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ON THE QUASIREGULARITY OF A LIMIT
MAPPING

PETER LINDQYIST

1. Introduction

A well-known theorem of Weierstrass states that the limit function for a conver-
gent sequence of analytic functions is analytic. An analogue for quasiregular map-
pings was obtained in 1967 by Reshetnyak [3]:

1.1. Theorem. Suppose that themappings fn are Kn-quasiregular in a domain G

inR", v:1,2,3, .... Iflimf":7 uniformlyincompact subsets of G and flim inf K,
<. *, then the linit function f itself is K-quasiregular with the dilatation K< lim inf K, .

The crucial step in connection with this convergence phenomenon is, in a sense,

the weak convergence of the Jacobian determinants "I(/r), J(f'),1(J'r,..., i.e. the
validity of

}*R /, t(f") ctm : { n 
r(f)clm(1.2)

whenever Q is a cube with QccG. To establish (1.2) Reshetnyak used differential
forms. See also [4, II § 4].

A first step towards (1.2) is any bound of the kind expressed by Mikljukov's
inequality (3.2). This consequence of quasiregularity is usually proved via the funda-
mental fact that quasiregular mappings are free extremals for certain variational
integrals; cf. [3].

Since Theorem 1.1 in itself is not very deep, we are going to present a simple
proof, avoiding both the advanced theory of differential forms and the calculus of
variations. Our proof variant is essentirlly based only on the following fundamental
property of the Jacobian determinant:

1.3. Lemma. If g:(gr,..., g,) belongs to C(G)aWl,ro"(G), thm

(1.4) J(gt, ..., gi-r, (gi, gi*1: . .., gr) dm - 0 (/ - lr2, ..., fl)[.

wheneuer KC; (G), i.e.( is smooth and has compact support in G.
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Equality (1.4) follows from Stokes's elementary theorem. Our method of proof
is based on the recursive use of

(1.4') !oe4dd* :-{o giJ(gr,...,81-r,(,si+r,...,gn)dm,

j:1,2, ..., n, ((Cf (G).

2. Quasiregular mappings

Throughout this paper, let G denote a domain in n-dimensional space Rn, n=2.
A mapping .f:(fr, ...,f,): G*R' is called K-quasiregular in G if

lo f<C(G), i.e.,/is continuous in G,

T .fe\l,*(G), i.e., the generalized partial derivatives 0f1l0xy, j,k:1,...,n,
exist and are locally n-summable in G, and

30 the inequality
(2.r) lDfl = KJA
holds a.e. in G with some @nstant K< -. Here

tDn:{r(p)"!''
is a norm and

lA: J(fr,...,f)
is Jacobi's determinant.

For any mapping g: G*Rn belonging to Sobolev's spae llltro"(G) the inequal-
itv

Q.2) "tzJ(g) =lDsl
is valid a.e. in G. (The smallest number K>ftz for which (2.1) holds is here called

the dilatation of f.)
For more details we refer the reader to [1], [2], and [4]. However, no theory

concerning quasiregular mappings is needed in this paper.

3. Mikljukov's inequality

A suitable uniform bound for the integrals I l»f"fa*,v:1,2,..., is easily

derived via Mikljukov's inequality.

3.1. Lemma (Mikljukov). Suppose that f is K-quasiregular in G. Then

(3.2) { o o'Ja dm < nn K"-, I r lfl,lv,oY a*

for each non-negatiue q<C; (C).
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Proof. I'he choice ( - g' in ( 1.4') yields

(3.3) {oq"J(f)dm . - "lo En-rfrJ(q, fr, ...,fn)dm,

where f- (fr, ... , fn). By Hadamardos inequality

ll(E,fr, ..., f,)l = lYElDff-'
a.e. in G. Thus Hölder's inequality and (3.3) yield

I o E'J(f) dm = n (l 
"lfry 

lvEl" d*)''' U o E"lDfl' d*)(n7t)tn

Since \frf=lfl and

[, E'lDfl' dm = K I o E' J(f) dm

by (2.1), we arrive at (3 .2) after some obvious simplifications.

