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1. Introduction

Let f(z) be a non-constant entire function with Nevanlinna characteristic
T(r,f) (see e.g. [7]). Suppose that

{ (r) - Z::o ai@)f(D (r)

is non-constant, where ao(z), .,., a*(z) are entire functions each satisfying

(1.2) T (r, di) : ,S(r, .,f)

and, using standard notation from [7], S(r,f) denotes any quantity such that

S(r,l): o(r@,71),

possibly outside a set of finite linear measure. Then we have the following bound
on the growth of T(r,f) (171, p. 57):

Theorem A. If f(z) is a non-constant entireftmction, and i"f te) is giuen by
(l.l) and (1.2) and is non-constant, tlen

(r.3) r(r, f)= n(,, ])*"(,,f--J-r(" i)*"0,r,.
We observe that Theorem A is usually stated in a slightly different form, with

common zeros of *(r)-l andrl/@) cancelled out, but the staternent (1.3) is more
convenient for our purposes here.

It follows from Theorem A (Hayman [5]) that if g(z) is a transcendental entire
function, and N>2, then gN (z)g'(z) has infinitely many l-points. It was shown
in [2] by Anderson, Baker and clunie that infinitely many of these l-points must
lie outside certain exceptional sets. They proved:

Theorem B. If (a,) is a sequence conaerging to infinity such that, for all n,

(1. 1)

(1.4) l+l>{t>-l
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then for any N>2 euery transcendental entire function S@) must haue infinitely

many solutions of
gN(z)g'(z): 1

outside E:{a,}.

This result was improved in the author's Ph. D. thesis [8], written under the

supervision of I. N. Baker, in which it is shown that the exceptional set -E may con-
sist of a countable union of small discs whose centres a, satisfy (1.4). These excep-

tional sets are comparable to certain Picard sets for entire functions (see [3], [4],
Il0D - that is, subsets of the plane outside which every transcendental entire func-
tion takes every finite value, with at most one exception, infinitely often.

In the present paper we return to the initial problem of Theorem A in the case

where ar(z),...,u*(z) are polynomials and aeQ)10. We prove:

Theorem l. Giuen e-0, there exists K(e)>O, depending only on e, such that

if (a,) conaerges to infinity with

(1.5) la,-o^l = ela,l

n*m, while (q,) satisfiesfor all

(1.6) log 1 
=K(s)(log la,l)'"Qn

thenfor any polynomials ao(z),...,a*(z) (with k>l and uo@)10) and any tran-

scendental entire function f(z) such that

,L@): Z!:ra1Q\fQt1z1

is non-constant, either f(z) has infinitely many zeros outside the union E ot the discs

B(an, en): {z: lz-anl = s,}

or r!(z) has infinitely many l-points outside E.

The condition (1.5) is best-possible. We have, in fact:

Theorem 2. Giuen any increasing, positiae function h(r) on Q<.r<*, such

that h(r)** e,s r+6) there exists a transcendental entirefunctionfQ) such that

all large zeros of f(z) and l-points o.f f '(z) lie in a set {b^\, whcre, for all m, b^ is
positiae and

bn+r>-(r*fi-r)u-.

While the exceptional sets of Theorem l. are comparable to certain Picard sets

for entire functions (see [3]), Theorem 2 marks a departure from the situation there,

insofar as the best-possible condition on the @ntres a* of the exceptional discs of
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a Picard set for entire functions is

la,-o^l > elc,l(log la,D-,
for n*m (Toppila [10]).

Theorem 2 was proved in the author's ph. D. thesis [8], while Theorem I is a
substantial improvement of a result in [8] but makes considerable use of ideas com-
municated to the author by I. N. Baker.

Throughout the paper we use standard notation from [7], including

M(r,f): max{lJQ)l: lzl: vt,

for an entire functionf(z).

2. Preliminary lemmas

Lemma 1. Suppose that P(z) is a polynomial of degree k whose Z€ros o,11 ...2 d.y

liein lzl<R6. Thenfor lzl:R=3R0,

=l 
P"'e) 

I
(k-,)!2,iRi - I rg1 I 

: 
1r.-i;rn,

for i:1, ..., k.

