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EXCEPTIONAL SETS FOR LINEAR DIFFERENTIAL
POLYNOMIALS

J. K. LANGLEY

1. Introduction

Let f(z) be a non-constant entire function with Nevanlinna characteristic
T(r,f) (see e.g. [7]). Suppose that

(L.D) V(@) =3, %0 @)
is non-constant, where ,(z), ..., o,(z) are entire functions each satisfying
(1.2) T(r,a) = S(r, f)

and, using standard notation from [7], S(r,f) denotes any quantity such that

S(r.f) = o(T(r, 1)),

possibly outside a set of finite linear measure. Then we have the following bound
on the growth of T'(r,f) ([7], p. 57):

Theorem A. If f(2) is a non-constant entire function, and if \(z) is given by
(1.1) and (1.2) and is non-constant, then

(1.3) T, f)< N(r, %)+N(r, TI:T]—N(r’ %}+S(r, .

We observe that Theorem A is usually stated in a slightly different form, with
common zeros of Y (z)—1 and ¥’(z) cancelled out, but the statement (1.3) is more
convenient for our purposes here.

It follows from Theorem A (Hayman [5]) that if g(z) is a transcendental entire
function, and N=2, then g"(z)g’(z) has infinitely many 1-points. It was shown
in [2] by Anderson, Baker and Clunie that infinitely many of these 1-points must
lie outside certain exceptional sets. They proved:

Theorem B. If (a,) is a sequence converging to infinity such that, for all n,

An+1
an

(1.4) =>qg=1
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then for any N=2 every transcendental entire function g(z) must have infinitely

many solutions of
g =1
outside E={a,)}.

This result was improved in the author’s Ph. D. thesis [8], written under the
supervision of I. N. Baker, in which it is shown that the exceptional set E may con-
sist of a countable union of small discs whose centres a, satisfy (1.4). These excep-
tional sets are comparable to certain Picard sets for entire functions (see [3], [4],
[10]) — that is, subsets of the plane outside which every transcendental entire func-
tion takes every finite value, with at most one exception, infinitely often.

In the present paper we return to the initial problem of Theorem A in the case
where «,(z), ..., o (z) are polynomials and o (z) 0. We prove:

Theorem 1. Given e=0, there exists K(e)=0, depending only on ¢, such that
if (a,) converges to infinity with

(15) Ian_aml >Blan|

for all n=m, while (g,) satisfies

(1.6) loggi ~ K(&)(log |a,])*

then for any polynomials 0(z), ..., 0.(z) (with k=1 and o,(2)Z0) and any tran-
scendental entire function f(z) such that

V(@) = 3, u(f@)
is non-constant, either f(z) has infinitely many zeros outside the union E ot the discs
B(a,, ¢) = {z: |z—a,| < ea}
or Y (2) has infinitely many 1-points outside E.
The condition (1.5) is best-possible. We have, in fact:

Theorem 2. Given any increasing, positive function h(r) on O<r<eo, such
that h(r)—e as r—-oo, there exists a transcendental entire function f(z) such that
all large zeros of f(z) and 1-points of f(z) lie in a set {b,}, where, for all m, b, is
positive and

1
bm+1 = (1+m) bm.

While the exceptional sets of Theorem 1 are comparable to certain Picard sets
for entire functions (see [3]), Theorem 2 marks a departure from the situation there,
insofar as the best-possible condition on the centres a, of the exceptional discs of
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a Picard set for entire functions is

lan—'am‘ = Slan'(log lan')_l
for n=m (Toppila [10]).

Theorem 2 was proved in the author’s Ph. D. thesis [8], while Theorem 1 is a
substantial improvement of a result in [8] but makes considerable use of ideas com-

municated to the author by 1. N. Baker.
Throughout the paper we use standard notation from [7], including

M(r,f) = max{|f(2)|: |z| = r}

for an entire function £(z).

