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ON THE QUASIREGULARITY OF A LIMIT
MAPPING

PETER LINDQVIST

1. Introduction

A well-known theorem of Weierstrass states that the limit function for a conver-
gent sequence of analytic functions is analytic. An analogue for quasiregular map-
pings was obtained in 1967 by Reshetnyak [3]:

1.1. Theorem. Suppose that the mappings f* are K -~quasiregular in a domain G
inR", v=1,2,3,.... Iflimf*=f uniformly in compact subsets of G and ifliminf K,
< oo, then the limit function fitself is K-quasiregular with the dilatation K=liminf K.

The crucial step in connection with this convergence phenomenon is, in a sense,
the weak convergence of the Jacobian determinants J( %), J(f%),J(f?), ..., i.e. the
validity of

1.2) lim [ I dm = fQ J(f)dm

whenever Q is a cube with 0 C < G. To establish (1.2) Reshetnyak used differential
forms. See also [4, II § 4].

A first step towards (1.2) is any bound of the kind expressed by Mikljukov's
inequality (3.2). This consequence of quasiregularity is usually proved via the funda-
mental fact that quasiregular mappings are free extremals for certain variational
integrals; cf. [3].

Since Theorem 1.1 in itself is not very deep, we are going to present a simple
proof, avoiding both the advanced theory of differential forms and the calculus of
variations. Qur proof variant is essentially based only on the following fundamental
property of the Jacobian determinant:

1.3. Lemma. If g=(g, ..., &,) belongsto C(G)nW;, ,,.(G), then
(1'4) fG J(gl.’ oo 8i-1s Z:gj’ gi+1s +o» gn) dm =0 (] =12, .., n)

whenever [€Cy (G), i.e.( is smooth and has compact support in G.
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Equality (1.4) follows from Stokes’s elementary theorem. Our method of proof
is based on the recursive use of

1.4) fo {J(g)dm = “‘fc gj"(gla voos 8=150s &j41s -5 8n) A,
Jj=L12,...,n, (€Cy(G).

2. Quasiregular mappings

Throughout this paper, let G denote a domain in n-dimensional space R", n=2.
A mapping f=(fi, --.,f,): G—~R" is called K-quasiregular in G if

1° feC(G), ie., fis continuous in G,

2° few,.(G), ie., the generalized partial derivatives df}/0x;, j, k=1, ..., n,
exist and are locally #n-summable in G, and

3° the inequality
@1 DfI" = KI(f)

holds a.e. in G with some constant K< oo, Here
_ (()f} )2}1/2
o1 ={z (&

I =J(fis e f2)

is a norm and

is Jacobi’s determinant.

For any mapping g: G—R" belonging to Sobolev’s space W},.(G) the inequal-
ity
(2.2) n"?J(g) = |Dgl*

is valid a.e. in G. (The smallest number K=n"* for which (2.1) holds is here called
the dilatation of f.)

For more details we refer the reader to [1], [2], and [4]. However, no theory
concerning quasiregular mappings is needed in this paper.

3. Mikljukov’s inequality

A suitable uniform bound for the integrals f |Df*"dm, v=1,2, ..., is easily
derived via Mikljukov’s inequality.

3.1. Lemma (Mikljukov). Suppose that f is K-quasiregular in G. Then
(3.2) fG P"J(f)dm = n"k"* [ , Vel dm

for each non-negative @€Cy (G).



On the quasiregularity of a limit mapping o » 157

Proof. The choice {=¢" in (1.4") yields
(3.3) [, oI (Ndm=—n[_ 0" £,0(0, fi, ... ) dm,
where f=(f,, ..., f,)- By Hadamard’s inequality
IT(®, fos s Sl = [Vl DfI"?

a.e.in G. Thus Holder’s inequality and (3.3) yield

[, on (D dm=n(f 1A Vol dm)™" (f_ o"IDf1" dm)"=2",
Since | fi|"=|f|" and ' '

[, oDl dm =K [ _¢"J(f)dm

by (2.1), we arrive at (3.2) after some obvious simplifications.

