex in D..
Taking this result for granted, we now define for ¢<2/3, t=p(c):

gc = m:=1 {x: )eie‘@c};
9, (x) = max {9, (£), ¢(£2), ..., p:(£,)} = exp ”/lp(x);
a(u) = ufen,
Proposition 3.3. The trio {®,, &,,a} satisfy axioms Al—A4.

Proof. Axiom Al is clear from the construction and (3.3). Next, Lemma 5.1
together with the relation
P, (x) = max {¢,(£)},

where each constituent is convex in {x: £,¢9,}, shows that &, is convex in &,.
For Axiom A3, we make use of the self-evident identities

G4 Y(xP) =p*¥ (), &,(x") =[P (x)].

If indeed A%€&,, then so is every permutation of A2, and hence the entire convex
hull o of these permutations lies in &,. Being convex, @, takes its max on 4 at
the extreme points, where it is obviously constant. Thus for x€%(4%), we have
x€A” (Proposition 3.1) and

(3.5 b, (x) = &,(43).
Using (3.4), we gain the important conclusion

&, (x20=D) = [B,(x)]"20=D = [B,]H-D = @, (1),
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and moreover
n? n%c
n/n—1y — . 2y = __ -
¥ ) 4(n—1)? v = 4(n—1)

lIA

C.

The last inequality is simply because n/2(n—1)=1, but suffices to give the inclusions
of Axiom A3. 0O

We remark that the inclusions also follow from the weaker assumption ¥(1%*)=
4(n—1)%c/n?, but we have not been able to give an independent proof of (3.5) under
this weaker assumption, which is not adequate to place A2€&, if n=3. More
seriously, for ¢ sufficiently close to 2/3, the number 4(n—1)2c/n* may exceed 2/3,
at which point all hope is lost. We would consider this a minor improvement in
any case. See Section 6 for additional comments on the limitations of our method.

Finally, Axiom A4 is a consequence of Lemma 4.1, which it is not necessary
to state here. [

Theorem 3. If Ky[f;]<expVn/6(n—1), then f, is Kg-extremal for the Teich-
miiller and Grotzsch problems.

Proof. To apply the arguments above, it is only necessary to show that our
condition will imply that A%€&, for some c¢<2/3. Hence we require

Kol fil = exp V& 70 = exp]/ 5 e ()

< exp l/% c,,g = exp Vn/6(n—1).

We arrive at the point where £, is extremal among competitors f with K[ f]<
exp Vn/6(n—1). But the others are no competition because K[ f;]<exp Vn/6(n— 1)
to begin with. O

4. The uniqueness. The uniqueness proof now proceeds in three stages. First,
two technical lemmas regarding ¥ and Ky. We then formulate two more natural
axioms A4’, A5 (satisfied by &,) which, in conjunction with the first three axioms,
will make any extremal for the Teichmiiller problem into a “diagonal”” map. Finally,
unique extremality in the class of diagonal mappings is proved. These steps, taken
individually, do not require that K be small, and we anticipate further applications.

4A. Preliminaries. We begin this section with the crucial lemma which assures
that both A4 and A4’ are satisfied by (®,, &,, «). It really only concerns our func-
tion ¥, and we remark that the hypothesis £,=7, is weaker than x=y.

Lemma 4.1. Let x€#, normalized by x,=x,=...=x,, and suppose yEH,
with p,=%x,. Then ¥ (y)=¥(x), with equality only if %,=J,.
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Proof. We write, for u=(uy, s, ..., 4,_1)ER"~:
g = Z 5w+ w)
and observe that in E={u: u;=log x;}, the inequality

(9g n—1 n—1
Dur (W) =2u;+2 3" u; = 2log x; +2 21 log x;

=2logx,+2 3 logx; =0

holds for every i(1=i=n-—1), and if for even one such index i we have u;>logx;,
we get strict inequality. Hence we conclude that the function wy—g(u) is strictly
monotonic increasing for wu;<[log x;, «=) provided that u€E. We find in con-
sequence :

Y(») =¥ (») = glogyy, log ys, ..., log y,_1)

= g(log x;, logx,, ..., logx,_1) = ¥ (x),
where equality implies (in the second inequality symbol) £,=75,. O

We add the remark that under the given assumptions, it can happen that x,<y,
and Y (x)=Y(y) occur simultaneously.