2. Preliminary lemmas

Lemma 1. Suppose that P(z) is a polynomial of degree k whose zeros «, ..

lie in |z|<R,. Then for |z|=R=3R,,

k! _[PP@] _ k2
(k—i)!12'R* = | P(2) | =~ (k=D)IR

Jor i=1, .., k.
Proof. We proceed by induction on i. We have, for |z|=R=3R,,

P(2) 1 [ a,.]-l
P(2) =225 |l z) -
But, for |7|<1,
lt]

Re((1-n") =1~

1—|¢
and so
Re[2f=1(1~%) ]_—>_k/2
and
{P’(z) _k
P(z)| ~ 2R’

.y Otk

For an inequality in the other direction, we just note that if R=|z|=3R,, then

|z—a;|=2]z|/3 and so
_ 2k

IP’(Z) _ 2k
~ R

P(2)

To prove the general case, we note that if 1=i=k—1,

P(i+1)(z) _ P(i)(Z) P(i+1)(z)
P(zy = P(z PY(»
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and since P®(z) has k—i zeros, all lying in the convex hull of the set of zeros
of P(z) (1], p. 29), and hence in |z|<R,, we have, for z, R as above,

(k=i) _|P“P(@)| _ 2(k—i)
2R “ I P9 |~ R

and Lemma 1 follows by induction.

Lemma 2. Suppose that R=1 and that h(z) is regular and non-zero in |z|=R,
with llog [h(z)”éM on |z|=R. Then in |z|=R/4 we have for i=1, ...k,

I KO (2)
h(2)

= B (1+M)
where B, depends only on k.

Proof. We have (see [7], p. 22)

W@ _ 1 iy R
o = o el R remy de

in |z|]<R, and so

@n

I KG| _ gy

h(2)
in |z|=R/2. But (see [7], p. 73), h(2)/h(z) is a differential polynomial in h’(z)/h(z)
with constant coefficients and total degree at most i, and so Lemma 2 follows from
(2.1) and Cauchy’s estimate.

Lemma 3. Let N and K be positive integers, and suppose that (a,) is a com-
plex sequence converging to infinity such that, for some & with 0<e<1, we have

Ian_aml =& |an|

for all large nzm. Suppose that the transcendental entire function h(z) is given by

h(z) =22 [T, (1 —y—i)

where B0, Q=0 and each y; lies in some disc B(ay,, 1), while, for large n, B(a,, 1)
contains at most K zeros of h(z), counting multiplicities. Then there exist My, M,
depending on N, K and the sequence (ay,), but not on h(z), such that if |z|=r=>M,
and n(r/6, 1/h)=M, and z lies outside the union of the discs B(a,, ¢|a,|/4) we have,
for k=1, ..., N,

n(r)]k _ | h(k)(z)l _ (3n(r))k
3r) Tl h@ T r
where

n(r) = n(r, 1/h).
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In addition, if ay(2), ..., ay(z) are polynomials, not all identically zero, then

L(2) =3 _yu(2h® (2)/h(2)

satisfies

1
L) =5
Jer z and r as above, provided that r>M;, where M, depends only on 06(2), ..., oty (2).

Proof. For large w lying outside the union of the discs B(a,, ¢la,|/4) we first
prove by induction on k that

nm)Y _
(.2 a ] =

K@) | _ (3n(r))k
@ 1= Ur

for |z]=r and |z—w|=elw|27*"%. Now the disc B(w,¢e|w|/16) does not meet
any of the discs B(a,, 1). Moreover, since the discs B(a,, ¢la,|/2) are disjoint
for large n, we see that for any large R and any points a, lying in the annulus

Ar={{: R=[{|=2R}

there exist corresponding disjoint discs of radius eR/4 contained entirely in Ag,
with a, on their respective boundaries, and hence, since Ay has area 3nR2, the num-
ber of points a, in 4y is at most 482 Thus, in B(w, e|w|/32), we have, with
|z|=r,

Wi .1 1 (l)
(2.3) o = Dot = ols)

where X, denotes the sum over all j with |y ;|=|w|/6 and X, denotes the sum over
all j with |y;|=3|w|. But

_ 1 2 B ) 1
24 |Zy(z—ypY = 7221(1 —-—Zf-) l < WZ’EI 2-D1=0 [T)
Also, from Lemma 1,
1
(2.5) 12:(z=y) 7! = 5 n(w|/6)
and combining (2.3), (2.4) and (2.5), and noting that n(|w|/6) and n(r) differ by a
bounded quantity, we obtain the left-hand inequality of (2.2) in the case k=1.