Proof. We proceed by induction on i. We have, for lzl:R=3R0,

But, for ltl<l,

and so

and

lP'k)l - k
lv6l= 2R'

For an inequality in the other direction, we just note that if ft:lzl>3R6, then
liz-utl=Zlzll3 and so

lp'k)l - z*
l-F6l - R'

To prove the general case, we note that If 1=i=k-1,
p(i+r) (r) pt» Q) Pu+» Q)

P (r) P (z) P<» (z)
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and since pto@) has ft-i zeros, all lying in the convex hull of the set of zeros

of P(z) ([], p. 29),and hence in lrl=Ro, we have, for z, R as above,

(k-i\ _JP('+1)(z)l _ z(k-i)
- 2R = ;70(il1 = R

and Lemma 1 follows by induction.

Lemma 2. Suppose that R>l and that h(z) is regular and non-zero in lzl=R,
with lloglh(z)ll=M on lzl:p. Thenin lzl=Rl4 wehauefor i:1,...,k,

l#l=,.oQ+M,
where p1, depends only on k.

Proof. We have (see l7l, P. 22)

# : 
+ [:" ros th (nsie)t ffi o*

in lzl<R, and so

(2.1)

n lzl=R\2. But (see 171,p.73), h@(z)lh(z) is a differential polynomialin l{(z)lh(z)

with constant coefficients and total degree at most i, and so Lemma 2 follows from

Q.l) and Cauchy's estimate.

Lemma 3, Let N and K be positiue integers, and suppose that (a") is a com-

plex sequence conaerging to infinity such that, for some e with 0<e<1, we haue

lo,- a*l = elanl

for all large n*m. Suppose that the transcmdmtal entire function h(z) is giuen by

h(z) -

where B*0, Q>0 and each yi lies in some disc B(ao, L), while,for large n, B(a,,1)
contains at most K zeros of h(z), counting nwltiplicities. Then there exist Mr, Mz

dependtng on N, K md the sequence (a), but not on h(z), such that if lzl:r>M,
and n(r16, Uh)>Mz and z lies outside the union of the discs B(a,, ela,ll{) we haue,

for k:1, ..., N,

(#)-=lq&l=(aPI
where 

n(r) : n(r' llh)'

§ra il7:,[r- ,1
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In addition, if ao@),...,a*(z) are polynomials, not ail identicaily zero, tlwn

L (z) : Z{ =o 
ap@) tt@ (z) I h (z)

satisfres

Ir.()l = Ifl
for z and r as aboue, proaided that r =M,, where M, depends only on ao(z), . . ., u*(z).

Proof. For large w lying outside the union of the discs B(a,, ela,ll4) we first
prove by induction on k that

1,41

(2.2)

for lzl:r and lz-wl=elwl2-k-4. Now the disc B(w, el;,w[ll6) does not meet
any of the discs B(a,,|). Moreover, since the discs .B(a,, ela,ll2) are disjoint
for large z, we see that for any large R and any points a,ryingin the annulus

there exist corresponding
with an on their respective
ber of points an in AR is

lrl - ,,

(2.3)

where »1 denotes the
all j with lyil= 3l*1.

(2.4) lE r(z - 1li) -rl

Also, from Lemmzl,

(2.5)

Aa: G' ft=l(l =2R)
disjoint discs of radius eRl+ contained entirely in A*,
bcundaries, and hence, since l* has area 3nRz, the rrum-
at most 48e-2. Thus, in B(w,elwllsz1, we have, with

h'(r)
h(r) -n+*zz++o(+) ,

over all j with lyil= lwlla and »z denotes the sum over

,,1(, -+)-] = # zZ, (2,- 1)-1 -, (+)

llr(z-yr)-'l = + n[wll6)