We next require a formula for Kz in the diagonal but not normalized case.
Accordingly, we assume C€R’, .

1
Lemma 4.2. log? Kg[diag (5)]=—12’i<j log?&,/¢;.
n_

Proof. Since both sides are independent of scale, it suffices at once to assume
EcH#. Then set u;=log¢;, hence

Z::lui=0’ Z:=1 _221<1 i J’
2i<j(ui—uj)2=(n—l)2:=1 ui2_22i<j uiuj=n2;'=1 u%'

Division by n—1 makes the last expression into log? Kg[diag (¢)]. O

and

4B. Axiomatics for partial uniqueness. We propose the following axiom A4’
(which follows for @, by Lemma 4.1):

A4’ The conditions x€3#, x=y imply D(x)=b(py), with equality only if
x;=y,; with the possible exception of the smallest x;.

In addition, we assume

A5 If fis K-extremal for the Teichmiiller problem, then f~* is K-extremal
in the reversed Teichmiiller problem (b’s and a’s interchanged).

We note that A5 is true for Kz or any dilatation K such that

K[A] = K[471].
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Indeed, f competes in the Teichmiiller problem if and only if £~ competes in the
reversed Teichmiiller problem. Thus the families for the two problems have col-
lectively the same spectrum of dilatations.

Lemma 4.3. Assume that (K, @, &) satisfy axioms Al, 2, 3,4, 5, that f and
/5, satisfy the same conditions as in Lemma 3.2, and that K[f]1=K[f,]. Then f’(u)
has a diagonal structure for a.e. u.

Proof. We study the case of equality in the proof of Lemma 3.2. We assume
M=M= =2,, and we must have equality in the expression (3.1). Therefore by
A4’ and (3.0), we conclude that

) n/in—1
l'i'/”_]':fc -ILa-l—J‘_f{‘/LI[l:]_ (i=l,2,...,n—1).

But this implies (reviewing the circumstances):
[zsed = [, 21l = [, 1051, G=1.2.in-D),
and hence the vector g, f fulfills
0; f(u) = &(we; (ae. w)

where &;(u) is a real valued function with &;(1)=0 a.e.

This already makes f’(u) a.e. diagonal with the possible exception of the last
column, which column is of course associated to 4,, the smallest of the 1’s. Now
the inverse of such a matrix has exactly the same form. Yet in the reversed Teich-
miiller problem, / is replaced by =1, and the “smallest” will now be 1/4, associated
to the first column. In other words, [f'(w)]='=(f"1)(w) is diagonal except for
the first column (a.e. w). These mappings preserve sets of measure zero, and so in
sum, f’ is a.e. diagonal as soon as n=2. O

4C. The uniqueness for K;. As a result of the previous sections, each Kj-ex-
tremal f for the Teichmiiller problem when

¢“C.D Kelf;] < expVn/6(n—1)

has diagonal structure. This alone will be sufficient to complete the uniqueness
proof, i.e., we no longer make use of (4C.1).

The ACL property for f makes each coordinate function f; for f(x) an absolutely
continuous function of w; only, and still:

(4C.2) fo fiu)du,=b, (i=12,..,n).

Let us set &;=f;". We now apply Lemma 4.2, with extremality, to conclude

(4C3)  Zicjlogiéifé; = (n—1)log* K, (u) = (n—1)1og? Kp[f3] = i< ;log? 4i/A,;
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for a.e. u. The left side is

S [log ii? Ay )

&l Eilj Ai ]
- > 2 Sitj J
= Ji<j [log 3 +2log g log— 7 — +log?

il & ¢; A A
= Jicjlog? {J +23;<jlog—=—= 7 logl +23;.jlog lj log =L 7 L+ 3icjlog? /1

Hence by (4C.3), we have a.e.:

62' fl l 5 i<
Ji<jlog? ACJ +22’,<]10g/l log/l +22’,>110g ilo _A—ZO

The left side can be written

EA; u & A
. :log2 2t =t =
Zi<jlogh Z, +22;==11 log-log 7’

where the second term can be written as

n i n li _ n ‘fi n
220 (log'Ti.Zj=1 108'@) =220 logTilOgli,
since [];_, 4;=1. We therefore have a.e.:
2 éilj n 6[ no<
(4C.4) 2i<j10g —)T—é—+22i=1 IOgTIOg A‘i =0.
i5j i

Now fix an integer k, 1=k<n, such that

and we define for 1=i=n:

_ { (€0, a): &) =4} (1 =i=k),
B {u:€l0, a;]: &i(u) = Ay (k<i=n).
We point out explicitly that &, (u)=4, in U; and &,(u,)=4, in U,. Because

of (4C.2), each set U, has positive one-dimensional measure, and letting
U=X;., Ui={u: wcU; for all i}, we have

(4C.5) > log j log =0 (ac. ucl).

By (4C.4) we therefore conclude

&
. 2 _>t7J
Zl<j10g lié]
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or, for every pair i, j with i<j, we have

&i(uy) - .‘S_J(u_l) (a.e. (u;, uj)EUiXUi)'
A 5

Since the variables ; and u; appear on different sides of this equation, we conclude
that there is a constant ¢ with

fi/(lui) =c¢ (ae. ucU, all i).

For i=1 we get c¢=1, and for i=n we get ¢=1, so we infer
Ei(u) =4 (ae weU, alli).

But then by the definitions of U;, ¢; and by (4C.2), we find (up to a set of one-dimen-
sional measure zero):
U;=1[0,a;] (all i),

and hence ¢&;(u)=/; ae. in [0,4], so by the absolute continuity of f; we get
Si(w)=2Au; in [0, a;], which finishes the proof. We summarize:

Theorem 4. If the affine mapping f, satisfies

Kelf:] < expVn/6(n—1),

then it is uniquely Kg-extremal for the Teichmiiller problem, the Grétzsch problem,
and for its own boundary values on any bounded domain.

5. The convexity. Although the application of this section is to dimension
n—1, it is cumbersome and pointless to retain this notation. Accordingly we treat
R, this time assuming n=2. Since linear algebra is the main tool, we agree that
points are to be thought of as column vectors. We use - for the traditional “dot”
product x-y=3 x;;=x"y. The differential of a real valued function is represented
as a row matrix, and the second differential as a square matrix M which operates
on pairs of vectors u, v by DY (x) wu,v=v" Mu. The unit sphere is S.

Recall that we are working with the function i/, whose formula is

Y(x) = 3, logx;+log*y (x€R%, y = II;_, X€R.).
Lemma 5.1. For 0=c¢=2/3, { has convex sublevel sets
D. = {x: Y(x) =c}.

For 0<c<2/3, there is a number p=p(c) such that for t=p(c), the Sfunction

@, = €Xp (t m

is convex in 9,,.
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Proof. The convexity of the sublevel sets is a by-product of the convexity, and
is really only used to establish the convexity of the domain &, in Section 3. There-
fore, as observed in the earlier paper [Ag,], (pp. 98 and 100) it suffices to show

l—tl/;<. {Dzl,b(x)u,u. }
(5.1 e = inf v uF - Dy (x)u =0
whenever x lies on the level surface ¥ (x)=c.
Thus our first task is to analyze and evaluate the right hand side of (5.1), which
we denote by 0(x). We easily find matrix representations

DY (x) =2 [logx,y logxyp logxny]
L X X5 X,
2—logx,y 1 1
xi P
D*y(x) =2 1 2—logx,y
X1 %5 x2

.
We introduce the variables y;=x;y, and consider the apparently simpler
expressions a=a(x) and B=B(x) with

a, log y, 2—a, 1 ... 1

a lo 1 2-a

il g'J@ . B= : 2

a, log y, 1 1 ...2—a,

Now fix x€R”, and define for any vector u€R”, the vector #€R", in which
fi,=u;/x;. It is very clear that