Indeed, for k=1, (2.2) holds with 3 replaced by 5/2, the second inequality fol-
lowing from (2.3), (2.4) and the fact that

2
|Z1(z—=3) ™ = = n(wl/6),
by Lemma 1.



142 J. K. LANGLEY

Now, for k=1,
K0 (z) KW (2) H'(2) lh(k)(z))
"o - k@ k@ dz\UhE

and since (2.2) implies that
4 (1a)_ o (o))
dz\ h(2) pktl
in |z—w|=ew|27*%, using Cauchy’s estimate, we obtain the first part of the
lemma by induction.
To prove the second part, suppose that the polynomials y(2), ..., ay(z) have

degrees D,, ..., Dy, respectwely, and suppose that z=re® and n(r/6,1/h) are
such that (2.2) holds for k=1, ..., N. Set

di =Dl—i

and
d = max {d;: «;(z) # 0}
and define s, ¢ by
s =max {i: d;=d and o;(2) # 0}
and
t = max {s—1, 0}.

Then, assuming that r is so large that

log |o;(2)] = (1 +0(1))D;logr
for each i we write
h9(z2) rP(2)
h(2) h(2)

where X, denotes the sum over all j with d;=d and X, denotes the sum over the
remaining j. But then, using (2.2) we have

h9 (2)
h(2)

L(2) = Z30(2) — 75—+ Z1%;(2)

(2.6) Zy0(2) ——~—

while, for some c¢=0,

= 0((n(r)"r*7Y)

hY (2)

27 a0 (2) = 0]

> crd(n(r)) —10(r* (n(r))).

Since n(r)—< but satisfies
n(r) =O0(logr)

we obtain the second part of Lemma 3, noting that d=—N.

Lemma 4. Suppose that q=81 and that

s@ =1 (1-2)
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where a,.1>a, and each a, lies in the set {q, g% 3, ...}. Then, for large n,

min {|f(2)|: |z| = q"*a,} > M(q"*a,, f).
Proof. For |z|=¢"*|ay| and n=N,

z a
-2 = e dn_y
an all
while, if |w|=q"*ay,
w
—_| = g1/t
Il - q an+1
Now,
ay
q1/2___1 12
a ay—a, -
a:, - Zl/4aN+a = (¢ =1D)(g"*+1)1 >2.
142N 4
q an+
Also, if |z|=g"2ay,

a
= 1/2 N
Hn>)\’ )

an
=],.,0-¢"*"=¢,
say. On the other hand, for |w|=¢"*ay,

1,..(1-2)

sy log >y 10g [1 +q1’4%ﬁ]

n

a
1/4 N
= qY 2n>NT

=gq't (%+q‘2+q‘3+ )

= C ,
say. Thus i
(min {|f(2)]: |z| = ¢*2ay}) (M (¢¥*ay, )™ = 2¥C,eC: > 1

for sufficiently large N.
We need also a result of Hayman [6]:

Theorem C. Suppose that f(z) is a non-constant entire function satisfying
T(r,f) =0(logr).

log | /(re”)| ~ log M(r, f)

as z=re® tends to infinity outside an e-set surrounding the large zeros of f(z).

Then

An e-set is defined (following Hayman [6]) to be a countable set of discs not
meeting the origin which subtend angles at the origin whose sum is finite.
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3. Proof of Theorem 1

Suppose that f(z) is a transcendental entire function, and that

3.1 Y@ =3, 6@ )

is non-constant, where o, ..., &, are polynomials, with ()0, and k=1. Sup-
pose that all but finitely many zeros of f(z) and 1-points of ¥ (2) lie in the union of
the discs D,=B(a,, ¢,) where a,—~oc such that |a,—a,|>¢la,| for some &=>0
and for all n=m, while g, satisfies

32) m§>mm%WP

for some K(¢) which we assume to be large and positive.
We use ¢, cp, ... to denote positive constants depending only on & We first
note that (see [7], p. 56)