4. Weak convergence for the Jacobian'determilants

Suppose now that l":(fi,...,f;) is K,-quasiregular in Gi, v:1,2,..., and
liminfK,<-. Suppose that the numbers ,K, converge to their limes.inferiör.
Furthermore, assume limf':f locally uniformly in G. Hence / is continirous
in G. We claim that/ actually belongs to Sobolev's spa* W,t,o"(G). For every'cube

Q, Ac cG, there is a corresponding constant Mo.< - suc.lr that

I olDf"l" dm = Ma (v : 1,2,...)-

This bound follows from (2.1) combined with Mikljukov's inequality (3.2), where
we choose ECC;(G) so that EIQ:I and 0=9=1. By standard reasoning we
obtain the local resdt .f(kllt (0). Since Q was arbitrary, we have f!l4:b"G):
Thus,f (/) is defined a.e. in G. Note that J(f) is locally integrable over G. r

Since we aim at obtaining Theorem l.l as directly as possible, we are satisfied
with a slightly weaker version of (1.2); cf. Remark 4.5.

4.2. Lemma.If EeCf (G), then

(4.3) Jlg /" E, J(f') d* : f o e" J(f) dm.

tltI Et-rJ(fi, ...,f|_r, s1, ..., s,) itm
(4.4) '*- -- u -

: f o vt-lJ(fr, ..., fi-t, gi, :..,g,)dm

for any q€Co(G) and for any continuous functions gj,...,g, in lA,',ro"(G); j-'

(4.1)
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:2,3, ...,fl* 1. Note that (4.4) immediately implies

tig /" Er-, fi J(fl, ..., fin-r, si, ..., g,) dm
(4'4) n': 

f o Er-rfiJ(fr, ...,fi-t, gi, ..., g,) dm

with the same g and gr, ..., g,i cf . (2.1), (2.2), and (3.2).

Let us prove $.$by induction with respect to7'. For j:2 wehaveby (1.4')

{ o vJ(fl , 92, ..., g,) ilm : - [ ofi t(q, gr, ..., go) ilm

for any E<C; (G). The limit of the right-hand side is obvious and so (1.4') used again
yields (4.4) for any q<C;(G) when i-2. Observe that Cfr(G) is dense in Co(G).

Suppose now that (4.4), and, consequently, also (4.4') hold for some index j
in the range 2, 3, ... , n. lf E€Cf, (G), (1.4') implies that

{, vt J(fi, ..., fiu, gi+r, ..., s)dm

= -j I o EJ-'f! J(fi, "',fj"-r,9, g;+t, "',8u) ilm,

and so (4.4') and (1.4') yield (4.4) with 7- I replacedby j. Observe again that q(G)
is dense in Co(G).

At the final step j=n+ I we obtain (a3). This concludes our proof.

4.5. Remark. lo Minor technical modifications in the previous proofyield (4.3)

with gn replaced by any tp in Cr(G), and then some standard arguments give (1.2).

However, such "improvements" are not essential for Theorem 1.1.

2" Actually, the quasiregularity of the mappings /' was used only to obtain the

uniform bound (a.1). So the following general result is easily available:
Let J'": G*N, y:1,2,..., be any sequence in C(G)O 141,""(G) such that the

uniform bound (4.1) holds for all cubes Qc cG. lf limf" :7 locally uniformly in G,

then (1.2) is valid. See [6, p.94.1

5. The Iimit theorem

For the sake of completeness we reproduce the well-known proof for Theorem l.l.
We have to show that (2.1) holds a.e. in G. Fix therefore any cube Q, Qc cG . Let q
be any function in Cfr(G) so that qlQ:|, 0= E= 1. By convexity

I olofl' a* =- f olDfl'dm*n Zj:,|nlDff-'vfi.v (fi -f)dnt
and via a suitable weakly convergent subsequence we get

(5.1) IolDfl dm = r*IolDf"l, dm.



Here the uniform bound (4.1) plays a central röle. Now

(s.2) ,"*[rlDf"l dm = *I, E,lDf"l dm

= Iim x" f o 
co" J(f")dm = r**" I o E, JA dm,

according to (4.3). Combining (5.1) and (5.2) we arive at

(5.3) [opff a*= Ull K,lov"Jfldm.

Since 9 was arbitrary and the integral is absolutely continuous, we have

(5.3) IoDff a* = Iim r" {ot«flam

for any anbe Q, QccG. This means that Q.l) holds at least with K:liminfK,.
Thus/is K-quasiregular in G.
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