2a(x)-a = DY (x)u, 24" B(x)di = D>y (X)u, u,

and so we may in fact consider the simpler problem R: calculate

. | @' Bi N . of u"Bu }
(R) n(a,B)—lnf{W.a-u#O}—mf{W. u€sS, a-u#0¢,
which has the value 20(x) when a=a(x) and B=B(x).
Assuming that an absolute minimum is known to exist, the location and value
are easily found by Lagrange multipliers. The extremal configuration is among the
critical points (u, u) for
T
—a(af2—1), [w = ﬂ]
w1, (v = = 25).
We find easily
ow (a-u) (el Bu)—(u" Bu)a;

ek @
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Hence, in addition to |u|2=1 we have the conditions
(5.2) (a-u)(ef Bu)—(u" Bu)a; = pu;(a - u)®.
We multiply by u; and sum in i:
0=(a-w)(u" Bu)—(u"Bu)(a-u) = u(a-u).
But a-u=0 is disallowed, and therefore 1n=0. Now e,.T B is the ith row of the
matrix B. With p=0, the equalities (5.2) read
(5.3) Bu = (a-u)wa,

hence operating on (5.3) with the so-called “adjugate”, or transposed cofactor

matrix B*, we find
(det BYu = (a- u)wB*a.

It follows for the extremal configuration, that either det B=0, or u is uniquely
determined (up to sign) and a multiple of B*a. The latter case (det B=0) gives
(recall B is symmetric)

aT"B*TBB*a det B

(a"B*a® ~ aTB*a’

On the other hand, if detB is zero, then either w=0, or B*a=0. In the
former case the (nonunique) extremal vectors comprise Ker (B). The latter will
eventually prove unacceptable.

Now we digress and discuss the general question of the existence of a finite
minimum. To this end we consider another problem in linear algebra. Here, acR"
and B a symmetric n by n matrix are fixed. We call this problem P: calculate

(P) ¢(a, B) = min {u"Bu: u€S, au = 0}.

It is clear that problem P always has a solution, and that the value ¢ depends
continuously on the data (a, B) as long as a=0. But we also claim that a suffi-
cient condition for problem R to have a Jfinite solution when a0, is that ¢ be
positive. For then u"Bu will be positive everywhere on some compact set
{u€S: a-u=e}, and if 4" Bu is indeed negative outside that set, we still have the
uniform lower bound

T
(Z—_l:lfz- = zlz—min {u"Bu: ueS} > — oo,

Finally, because ¢ is continuous, the collection
9 = {(a, B): £(a,B) = 0, a # 0} is open, with 09< {(a,B): a=0or ¢ =0},

and the problem R has a finite value on 4. Some routine calculations show that
sgn (a"B*a) is a partial indicator for % to the extent that

(5.4) a’B*a>0on % and aTB*a =0 on 0%.
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In our application @, B are as we have seen, continuous maps from R7.
We set &= {x€R" : y(x)<2/3}, and we shall eventually prove (5B):

(5.9 aTB*a =0 for x€&\({l1}.

(This is why we rejected B*a=0 earlier.) However, our real objective is to prove
that (g, B)€% whenever x€&\({1}, and we accomplish this by proving the inclu-
sion €€ #={x: &(a, B)=>0}.

Indeed, for any fixed x€&\{1} and thanks to the identity (3.4) the path
p—xP (0=p=<<) lies entirely in & for p=1 and departs & at some unique p=
po(x)=>1. If this path departs ¢ for the first time at p=p;(x), then p;>0 and
(a, B)(x") belongs to 0% with aB*a(x")=0 by (5.4). But in this case x"¢¢
by (5.4), and therefore p;=ps.

We have thus proved that < ¢, and we summarize the tentative conclusions,
it being understood that (5.4) is not yet proved.

Proposition 5.2. Problem R has a finite value 0(x) whenever x€&\{1}, and
indeed

0() = 31(a(), B) = oy

Next, we pose one last problem S: calculate

®) B(6) = min {0(x): Y(x) =c} (0=<c=2/3).

It is clear by our formulae and by basic compactness that B is a continuous func-
tion of ¢ on (0,2/3). With all the calculations and labels, the objective inequality
(5.1) now amounts to:

1—tVec

(5.5) —Ziéﬁ@.