(3.3) T(r,¥) = m@r, Y[)+m(r, ) = m@, f)+S. 1)
Also, applying Theorem A,

(3.4 T(r,f)<N( }]+N(r, v 1] Nl( 1!’)+S(r’f)

where N;(r, 1/") counts only zeros of ¥ which lie in the discs B(a,, 30,)-

We assume, without loss of generality, that 1/¢ and a, are large and that la,|=
a1 for all n, and observe, as we saw in the proof of Lemma 3, that the annulus
{z: |a,|=|z|=2la,|} contains less than 49¢~2 of the points a,, . Thus there exists, for
large n, s, satisfying |a,|=s,=2|a,| such that the annulus {z: 5,=|z|=s,+¢ la,|/50}
meets none of the discs B(a,, 30,), since g,~0. We define t,,, r, and the annulus
A, by

t, = s,(1+¢%*100)

and

r, = 5,(1+&%200)
and
(3.5) A, ={z: s, = |z] = t,}.

Of course, for large n, A, contains no zeros of f(z) or Y (z)—1, nor any zeros of
’(z) which contribute to N, (r, 1/{").

We now estimate T'(r,f) for large r. Let p, denote the number of zeros of
f() in D,, o, the number of 1-points of Y(z) in D,, and t, the number of zeros of
Y’ in B(a,, 30,), in each case counting points according to multiplicity. Suppose
that 7 is large, and that the annulus {z: B, #=|z|=f,F} meets none of the discs
B(a,, 30,), where

Bi = (1+¢23/200)1

B, = B, (1+¢%100).

and
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Then, using (3.4), if F=r=p8,7, we have

(3.6) T ) < 2w, (logI " +o(1))+2’ (logl " +o(1))

_3'r, (logl—arj—o(l))+0(log P+S@ f)

where 2’ denotes the sum over all m with |a,|<p,7. But

3.7 Z’(ﬂm+am+tm)§n[ﬂl 7, })+n[ﬂl 7, lﬁl— )-i-n(ﬂ 7, 1/11’J

S O R e R |

Combining (3.5) and (3.7), and using (3.3) and the fact that f(z) is assumed
to be transcendental, we obtain, with r as above, and in particular for r=r,,

39 76, 1) <2 3o (log ) +50.1)
where
B e

Now, whether or not the sequence (y,,) is bounded above, we can find m, and an
infinite set & of m such that

3.9 Ym=max {y;: m =j=my} = 1.

For me# we choose M (m) satisfying M(m)=m and |aym|=s, and
(3.10) Y@y =max {y;: j=m and |q;| = s,}

and for convenience we set

(3.11) m' = M(m).

We note that any absolute bound which holds on y,, for me# holds on y, for
all large m.
For me#, we have, from (3.8), (3.9), (3.10) and (3.11),

(3.12) T(r, f) < M’y,, [1og]a—’1|) +0(log ) +S(r, f),

for r,=r=t,, where M’ is the number of points a; in |z|<s,. Since for large
m, m=0(logla,|) by virtue of the absolute bound on the number of points a,
in any annulus r*=|z|=2r*, we obtain

(3.13) T (s )+ T (1 ¥) < c3ym (logTy,)%

We now go on to establish a series of claims and finally to obtain a contradic-
tion if K(e) is large enough in (3.2). Suppose that m is large, not necessarily in #,
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and that z,,...,z, are the zeros of f(z) in D,,, while w;,...,w
of Y (z) there. Set

are the 1-points

Om

(3.14) P(2)=[[;7, (z—2)
and

(3.15) 0@ =[]}, (z—w)
and define h(z), H(z) by

(3.16) f(@) = P(2)h(2)
and

3.17) V(@)—-1=0(=H(2).