4. Weak convergence for the Jacobian determinants

Suppose now that f*=(f,...,f,) is K,-quasiregular in G, v=1,2, ...; and
liminf K,<<. Suppose that the numbers K, converge to their limes inferior.
Furthermore, assume limf*=f locally uniformly in G. Hence f is continuous
in G. We claim that f actually belongs to Sobolev’s space W,}..(G). For every cube
Q, 0c G, there s a corresponding constant My< < such that

4.1 fQ IDf*I"dm <M, (v=1,2,..).

This bound follows from (2.1) combined with Mikljukov’s inequality (3.2), where
we choose ¢€Cy(G) so that ¢|Q=1 and O=¢=1. By standard reasoning we
obtain the local result f€W,'(Q). Since Q was arbitrary, we have f¢ W, 10 (G).
Thus J( 1) is defined a.e. in G. Note that J( f) is locally integrable over G.:

Since we aim at obtaining Theorem 1.1 as directly as possible, we are satisfied
with a slightly weaker version of (1.2); cf. Remark 4.5.

4.2. Lemma. If ¢cCy (G), then
4.3) lim fG e"J(f") dm = fG " J(f)dm.
Proof. We claim that
im [ @I, s 85 e 8 A
=fG OISy oos fi=11 &j» -oos &) A

for any ¢€Cy(G) and for any continuous functions g;, ...,g, in W,.(G); j=

@4
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=2,3,...,n+1. Note that (4.4) immediately implies
vl-l.TofG QI s 715 8js oo ) A
=fG G5 T(frs coos f1m1s G5 -oes &) A
with the same ¢ and g;, ..., g,; cf. (2.1),(2.2), and (3.2).

“4.4)

Let us prove (4.4) by induction with respect to j. For j=2 we have by (1.4")
[, 07U 8o g dm = = [ f7T(9, g3, -..r g) dm

for any @€Cy (G). The limit of the right-hand side is obvious and so (1.4") used again
yields (4.4) for any ¢€Cy’ (G) when j=2. Observe that Cy’(G) is dense in Cy(G).

Suppose now that (4.4), and, consequently, also (4.4") hold for some index j
in the range 2, 3, ..., n. If @€Cy (G), (1.4") implies that

fG ngJ(.flv’ ey f:iv, gj+1a ceey gn)dm
= _ij (pj—lf}v‘,(‘ﬁv’ "‘9f;'v—-1’ Py Zj+1s ++s gn) dm’

and so (4.4") and (1.4) yield (4.4) with j—1 replaced by j. Observe again that Cg (G)
is dense in Cy(G).
At the final step j=n+1 we obtain (4.3). This concludes our proof.

4.5. Remark. 1° Minor technical modifications in the previous proofyield (4.3)
with ¢" replaced by any ¢ in C,(G), and then some standard arguments give (1.2).
However, such “improvements” are not essential for Theorem 1.1.

2° Actually, the quasiregularity of the mappings f” was used only to obtain the
uniform bound (4.1). So the following general result is easily available:
Let f/*: G—=R", v=1,2, ..., be any sequence in C(G)NW,},.(G) such that the

uniform bound (4.1) holds for all cubes Q < G. If lim f*=f£ locally uniformly in G,
then (1.2) is valid. See [6, p. 94.]

5. The limit theorem

For the sake of completeness we reproduce the well-known proof for Theorem 1.1.
We have to show that (2.1) holds a.e. in G. Fix therefore any cube 9, 0 CG. Let ¢
be any function in Cg’(G) so that ¢|Q=1, 0=¢=1. By convexity

fQ \Df|"dm = fQ |Df|"dm+n zjf:lfa IDfI"=2Vf; -V (f} —f) dm
and via a suitable weakly convergent subsequence we get

.1 fQ |Df|"dm = 1£_n3° fQ |Df|" dm.
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Here the uniform bound (4.1) plays a central réle. Now

(5.2) lim fQ |Df*|"dm = lim jG ©"|DfI"dm

Voo

= lim K, [ ¢"J(f)dm = lim K, [ ¢"J(f) dm,

V—>oco

according to (4.3). Combining (5.1) and (5.2) we arrive at

(5.3) fQ \DfI"dm = lim K, fG " J(f) dm.

Since ¢ was arbitrary and the integral is absolutely continuous, we have
(5.3) [, \Df1dm = lim K, [ J()dm

for any cube Q, < —G. This means that (2.1) holds at least with K=liminf K, .
Thus f'is K-quasiregular in G.
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