Evidently this inequality is established on any closed subinterval [cy, c2] (0, 2/3)
by the use of sufficiently large 7, hence the condition ¢=>p(c) which appears in the
statement. Our task is now twofold:

(A) Low end analysis: Establish (5.1) for some t on some interval [0, ¢;].

(B) High end analysis: Prove inequality (5.4).

5A. Low end analysis. We find an effective choice is
¢, = inf { (x): det B(x) = 0}.

Evidently c, is positive, and for ¥ (x)<c, the eigenvalues of B are positive, B is
positive definite, and in particular invertible. Now the linear transformation
M: R'>R" which carries u=1ue; to a=2 ae; (u;=logx;, a;=logy;) has
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matrix

1 1... 2

with eigenvalues 1 (multiplicity n—1) and n+1 (eigenvector 1). The situation is
quite simple: we have

Yx) = Jui+(Su) =u"Mu=u-a.
Thus if ¥ (x)=c, we have

¢c=u-a=|ulla] = a]>
We easily see
M —B = diag (a),

and therefore as regards the sup-norm, |M—B]| =max la;|=0(lla])), and by the
usual methods we also find

|M~1 =B~ = O(|al).
Now, if Y (x)=c, then

1 aT B*a

- =gTB-1g—=g.R-1
W0 ~ detp ¢ BTla=a-B7la

=a-M1'a+a-(B~'-MVYa
=a-u+0(|a]?)
=c+0(c*?)
- 1 -
C2c(1+0(Vc))  2¢

for some z>0. This completes the low end analysis.

and

Ve

1—
2¢

0(x) (1+0(Ve)) =

SB. High end analysis. Let us denote the quantity a”’B*a by the symbol
@=¢(x). Our objective is to prove that ¢(x)>0 when x€&\({1}, and it clearly
suffices to prove that ¥ (x)=2/3 when ¢(x)=0. (Recall that B*—det(M)M~!
which is positive definite as x—1.) Accordingly, we develop various new indepen-
dent variables with which to describe the “constraint” ¢ (x)=0, and use the method
of Lagrange to minimize ¥ (as expressed in formulae involving the new independent
variables).

The first change is a simple translation: we set w=1—a. By this scheme
B=M—diag (a) goes over into J+diag(w), where J is the n by n matrix with
all ones. Adopting the symbols s, ..., s, for the usual symmetric functions of the
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w’s*), and s (or s{*?) for the corresponding expression if w; is zero (or if w; and
w; are both zero), one finds without difficulty that

sy +sBy  —sihP ...
[J+diag (W) = Sw) = —si=8 2+

(The easiest way to see this is to prove by induction that det (J+diag (w))=s,+
s,-1, and to verify by direct calculation that the matrix product [J+ diag W)][S(w)]
is (s,+5,-1)1,. By symmetry, only positions (1,1) and (1,2) need be checked.)
Meanwhile, what of y? One recalls that Yy =a-u=a-M™'a, and easily ver-
ifies that
n-—-1-—-1...
1 -1 n -1

M7t=—1-1-1 =»n

Thus we have the formulae (w=1—a, a=Mu)

¢ =A-w)'SW)A—W) = s(sp+38,-1) =n(n+2) Sy +8p-1

y=0-w)TM1(1-w) = [ns2—2(n+1)s,—2s; + n].

n+1

The configuration which minimizes y subject to ¢=0 may be found among
the critical points (w, u) for the function Y —pug. In view of the obvious formulae
ds,/0ow; =5 ,, we find we must have

0= (=10) =737
— sy (521 4+522) +(sn+5,-2) —n(n+2) 5121 +572),

or in view of s{?=s,—w;, we find

(5B.0)

2
n+1

[2ns; —2(n+1)s{d —2]

[(m+D)w;— (s, + D] = plsi (521 +552 ) +(5,+ 8,0 —n(n+ 2)s{25+52,]

for i=1,2,...,n, as well, of course, as the constraint
(5B.1) 0=s5,(s,+8_1)—nm+2)s,+5,-1-

We consider first the possibility that two w’s are zero, without loss of gen-
erality w, and w,_,. The constraint is no help or problem (s,=s,-;=0=s.",) and
the equations become

2
n+1

[(n+1)wi—(s+D] = p(s;+Dsi2e.