Claim 1. For any n, m, if |a,|<r,, with r, as in (3.5), then
(3.18) [log |h(z)[| =g T(ry, f)+ eyt logr,
and
(3.19) llog |H(2)|| = ¢sT(ra, ¥ —1)+co0m log T,

in |z—a,|=16.
Applying the Poisson—Jensen formula to h(z) in |z|<r,, we obtain (since
[log x|=log* x+log* (1/x))

(3.20)  [loglh(2)]| = (Lﬂz-[-] [m(r,,, B)+m (r,., —,1;)] + 3 log

rn_IZI

r2—0z

rn(c _Z)

where the sum X” is taken over all zeros of A in |z|<r,. But h(z) is non-zero in
the disc B(a,, €|a,|/2) and so, for |z—a,|=16, (3.20) yields

(.21) llog [12)]| = ¢ [m(r,,, B)+m (r,,, %]] tegn (s,,, %)
Also,

)= 7))
m(r,,,h)+m(r,,,—,—1—)=m(r,,,f)+m(r,,, V2 +m r,,,7 +m(r,, P)
and, noting that |[P(u)|=1 on |u|=r,, and that
7)=an (o 7)
nlsy,—=| <cN\|r., —
71— 7

we obtain (3.18) from (3.21). The estimate (3.19) is proved identically.

Claim 2. For all large m, we have y,<4(k+1).
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Suppose, on the contrary, that for some large mé€s#, m and m’ satisfy (3.9),
(3.10) and (3.11), and suppose that y,,=4(k+1). Then either

O — T = Y2 = 2(k+1),

and we shall show that both cases are impossible. We define P(z), Q(z), h(z) and
H(z) as in (3.14)—(3.17), but with m replaced by m’, and note that if

or

S = Hw = ym'/ 2
then from Lemma 1 we have
S! _ ’P(")(z) | _ S12¢

(3.22) S=D)12Bo) | P2 1~ (S—1)'Bow)

on the circle

Cp={z: |z—a,| =30}

for i=1, ..., k+1. Also, combining (3.13) and Claim 1, and noting that r,=3|a,,|,
we have using Lemma 2,

h? (2) = i 2i
(3.23) ) | ¢105' (10g [a,[)

on C,, for i=1,..,k+1. But

(k) (k)
(3.24) l//(z)=P(z)h(z)[ock(z)[PP(g)+.. hh((j)]Jr +cx0(z)]

and thus on C,,, using (3.22) and (3.23) we obtain from (3.24) (with d denoting the
maximum of the degrees of «y(2), ..., %(2))

P® ok
42 = PN T 40 a5t L))

P( ) ( )k 1
But
S _
(S—k)!sc — =27
and thus, using (3.22), if K(¢) is large enough in (3.2) we have
(3.25) ¥ (2) = h(2)%(2)(1+0(1) PP (2)

on C,.. It follows from (3.25) and Rouché’s theorem that \(z) has the same num-
ber of zeros inside C,,. as P®(z); since the zeros of P®(z) lie in the convex hull of
the set of zeros of P(z), and hence in D,,,, we conclude that y/(z) has S—k zeros
in the disc B(@,, 30u)-

Similarly
(k+1)( z)

V@ = P 1) 2+ 42
= (L+o() P @ ()h()
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on C,,., and thus
T = Hm' _(k + 1)
But then

(3.26) O Z Yul2 >0

and so Q(z)#1 in (3.17). Moreover, inside the circle C,,, we have, using (3.3),
(3.13), Claim 1 and (3.26),

(3.27) log [ (2)—1| = log [H(2)| +1og |Q(2)|
=c¢;T(rp¥—1
+cg0, logr,
+0,, log 6¢,,
= ¢4, 0, (log |a,|)?+0, log 60, <0

if K(¢) is large enough in (3.2). But this implies that y(z) has no zeros inside C,,,,
contradicting the conclusion that followed (3.25).
On the other hand, suppose that y, =4(k+1), and that

O — Tt = ym'/z'
But then, since

¥'(2) = Q' (2)H(2)+Q(2)H'(2)
it follows from Lemmas 1 and 2, and (3.3), (3.13), and Claim 1 that
¥'(2) = Q' () H(2)(1+0(D))
on C,, and hence that o,, —1, =1. This establishes Claim 2.

Claim 3. We have
T(r,f) =O(logr)

and in particular, for large m,
(3.28) T )+ T (rms ¥) = cra(logla,)®
This follows immediately from (3.8) and Claim 2.

