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ANGLES AND TT{E INNER RADIUS OF UNTVALENCY

MATTI LEHITNEN

1. Introduction

},et Abe a quasidisc. Denote by g, the density of the Poincard metric in l, so

normalized that pr(x* iy):UQi for the upper half-plane ly'. The inner radius of
univalency or(A) of A, introduced by Lehto [6], is the supremum of numbers a such

that every locally injective meromorphic function / defined in l, which satisfies

llsrlle=a, is univalent. Here §, stands for the Schwarzian derivative of /and the

norm llsrlle is the supremum of the numbers lsrk)llgeQ)z far zin A.lt follows from

the definition and the transformation properties of the Schwarzian that tt-e inner

radius of univalenry is invariant under Möbius transformations. It can be shown

that o1(A) equals the infimum of llsrllz for those conformal maps / of ,4 for which

f (A) is not a quasidisc.

It is known that O<or(A)=2 for every quasidisc ,,4 and o1(A)=) if and only
ifl is a disc or a half-plane. The only other cases in which the inner radii of univalency

are known exactly are those of an angular domain A:An:lzllargzl<knl2l,
0<k=2; for it

or(A*):2k(1 -ll -kl),
[5,2J, and the one in which I is a domain bounded by a branch of a hyperbola [4].
Upper and lower estimates, based on (l), have been obtainedfor or(A) when I is one

of the domains bounded by an ellipse f6,3,41. In this paper, (l) together with
elementary geometrical considerations is further utilized in order to determine

o1(l) when ,4 is a domain bounded by a triangle or a regular r2-gon, n >3. An upper

estimate of the inner radius of univalency for general domains bounded by a curve

possessing an angle is given in Section 4.

For any plane domain z4 we denote by A* the complementary domain \1.
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2. A majorlzation principle

We estimate ot(A)by comparing Ato angflar domains in the interior or exterior
of A.lhe general procedure is described by the following two lemmas.

Lemma l. Let A be a quasidisc and let AcBo where Bo is a domain Möbius
equiualent to Ay for some k. If 0< k= I and a aertex a of By is on 0A, then o r(A)=2k2.
If l<k<.2 and there exist points 21, Z2itt A and a Möbius transformation g satisJying
g (B ) : A* and g (z r) : sik* I 2, g (z r) : e- iktl 2, then o, (A) = 4k - 2k2.

Proof.ln the case 0=k- 1 we let g, g(u)=O, be a Möbius transformation
carrying Bo onto lo. Set f(z):log S(z). Then, by the quasicircle criterion of Ahlfors,

f (A)is no quasidisc,and o,(A)= llSylL. But, by the Schwarz lemma, one)=gr*(z)
for z€A, whence llS/lh=ilS/llu*:21r'. In the second case, there exists a ccnformal

f: Ar*Q such that llsllla*:4ft,-Vrz and f (eik"t21:71e-ik"tz1- * t21. Then

fk@)\ is not a Jordan domain, and a reasoning similar to the one above shows
that or(A)=ll§/lle.

Lemma 2. Let A be a quasidisc. If each two-element subset of A is contained itt the

closureof aquasidisc BcA suchthat o1(B)>m, then o1(A)>m.

Proof.Let an e>0 be given. By definition, a locally injective f: A*C extsts
such that llS Ålt=or(A)*e and/is not univalent. Then f (z):f (w) for some z *w.
There is a quasidisc B in A, such that {z,w}cB and or(,B)>m. Since either/is
not univalent in B or f (B) is not a quasidisc, ll,Srlla=or(B). The monotony of the
Poincard metric again implies that llSrlle=ll§rllr. Hence o1(A)>7n-6, and the
assertion follows.

3. Domains bounded by a triangle or a regular r-gon

kmmas 1 and 2 combined with elementary geometrical considerations yield
almost immediately

Theorem l. If T is the finite domain bounded by a triangle with smallest angle
kn, then or(T):2112 and or(T*):4k-2k2.

Proof.That or(T)=2kz is an immediate consequence of Lemma I. In the oppo-
site direction, one observes that any two points 21, z2in T are on the boundary of
a triangle 7'similar to Tand lying inside 7in such a way that one of the points zL, zz

is a vertox of T'. It is easy to convince oneselfthat a vertex and a point on the peri-
meter of a triangle can be joined in the triangle by two circular arcs (or an arc and
a part of a side of the triangle) meeting at an angle at least as large as the smallest
angle in the triangle. The desired conclusion follows from Lemma 2.
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To prove the equality for or(7*), we first observe that each pair of points in 7*
is in one of the three angular domains determined by the exteriors of the angles of 07|.

Hence o{T*)>4(2-k)-2(2-k)2:4k-2k2. On the other hand, for each k'>k
one can draw two symmetric circular arcs in 7 meeting at the angle k'ru and tangent
to 0T at two points equidistant from the common points of the arcs. By Lemma 1,

then, o1(T*)=4k'-2k'2, and the assertion follows.
By a similar argument one proves also

Theorem 2. Let Pobe thefinite domainbowtdedby a regular n-gon. Then or(P):
2((n- 2) I n), and o,(P*) : 2- 81 nz.

Proof. Upper estimates for both or(P,) and otGI) are obtained exactly as in
the proofofTheorem l.