sum

But

I=-r

and combinne Q.3), Q.4) and (2.5), and noting that n(wll6) and, n(r) differ by a
bounded quantity, we obtain ttre left-hand inequarity of e.z) in the case &:1.
Indeed, for k: l, (2.2) holds with 3 replaced by 512, the second inequality fol-
lowing from (2.3), Q.4) and the fact that

lZ r(z - y t)-,1 = 
Z n Qwll 6),

bylemma 1.
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Now, for &>1,
hk+t)(z) _ h&r(z) h'(z) _ d lht(41TT:-he) n@ *El-W)

and since (2.2) imPlies that

*(+&):,(s)
in lz-wl=elwl2-k-6, using Cauchy's estimate, we obtain the first part of the

lemma by induction.
To prove the second part, suppose that the polynomials ao(z),"',ap(z) fuve

degfees Ds,...,Dr, respectively, and suppose that z:reiq and n(rl6,llh) are

such that (2.2) holds for k:1, ..., N. Set

and 
di: Di-i

d : max {il1: u1@) I 0}

and define s' t by 
s : max {i: dr: d ard u1@) r 0l

and 
t: max{s-l,0}.

Then, assuming that r is so large that

loglu,(z)l: (t +o1t))a,1og r
for each i we wite

L (z) : »,u1 @) ffi + »,ai (z) ffi
where .8, denotes the sum over all7 with dr:d ar,d xn denotes the sum over the

remaining 7'. But then, using (2.2) we have

e.A zrui@) !#: o((n(r))Nrd-L)- r\. hlz)
while, for some c=0,

(2.7)

Since n(r)-+ oo but satisfies
n(r) - o(log r)

we obtain the sccond part of Lemma 3, noting that d> - N.

Lemm a 4. SuPPose that q=81 and that

f(z) - II;:,[r -*)
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where ao*r=an mtd each a, lies in tlrc set lq,Qr,Qa,...|. Then,for large n,

min {l/(z)l: lzl: qtrzo,l = M(q't'ao, f).
Proof. For lzl:qttqlayl and n=N,

143

while, if lrl- q'to a*,

Now,

euz 9__ 1

Qua#*'

AIso, if lrl-q't'A*,

[t- *l= sttze--1

lt- *l=q,,rZ+1

: ffi = (qLtz - L)(qtft *r) -, > 2.

ln.,n (,-il|= rr,,.It-q,,,2)
= il ,=, (l - qtlz-n1 : Ct,

wl: q'lo a*,

I, - *l= Z,,ivroe [r * rlt*H

= qr,-(++ (t-2 + q-s+ ...)

nvzt

guza")) (u(qtt4ar,{, f))-I > 2*cre-cz

say. On the other

say. Thus
(min {lf@)l: lrl:

for sufficiently large .lf,.

We need also a result of Hayman [6]:

Theorem C. Suppose that f(r) is a non-constant entire function satisfying

Then
T(r,f) - O(log r)r.

log l"f?r"\ ^, log M(r,f)
as z:ren tends to infinity outside an e-set suruounding the large zeros of f(z).

An e-set is defined (following Hayman [6]) to be a countabre set of discs not
meeting the origin which subtend angles at the origin whose sum is finite.

hand, for 
I

Z rrrv log

>1
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(3.1)

3. Proof of Theorem 1

Suppose that f(r) is a transcendental entire function, and that

{ (z) : Z!:o di@)f(» (r)

isnon-constant, where 0|o,...,dk are polynomials, with a1,@)lO, and k>1' Sup-

pose that all but finitely many zeros of f(r) and l-points of $ (z) lie in the union of
the discs Do:B(an,q,) where ao** such that la,-a*l=elanl for some e=0

and for all n*m, while q, satisfies

(3.2)

note

(3.3)

(3.4)

1og1 = KG)(loe la*l)'"Qn

for some K(e) which we assume to be large and positive.

We use cl,cz,... to denote positive constants depending only on e. We first

that (see [7], p. 56)

T (r, *) = m (r, l, lf) + m (r, f) = m (r, f) +,s(r,"f).