Claim 4. For all large m, we have u,<2(k+1).
For, suppose that p,=2(k+1) for some large m. Then on the circle

Cm = {Z: lz—aml = 3Qm}
we have, defining P, Q, h and H as in (3.14) to (3.17) and setting S=y,,,

S! |PO@)| _ s

(329) (S_i)!21(3gm)i §l P(Z) | = (S—i)!(3Qm)i
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for i=1, ..., S, which of course is just (3.22) with m’ replaced by m. Also, from

Claim 1, (3.28) and Lemma 2 we have, for i=1, ..., k,

I h9(z)
h(z)

on C,. But then, on C,, with d denoting the maximum of the degrees of

% (2), ..., % (2),

_ PO () (log |a )™
b = PR [a(a) 5 +0 |zttt LD )]

= o4 (2)h(2) PP (2)(1 +0(1))

using (3.29) and (3.30) and noting that (S—k)=S/2. Hence (z) has S—k zeros
in B(a,, 30,) and so, by Rouché’s theorem, (z)—1 has at least S—k zeros
in D,, since by Theorem C y/(z) is large outside an g-set. But then, using Claim 1
and (3.28), we have, in B(a,, 30,,),

log [y/(2)—1| = log |H(2)| +10g |Q ()|

= cy(log lan|)*+cq0, logr,,

(3.30)

= 135" (log |2, )™

+0, log6g, <0
if K(¢) is large enough in (3.2), and we have a contradiction.
Claim 5. For large m, if ¢,>0, then pu,=os,+k.
We note first that if pu,=0 then by Theorem C and Lemma 3, (z) is large

in the disc B(a,, €|a,|/2) and hence ¢,,=0. Thus, if ¢,,>0, we set
¢ =min {u,, k} =1

and we write

(c)
(3.31) Vo) = PR [E oD 1+

where P, h, Q and H are defined as in (3.14) to (3.17) and B(z), L(z) are as follows.
We have

(k—c)
L@ = (% g7 - it bl
if ¢c<k, and
L(z) = o4(2)

if c=k. Thus, if we regard ¥ (z)/f(z) as a linear combination of terms P®(z)/P(z)
with i=c, then L(z) is the coefficient of P (z)/P(z). Accordingly, B(z) is a linear
combination of terms P®(z)/P(z) with i<c, and with coefficients which are sums
of terms v;;(z)h"(z)/h(z) where each y;;(z) is a constant multiple of one of
0o(2), ..., 0 (2).
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On the circle C,,, by Lemmas 1 and 3, and Claim 4,
(3.32) |B(2)| = O(|z|* e7°)

where d as before is the maximum of the degrees of oy(2), ..., (z). We may also
apply the second part of Lemma 3 to h(z) (since for all r, n(r, 1/h) and n(r, 1/f)
differ by at most 2k+1) to conclude that, on the circle C,,,

(3.33) [L(2)| = ¢y5 2|7~

Combining (3.2), (3.29), (3.30), (3.31), (3.32) and (3.33) we see that
(3.39) Y(2) = h(2) PO (2) L(z)(1+0(1))
on the circle C,, and hence that y(z) has v,, zeros in B(a,,, 3¢,), where
(3.35) v, = max {0, u,, —k},

since h(z) and L(z) do not vanish on or inside C,,.
Thus, if 6,>0, we must have p,=k. For otherwise P©(2) is a non-zero
constant and v,,=0; also on the circle {z: |z—a,|=¢|a,|/4} we have

log |h(2)| = log | f(2)| —k log |a,|—O(1)

and so, by Theorem C and the minimum principle A(z) is large in |z—a,|=30,.
From (3.34), Y (z) must be large on C,,, and again by the minimum principle, we
conclude that ¢,=0, which is a contradiction.

Thus 6,,>0 implies that u,=k+1. Now, we may apply the above reasoning
((3-31) to (3.35)) to ¥’(2) to conclude that

(3.36) 7,, = max {u,,—(k+1), 0}.
Also,
(3.37) Ty = Op—1

since on C,,,

N — Q'(2)  H'(2
V@ =16 (£ + 28]
= H(Z)Q' (2)(1+0(1))
using (3.2), Claim 1, (3.28) and Lemmas 1 and 2. Combining (3.36) and (3.37) we
see that if ¢,>1 then

Ty = Um—(k+1) and o, = p,—k.