_ — — —_ — i
*si= Wi, Sa= Zi<yWiWy, e So=IL:iwi, S=1=s{.
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But if i=n—2, then sQ, is also zero, so all such w; are equal to one another and
to the number o where

(n+Doa=s5+1=Om-2)a+1,
hence a=1/3, s,=(n—2)/3, s,=(n—2)(n—3)/18, and

1 [n(n—z)2 n+D(m=2)(n-3) 2(n—2)
l#‘n+1 9 9 )

This configuration is uniquely minimal for ¥ in all dimensions. We note that
two w’s are zero (the rest are 1/3); hence two a’s are one (the rest are 2/3); hence
two u’s are 1/3, (the rest are zero).

As we pursue other possibilities we next assume that exactly one w is zero,
without loss of generality w,. The constraint (5B.1) reads

0=s5,1(5:+1),

+n] = 2/3.

hence s;=—1. The equations (5B.0) read (i<n, s,=s® =0):
2w; = pl(=DsPo45,-1+525] = us,—;.

In particular, these w’s are equal to one another, and equal to —1 /(n—1). We find
S;=(n—2)/2(n—1), and

_ 1 (n+1)(n—2) ] _n
V= n+1 [n- n—1 +2+n —n_—l—>2/3'
With none of the w’s equal to zero, one may write
; Sn ; Sp— S,
s524 =7i, S,ﬁ-)z=—wi—1—-w—i§

and the equations (5B.0) become

s = Sn oy Sn-a) Sn oy Sn-1

— [(n+1)w, (SI'H)]_”[Sl(wi + W, ) n(n+2) W:+ W, ]
518, Sy
T O .

13

Sn
o ORI T |

because the topmost expression on the right is zero by the constraint.
We now see that each w; satisfies the same cubic equation

2
n+1

228 = [ (5o D4 sy )] #8451 D5, = 0,

from which it follows that either
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(I) all are the same (call them «); or
(II) there are exactly two distinct w’s (call them «, §); or
(I1I) there are exactly three distinct w’s, (call them a, B, 7).
Before proceeding, we remind the reader that none of the trio o, 8, y are zero.

Case (I): The constraint reads
0 = na(a" +na""Y)—n(n+2)o"+no"*
= no"1(a®—20+1).

Hence a=1 and x=1, a point not under consideration.

Case (II): Assuming a pair («, §) with relative frequencies k, m (k+m=n),
we have

s, = ka+mp,
Spo1 = kak"lﬁ"'+ma"ﬂ""1,
s, = o*pm,

n(n+2) = k2+m?*+2(km+k+m)
and
ko? B +maf?+mo+kf+ }

0= ak_lﬁm_l{km(a2+ﬂ2)+(k2+m2—n(n+2)) op
= =1 =1 e (2 — 1)+ mar(B— )2+ km (a— ).

We see that the bracketed part of ¢ is never zero because azf. Hence ¢=0,
and this case does not occur.

Case (I1I): The situation is similar, only the formulae are longer. With o, §, y
distinct, with relative frequencies k, m, p (k+m+p=n), we find

sy = ka+mp +py,
Su-1 = kat =t fmy? +mot By pol fryP Y,
su = 0" B"y7,
n(n+2) = k24+m2+p*+2(km+kp+mp+k+m+p)

and
kBy (e — 1)+ moy (B—1)*+paf (v — 1)2+}

kmy (& —B)*+kpp (o —7)* +mpa(f—y)*

As before, the bracketed part of ¢ is not zero, nor is ¢.

We conclude this section by pointing out the fact that in using Lagrange multi-
pliers as we have, we are potentially overlooking singular places in the constraint
locus, i.e., points x where ¢ and grad ¢ are both zero. We have taken this liberty
because for any such points x1, one can prove directly that ¥ (x)=2/3.

Q= 0(k---lﬁm—l,))p—l{
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6. Precision; an example. We fix a parameter a=1, and take O<g¢<1 as
another parameter. We consider the four points in R%, :

1

)

z= (a(l +¢),a(l—e), 1, ..., 1,

= (a(l—a),a(l-l'a)a L., 2(11 82)]

1

e =)t

x= (a, a, 1,..,1,

w= (a, a, 1, ..., 1, -al—z]e,}f.