Also, applying Theorem A,

r(,, r)= iv(,, å)*r(" å)-N, (,, f,)*ts,71,
where JVr(r, l/ry'') counts only zeros of ry'' which lie in the discs B(a,,39,)'

We assume, without loss of generality, that Ue and q are large and that la,l=

fanarf for all n, and observe, as we saw in the proof of Lemma 3, that the annulus

{z: la,l=lzl=2la,l} contains less than 49e-z of the points a.. Thus there exists, for

iurg"i.,s, satisfying lanl=s,=2la,t such that the annulus {z: s,=lzl=s,+e2la"ll50}
meetsnoneof thediscs B(a^,3q,), since q,*9. We define to,rnandtheannulus

An bY
/,: s,(1*e,/100)

and 
rr: so(l *e,l2oo)

and
(3.5) An: {z: s,=lzl= t^}.

Of course, for large n, Aocontaits no zeros otf(z) or tlt(z)-|, nor any zeros of
r!' (z) wtnch contribute to Nr(r, l.lt!').

we now estimate T(r,f) for large r. Let pn denote the number of zeros of

f(z') in D,, on the number of l-points of r!(z) in Do, and rn the number of zeros of

{, in B(ao,3g,), in each case counting points according to multiplicity. suppose

that i is large, and that the annulus {z: frrf =lzl=frzf} meets none of the discs

B(a,,3qn), where
frt:(1 +ezl200)-L

fiz: frr(l *erl100).
and
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Then, using (3.4), if ?=r=Fzf , we have

(3.O r(r,f) = E'tt,(,"r#*rCr))*r,r.(rosfi+r1rl)

»', -ltoe ff-, (1, * o (log r) * s(r, .f)

where .E' denotes the sum over all m with la^l<.fri. But

(3.7) »'(p-+o*+r^)= n(u, ,,i)*n(p, ,,#l*r(a, o,+)

= ,, [r(", +)*, (,, ?=)., (., #))
Combining (3.5) and (3.7), and using (3.3) and the fact that f(z) is assumed

to be transcendental, we obtain, with r as above, and in particular for r:rn,

(3.8) r(r,f) =E'!^(,"r#)*s(r,/)
where 

!^: lr^*6^_r*.
Now, whether or not the sequence (y,) is bounded above, we can find mo and an
infinite set ff of lz such that

(3.9) /n: max {ti, *= j > mol> l.
For m€tr we choose M(m) satisfying M(m)>m and la*611=s^ and

(3.10) !a1q: max {yr: j = m and larl = s.}

and for convenience we set

(3.11) m' : M(m).

We note that any absolute bound which holds on ym, for m(af, holds on y^ for
alllarge m.

For m€ff, we have, from (3.8), (3.9), (3.10) and (3.11),

(3.12) r(r, f) = M'!*,(,*# *o(log r) *,S(r, ,f),

for r^=r=t*, where M' is the number of points a, in lzl<s*. Since for large
m, m:OQogla-l) by virtue of the absolute bound on the number of points ao
in any annulus y*=lzl=2r*, we obtain

(3.13) T(r*,f)+f U-,lt) < czy*,(logr*\2.

We now go on to establish a series of claims and finally to obtain a contradic-
tion if K(e) is large enough n (3.2). suppose that m is large, not necessarily it ff,
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and that ZL, ..., zttil are the zeros of f(z) in D^, while w1, ...zwos are the l-points

of rL@) there. Set

(3.14) P(z): fi!2,@-z)
and

(3.15) Q@): Illz,@-w)
and define h(z), H(z) by

(3.16) f(r): P(z)h(z)

and

(3.17) {(z)-r : Q@)H(z).

Claim 1. For any n,m,if la*l-rn, with r, as in (3.5), then

(3.18) ltog ll,(z)ll 5 csT(ro,fl*cap-logro

and

(3.19) llog lA(z)ll = cuT(rn,rlr -l)acuo^logr,
in lz-a^l=16.