Claim 5 is now proved.
We may now conclude the proof of Theorem 1 by obtaining a contradiction.
From Claims 4 and 5 we have, for large m, if ¢,,=0,
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and thus
(3.38) N (r, -‘/7-1_—1] - % N [r, %)

for large r. But for large m, using Lemma 3 and Theorem C, and recalling that
the annulus 4,, as defined by (3.5) meets none of the discs D, we have

N (e }] < 1y £)+O()

=m@,, V) +m {r,,,, %]-I—O(l)

<=m(ry,, Yy —1)+0(ogr,)

< N(rm, 7—1:1_] +0(logr,)

15 1
<168 (e 7)
using (3.38), which is impossible.

4. Proof of Theorem 2

We set
@ 1@ = M, (1-Z)

where a,,,>a, and the a, lie in the set {g, g% ¢°, ...} for some ¢=>81. We will
make the actual choice of the g, later.

Consider a large zero, z, say, of f’(z), which must be real and positive ([9],
p. 266). Suppose that ay is the nearest zero of f(z) to z,, choosing the larger if z, is
equidistant from two zeros of f(z). Now

f(z0) o 1
4.2 = — =0.
42 @) ~ 21 m—a
But
1 1 - 1 <
¢ D e e v P
say. Also, for n<N, a,<z, and so

(4.4) sy 1 N-

n=1 zy—a, Zy




152 J. K. LANGLEY

Combining (4.2), (4.3) and (4.4) we obtain

1 N-1 ¢
- 2
|Zo—ay] 2y 2y
and so
1!
4.5) |zo—ay| < ¢z, [”l (Zo, TJ] s

say. Thus, given a small, positive ¢, all large enough zeros of f’(z) lie in the union
of the discs B(a,, €a,/2), and, observing that T(r,f)=0(logr)?, we see from
Theorem C that all large 1-points of f’(z) lie in the union of the discs B(a,, &a,).
Thus, for large n, the annuli 4,={z: ¢"*a,=|z|=q"a,} are free of zeros and
1-points of f’(z); also, by Lemma 4 there must exist level curves J, each closing
in 4, on which |f(z)|=M(q"*a,.f). But then (see [9], p. 122) f(z) and f’(z) have
the same number of zeros in the region between J, and J,.,, and so, for large n,
f’(2) has exactly one zero, x, say, and one 1-point, z, say, in the disc B(a,, £a,).
Now, f(a,)=f(a,+1)=0, and since

d (@) <o 1
El f(x) ) == 2ia (x—ay)? =0

on (a,, a,,,) we see that f(x) has exactly one maximum or minimum on each interval
(a,, ay+1). Suppose now that » is large and that x, is a maximum point for f(x)
on (a,-y,a,4,). If we have x,>a, then f’(a,)>0 and f’((1—&)a,)>10 (using
Theorem C) and so (1 —¢)a,<z,<x,. Similarly, if x,<a, then f’((1—e)a,)>10
and (1-—g&)a,<z,<Xx,. On the other hand, if x, is a minimum point for f(x) on
(@y—1, @y+1) then x,<z,<(l14¢€)a,. Since |f(x,)|>=a)’, say, we obtain, by integra-
tion,

(4.6) |f(z)| = z;

in either case.
Thus we have shown that for all large 1-points z, of f’(z), z,>0 and |f(z,)|
is large. But then f’(z,)/f(z,) is small and

1
Zy—ay

@7 1 _ o) +

|Zn_an’ - Zp

Zvk;én

For k<n,
lz,—a ] > (1-q7"?)z,
while (compare 4.3)

say. Thus (4.5) yields

IZn_anl - Zp " f —an n,f
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for some ¢4, ¢;, and setting cg=max {c4, c;} we need only choose the points a,
from the set {q, 4% ¢% ...} in such a way as to ensure that cgn(r, 1/f)=h(r) for
all r. The set {b,,} is then the set of large a, and z, points, arranged in order of mag-
nitude, and we have

bpi1—bp = by (h(by) ™
This proves Theorem 2.

Remark. The author wishes to thank the referee for some helpful comments,
and for pointing out a number of minor errors.
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