For a lower estimate of or(P,\, consider two points z1 and z2in Po. Let the line
through these points intersect lPoat wl and wr. Observe that an appropriate homo-
thety or translation applied to the circle inscribed in P, shows that for anytwovertices
of åP, there exist two circular arcs in P, (or an arc and a side of P,) joining the vertices
and meeting each other in the angle (l-2ln)n. Assume first that wl is a vertex and
that w, lies on a side whose endpoints are u, and ur. Homotheties with @nter l4r1

transform arcs joining wrto a, and u2 into arcs joining wrto w, in P, preserving the
angles at w1. Finally, let also w, be an interior point of a side, with endpoints u, and
ao. We can now join w, to ',-, and '"-n by pairs of arcs meeting at the angle (l-2ln)n.
The arcs can be shown to be pairwise tangent to each other at wr, and thus an angle-
preserving homothety with center wz car, be performed in order to obtain arcs joining
wrtowrin P,. By Lemma 2, or(P,)>2(l-2ln)2.

For Pj, one observes that any two points in the domain are either in a half-plane
contained in the domain or (as can be seen by applying two consequtive homotheties
to the figure) on the boundary of a regular n-gon which contains P,. We may thus
consider only pairs of points wt, wz on |Pn. Assume that w, is a vertex and w2 is on
a side with endpoints u, and a'r. Circular arcs through w22 u1t w, and w21 u21 w11

respectively, meet the circle circumscribed around P, at two points each and are con-
tained in Pf . The larger angle between them is at most (l+2ln)n, as can be seen by
comparing it to the angle between the circumscribed circle and the sides of 0P,.lf w,
is on a side with endpoints a, and ao, an arc joining wr, a2, wlin Pj is found between

the arcs joining w2t u2; u, and w21 u2t an. Similarly, an arc joining wr, u1 and w1 is
found; these arcs meet again with larger angle at most (1+2/n)n. lbe estimate fol-
lows from Lemma 2.

Remark. The results in Theorems I and2, in the case of a finite domain, have
been obtained also by D. Calvis [].
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4. An upper estimate for domains with a boundary angle

The majorization principle incorporated in Lemma I immediately yields an upper
estimate for or(A) in the case of an angle less than n in 0A. For our purposes the fol-
Iowing definition of a boundary angle is appropriate: we say that ål possesses an
angle kn at zoif for every e €(0, min {k, 2-k}\ there exists a Möbius transformation
g" such that g"(z)= - and

A*-, n D* c g"(A) n D* c All 
" 
r\ D*,

where D is the unit disc.

Theorem 3.131Assume Ahas aboundary angle kn,0=k<1, at abounCary point
zs. Thm o1(A)=?*2.

Proof. Assume 0<e< l-k. Without loss of generality, assume zo:0, AaDc
Ao*"aD. There is a Möbius transformation g such that g(A)cl1*r, g(0):0. By
Lemma l, o 1(g (A)): o, (A)= 211l" 1 r12.

For a corresponding result concerning boundary angles exceeding z, it is useful
to recall a few facts concerning the universal Teichmiiller space 7 (see e.g. [5]). We let
7 be the space whose points are equivalence classes of complex dilatations p defined
in C, zero in H*, the equivalence of p and v being defined by fulR=f"lR, wheref, is

a quasiconformal mapping of the plane with complex dilatation p, normalized at three
points on the real axis. The distance of p and v is the minimum of numbers
(ll2)logKr*o.r,-1. Thespace f(1) of ,S1, where/isconformalin I/* andmaps //*
ontoaquasidisc,endowedwiththenorm ll§rllr*, ishomeomorphicto T; the homeo-
morphism @ is the one that attaches §y* to the equivalence class of p. If/is a conformal
mrp of the lower half-plane onto A, the inner radius of univalency of ,4 is the dis-
tance of 51 from the boundary of f(l).

Lemma 3. Let A be a quasidisc. If c<or(A) and f is a conformal map of A
such lhat llSylla=c, then f (A) is a K-quasidisc, where K is bounded by a constant
depending on A and c only.

Proof,l*t gz H* * A be conformal. By the transformation rules of the Schwar-
zian, ll§rlla:ll^Sr"r-Sslla*. The preimage under @ of the compact c-neighborhood
of S, is compact in 7. It follows that fog has a K-quasiconformal extension to 1{
with Kbounded by a constant depending on I and c.Hencef (A) is a K-quasidisc.

To prove the upper estimate for or(A) for domains having an angle larger than z
in the boundary, we still need the following observation. For each k€(1,z),let Eobe
the domain Aralzll- z€Åol and fr the conformal map of A* onto.El taking 0 to l,
infinity to 0 and 

"tiktlz 
to infinity l2J. Tben fr maps the arc of radius I and center 0

onto the imaginary axis.

Theorem 4. IEt Å be a quasidisc possessing at zo€AA the angle kn, l<k<2.
Then or(A)=4k-2k2.
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Proof. Assume that o{A)>4k-2k2. Let (k,) be a decreasing sequence tending

to k. By a suitable Möbius transformation we may arrange A to lie in Ar^in such

a way that there are points in,4 closer to the points 
"*tkntlg 

than, say, 2(k"-k).
Then the closure of f,(A) contains points 0, iyr,-iy, and x, 0<x= l, and y, tends

to infinity together with z. Clearly, f,(A) cannot be a K-quasidisc with a fixed K for
all n. On the other hand, ll§rlle= llSy"ll,a":4&, -2k!=c-or(A) for n latge enough.

This is a contradiction with Lemma 3.

Of course, estimates of o r(A) based on local properties of ål are in general not
very sharp. Let, for example, Abethe exterior of a rectangle with sides 1 and c>1.
By Theorem 4, or(A)=312. Onthe other hand, one can inscribe in 0Atwo symmetric

arcs which meet at the angle kn : 2n - 2 arc tan (l I a). By Lemma l, o, (A)= 4k - 2k',
and or(A) tends to 0 as a grows to infinity.
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