Applying the Poisson-Jensen formula to h(z) n lzl<r,, we obtain (since

llog xl :fsg+ x+loe+ 0l x))

(3.20) lrog 1,,(z)ll =t#)f*r,^, h)+m[.,, +)) + )'{bslffil
where the sum .8" is taken over all zeros of h in lzl<r,. B:ut h(z) is non-zero in
the disc B(a*,ela^ll2) and so, for lz-a^l=16, (3.20) yields

(3.21) lrog lt,(z)ll = ,,(*{r,, h)+*(r,, +))*rr, (r,,}).
Also,

m(r,, h)+m(",' +) =- m(r,, f)**(r,, L)+*(,,, 
|l**rr,, ,1

and, noting that lP(u)l>l on lul:tn, and that

, (',,+) = ceN (",,i)

we obtain (3.18) from Q.2l). The estimate (3.19) is proved identically.

Claim 2. For all large m, we have y^<4(k+l).
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Suppose, on the contrary, that for some large m€ff, m and ri satisfy (3,9),
(3.10) and (3.11), and suppose that y*>4(k*1). Then either

tt^,= y^,12>-2(k+l)
or 

0^,-x^, = 
y^,12 = 2(k*l),

and we shall show that both cases are impossible. We define P(z), Q@), h(z) and
H(z) as in (3.14)-(3.17), but with m replaced by rd, and note that if

s : I4r,= Y*'12
then from Lernma I we have

(3.22)

on the circle
C-, : {z: lr-o*,1: 3Q*,\

for i:1, ...,k+1. Also, combining (3.13) and Clairn 1, and noting that r^=3la*1,
we have, using Lemma 2,

SI IP«'IK\I STzi

lffil =',,s'(rog to*'t)"(3.23)

on C*,, for i:1, ..., ft*1. But

(3.24) ,t,@) : p(z)h(z)l.rr,>ffi* *'!ll? ]* ... +*r,l]

and thus ot C -, , using (3.22) and (3.23) we obtain from (3.24) (with d denoting the
maximum of the degrees of ao(z), ...,aoQ))

t @) : r (z)n @)fuy(o $ff * o (r,r, "-{ffi)]
But

ls$iy >2-k

and thus, using (3.22), if l«(e) is large enough in (3.2) we have

(3.25) t Q) - h{r)uo@(r +o(1» p{x) @)

on C*,.It follows from (3.25) and Rouch6's theorem that rlr(z) has the same num-
ber of zeros inside C., as P@ (z); since the zeros of P@ (z) lie in the convex hull of
the set of zeros of P(z), and hence k D*,, we conclude thatr!(z) has §-k zeros
in the disc B(a*,3q^,).

Similarly

,1,' Q') : P (z) h (z)l"rUr'#+ ... + ai (z)]

: (t +o1t;)r<*+t) (z)ar@)h(z)
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otC^,, and thus
t^,: p*,-(k+l).

But then

(3.26) o-, > y^,12 >O

and so Q@)il in (3.17). Moreover, inside the ctrcle C^, we l1ave, using (3.3),
(3.13), Claim I and (3.26),

(3.27) togllt(z)- 1l : los lH(z)l+toelQ@)l

= cuT(r*,rlt -l)
*c6o^,logr^

lo^,log69^,
< cso^,(logla^,1)2+o^,log 69,, < 0

if i<(e) is large enough in (3.2). But this implies thatrlr(z) has no zeros inside C,',
contradicting the conclusion that followed (3.25).

On the other hand, suppose that y-,=4(k* 1), and that

o*,-T^, = 
y*,12.

But then, since

t, e) : e, e) H (z) + e @) H, (z)

itfollows from Lemmas I and 2,and (3.3), (3.13), and Claim I that

*' (r) : Q' @) H (z)(t+o (1))

ot C^,, and hence that o*, -t^,: l. This establishes Claim 2.

claim 3' we have 
Te,f): o(logr)z

and in particular, for large m,

(3.28) T(r^,f)+T(r*,t) = cp(logla*l)2.

This follows immediately from (3.8) and Claim 2.