We calculate easily (with a=loga, and neglecting terms O(&%):

v = () = 621+ 20D

V6(1 —30) e
V¥(2) = V6u At

&,(2) = exp {tV¥ ()} = etyaa[l N 46_06;3;«)8_2]

Our first observation is that if 3u=1, then for all sufficiently small >0,
this number is strictly less than when &=0 (z=w). Under these circumstances,
then:

?,(2) <= D,(w) = ¢, (W) = @, (%) = P, ().

On the other hand, it is fairly easy to see that x€%(z), and the preceding inequal-
ity then shows that the final inequality in Axiom A3 for &, may fail as soon as
30>1, which amounts (letting ¢-0) to

Y (x) - 602 >§ = %

This same reasoning shows that the constant 2/3 which appears in Lemma 5.2
cannot be replaced by a larger number, no matter what the dimension. Indeed,
holding 3x=1, & sufficiently small, we see that £, is the midpoint of the line segment
in R*-! joining 2, and $,. Yet

Y (Pn) =¥ (Z) < ¥ (£
It follows that the sublevel set {x€R"~': y/(x)=y(%,)} is not convex for ¢

sufficiently small. By appropriately varying a and ¢ these sublevel sets include all
Z2.with ¢=2/3. O
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Next, we observe that Lemma 3.2 and in particular the first displayed line
below (3.2) with the substitution K=K, ®=®,, is basically the mean-power-
inequality for a competitor f in the Teichmiiller problem based on f;:

(6.1) {[.Kr@du}™ = K;lf,] (m=tVn](n=D).

Its importance for us was that under the circumstances K[ f]<exp Vn/6(n—1)
we could let m—oo, which as usual makes the left side approach ||K/|..=Kg[f].

While we are not able to give an example (some f) where the inequality (6.1)
fails for any large m, we can at least give an example (in contrast to the outer dilata-
tion) where the inequality (6.1) fails for all small m. We confine the discussion to
the case n=3.

We fix ¢>0 and a>1, and construct a piecewise affine mapping f which
competes in the Grotzsch problem based on fy=diag (w).

1 a
12 v | IIT a(l +f’l
I, 2
1 Im|
0 1/2 1 0 a(l+¢) a

2

The unit cube in R? is divided into four vertical quarters by the planes x;=1/2,
x,=1/2, and in each we specify f’ as follows:

In I, f/=diag{a(l+e¢),a(l+e),1/a%},
in II, f’=diag{a(l—e),a(l+e),1/a%},
in I, f’ =diag{a(l—e),a(l—e),1/a?},
in IV, f’=diag{a(l+e),a(l—e),1/a%}.

It is clear that these can be sewed together to give a piecewise affine f, whose dilata-
tion we now calculate with the aid of Lemma 4.2.

Quarter log? K, K} (up to O(£?))
1 -%[logzcﬁ(l+s)+10g2a3(1+£)] @ :l—i-ms +-%(m—1)82:
II, IV i [log2 11_8 +log?a®(l +¢)+log?a(1 —e)] am '1 +—”i ( 1 1] 82.
2 1—¢ ] 2 \loga !
111 %[log2a3(l —&)+log2a®(1—2)] an Ll -me+%(m—1)ez: .
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Integration of K" over C amounts to averaging these four cases:

1
loga

S Kp ) du = as'"{1+—'-2—[m—2+ ]eZ]+0(s3)

which is, for suitable small ¢>0, less than a®"=Kg[f,]" as soon as m<2—
1/loga. This includes some m=1 as soon as loga=>1(Ky=>é®).

In the earlier paper [Ag,], we were able to prove (6.1) for sufficiently large m
even when K[ f,]=Ve. This was possible in that case (n=3) because of a slightly
more precise estimate on the growth of ¢ (x) as ¥(x)—~2/3 than we chose to attempt
in this already overlong paper. Such a thing may still be true. We have our sights
set higher however: we conjecture a mean inequality such as (6.1) may be true for
sufficiently large m without any further restriction, as it is for our example.
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