Claim 4. For all large m, we have p*<.2(k*l).
For, suppose that pm>2(k+ 1) for some large m. Then on the circle

C^: {z: lr-o^l: 3q.}

we have, defining P, Q, h and H as in (3.14) to (3.17) and setting S:t*,

(3.29)
sr _lr<»@)l _ srz'm=t@t =m
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for i:1,..., §, which of course is just (3.22) with m' replaoed by z. Also, from
Claim 1, (3.28) and Lemma 2webave, for i:1,...,k,

(3.30) lffil= c,,s,(log la.l)z,

on C.. But then, on C-, with d denoting the maximum of the degrees of
ar(z), . .., ar(z),

t Q) : P (z) h (z\|"-u, #& + o ll,P srllr#äl
: ar,Q) h (z) P(kt G) (l + o (1))

using (3.29) and (3.30) and noting that (,S-ft)=,S/2. Hence rlrQ) has ,S-k zeros
in B(a*,3g.) and so, by Rouch6's theorem, *(z)-1 has at least .S-k zeros
in D- since by Theorem C rl, Q) is large outside an e-set. But then, using Claim I
and (3.28), we have, it B(a^,3q-),

toglt|@)-11 : los lu(z)l+loelQ@)l
< c1a (log la^l)z + cuo^log r*

*o^lo968, = 0

if lf(e) is large enough n (3.2), and we have a contradiction.

Claim 5. For large m, if o^>0, then p*>o**k.

We note first that if p*-0 then by Theorem C and Lemma 3, {(r) is large
in the disc B(a^, ela-ll2) and hence 6^:0. Thus, if o^>0, we set

c:minfir*,k\=l
and we write

(3.31)

where P, h, Q and H are defined as in (3.14) to (3.17) and B(z), L(z) are asfollows.
We have

L(z\ -(^' r-t kl h@-c)(z\ I
| : lqk\z) ;16;il d * "' * ac@))

if c<ft, and
L(z\: 6o7'1

if c:k. Thus, if we regard t@)lf(r) as a linearcombination of terms po(r)lp(r)
with i<c, then L(z) is the coefficient of f<"\141f91. Accordingly, B(z) is a linear
combination of terms Po(r)lp(r) with f<c, and with coefficients which are sums
of terms yuk)hut(z)lh(z) where each yirQ) is a constant multipte of one of
uo(z), ..., ur(z).
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On the clr.cle C^, by Lemmas 1 and 3, and Claim 4,

(3.32) lB(z)l: o(lrlo p!;)
where das before is the maximum of the degrees of as(z),...,a*(z). Wemayalso
apply the second part of Lemma 3 to h(z) (since for allr, n(r,Uh) and n(r,llf)
differ by at most 2k+1) to conclude that, on the circle C,
(3.33) lL(z)l = 

crrlzl-r.

Combining Q.2), (3.29), (3.30), (3.31), (3.32) and (3.33) we see that

(3.34) ,l,Q): h(z)P@(z)L(z)(1+o(1)

on the circle C* and hence thatrlr(z) has a- zeros in B(a*,3p^), whete

(3.35) 0m: lrrrax {0, t ^-k\,
sine h(z) and L(z) do not vanish on or inside C-.

Thus, if o^>0, we must have pn=l1 For otherwise ptcl@) is a non-zero

@nstant atd u^-g' also on the circle {zz lz-a^l:ela.ll4} we have

tos lh (z)l > tog 
I f (z)l - k tog la ^l - 

o (t)

and so, by Theorem C and the minimum principle h(z) is large in lz-a^l=3q^.
From (3.34), ry'(z) must be large on C*, and again by the minimum principle, we

conclude that o^:0, which is a contradiction.
Thus o-=Q implies tbat p*>k*l. Now, we may apply the above reasoning

«3.31) to (3.35» to fu'(z) to conclude that

(3.3O ?m: Insx fu--(k+l),0).
Also,

(3.37) r*: o^-l
since on C.,

{'(r\: H(z)QQ)(ffi.ffi)
: E(z)Q'@) (t +o1t)

using (3.2), Claim 1, (3.28) and Lemmas I and 2. Combining (3.36) and (3.37) we

see ttrat if o.>1 then

q: p^-(k{t) and o^: p^-k.

Claim 5 is now proved.

We may now conclude the proof of Theorem 1 by obtaining a contradiction.

From Claims 4 and 5 we have, for large m, if o^>0,

o^€1t^-k=f,u^
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and thus(3.38) "(",#J = *r[,,+)
for large r. But for large z, using Lemma 3 and Theorem C, and recalling that
the annulus l. as defined by (3.5) meets none of the discs D, we have

,(r., j)=*<,^,f)+o1r1

- m(r^,t)+m[r,,f) +oe)

< rn(rm,r/-1)+O0ogrJ

=,v(,., 7}) *o(tosr^)

= #, (,-,+)
using (3.38), which is impossible.

4. ProofofTheorem 2

We set

(4.1) f(,): ni-,!-l,l
where a,*r=an andthe an lie in the set {8,q2,qs,...} for some q>$1. Wc will
make the actual choice of the a,later.

Consider a large zeto, zo say, of f '(z). which must be real and positive ([9],
p. 266). Suppose tbat a* is the nearest zero of f(z) to zs, choosing the larger if zo is

equidistant from two zeros of f(z). Now

(4.2) ry: X. !: o.
f(z) on:',r-an

But

(4.3) Z,-*;!;= ; 1:; +'v- | - "'ar-Zo ax+t-Zo zrk=t (qk-l)zs: zr'

say. Also, for r<N, dn<Zo &ttd so

(4.4) >rv--r 1 
' 

N- I
.a":t 2FC = ,o .
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Combining (4.», (4.3) and (4.4) we obtain

1 lf-l c1m= 4-a
and so

(4.5) lro- o*l <

say. Thus, given a small, positive e, all large enough zeros of f '(z) lie in the union
of the discs B(a,, eanl2), and, observing that T(r,f):611ogr)', we see from
TheoremC that all large l-points of f'(z) lie in the union of the discs B(ao,eao).
Thus, for large n, the annuli An:{z: tl'lnon=lzl=qu2a,} are free of zeros and
l-points of f '(z); also, by Lemma 4 there must exist level curves Jo each closing
in An on which lf(z)l:M(q'tnan,/). But then (see l9l, p. 122) f(z) and f '(z) have
the same number of zeros in the region between Jn and Jn*r, and so, for large n,

f '(z) has exactly one zero) xn say, and one l-point, zi say, in the disc B(an, eao).

Now, f(a):f(a,*r):0, and since

czzal"l,,, 
+)l-',

on (an, an*.) we see thatf(x) has exactly one maximum or minimum on each interval
(ao, a,*t). Suppose now that n is large and that x, is a maximum point for f(x)
on (a,-r,ao*,). If we have xn>d, then f'(a,)>O and /'((l-e)a,)>10 (using
Theorem C) and so (1-e)a,<Znlx,. Similarly, if x,<an then f'((l-e)a,)=10
and (l -e)an-2,-.vo. On the other hand, if x, is a minimum point for f(x) on
(a,-r,a,*r) then x,=2,=(l+e)a*. Since l/(x,)l=fit, say, we obtain, byintegra-
tion,

lf?)l = ,1(4.6)

in either case.

Thus we have shown that for all large l-points z, of f '(z), z^>O and lf(2,)l
is large. But then f'(2")lf(r") is small and

(4.7)

For k=n,

while (compare 4.3)

say. Thus (4.5) yields

Z"V.'+l=k n(o.,+)

lrn-ool = (l-q-ttz)zn

lz-=,*l=2,
1

-<

lrn* onl
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for some c4, c5, and setting ce :rnåx {cn, cr}. we need only choose the points a,
from the set {q,q',Q',...} in such a way as to ensure that cun(r,llf)=h(r) for
all r. The set {b.} is then the set of large a, and zn points, arranged in order of mag-
nitude, and we have

b^+t-b^= b*(h(b))-'.
This proves Theorem 2.

Remark. The author wishes to thank the referee for some helpful comments,
and for pointing out a number of minor errors.
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