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DENSEI{ESS, MAXIMALITY, AI{D DECIDABILITY
OF GRAMMATICAL FAMILIES')

H. A. MAURER, A. SALOMAA, E. WEilZL and D. IVOOD

We demonstrate that there is no sub-regular maximally dense interval of gram-

matical families by way of two characterizations of sub-regular dense intervals. More-
over we prove that it is decidable whether or not a given sub-regular interval is dense.

These results are proved using the twin notions of language forms and linguistical
families that are ofinterest in their own right.

1. Introduction and overview

The study of grammatical similarity via the tool of grammar forms now forms

a substantial chapter in the development of formal language theory. Not only has

grammar form theory contributed to our understanding of similarity, but it has

also raised many challenging and interesting problems. It is the purpose of this paper

to present the solution to one of these problems. The problem we tackle is found when

trying to refine some basic hierarchy results for language families. To explore this

further we need to first introduce grammar forms and their related language families.
A (context-free) grammar form is simply a context-free gralnmar G:(Y, r, P, S),
where, as usual, Zis a finite alphabet, EeY is a terminal alphabet and Z-.8 is the

nonterminal alphabet, P=(V-»)Y.V* is a finite set of productions, where a pro-

duction (A, a) is usually written as A*a, and § n Y-» is a sentence symbol. We

use I(G) to denote the language generated by G, as usual.

Given two grammars G':(V', Z', P', S') and G:(V, », P, S) we say G' is an

interpretation of G, denoted by G'=G if there is a (strict alphabetiQ morphism

h: Y'-Y such that h(V'-»')gY-», h(»')=», h(P')g-P, å(§'):5, where

h(P'):{h(A)*61"1, A*a is in P'}. A morphism is strict-alphabetic if it maps

letters to letters; all morphisms considered in this paper are strict alphabetic.

Associated with each grammar G under interpretation is a family of
languages called the grammatical fa^ily of G. It is denoted by L(G) and is defined as
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L(G): {L(G): G'=G}. When a grammar is interpreted in this way it is often called

a grammar form. Since the relation < is reflexiveandtransitive L(G')EZ(G) when-
ever G'=G. Thus it is natural to consider the partially-ordered set of all grammat-
ical families ordered with respect to containment. Such investigations are traditional
in formal language theory, leading to numerous hierarchy results.

For i>1, let Frbe S*at, l=j=i. Then .L(fi) is finite as is Z(Fi), for all
Fi=4. Moreover L(F)=L(F.*r). It is not difficult to showthat

L(Fr) c L(F) c L(Fr) c..,c L@Eq.). . _

In a similar manner, based on deeper results in the theory it is possible to de-

monstrate infinite hierarchies of regular families, linear families, and context-free
families. Showing the existence of such hierarchies, which are paths in the poset of
grammatical families, is only a first step in obtaining a better understanding of the

structure of this poset. It should be noted that the coarser interpretation relation, the
first one to be introduced and studied by [CG] leads to a much simpler poset structure
as the recent papers [GGSI] and [GGS2] demonstrate. In our setting a reasonablc
question is: whenever L(Gr)c L(G2) for two grammars G, and G, does there exist

G, with L(Gr)c L(Gr)cL(Gr)? t hat such is not always the case is seen by considering
the following pair of grammars:

G;S*ab G2:§*ablcde.

Clearly L(Gr)c L(Gr) by the obvious length argument. That there is no G, properly
in between is demonstrated as follows.

First observe that for finite forms G and H with § as their only nonterminal
L(G)cL(H) if and only if G=H and HfiG, where $ means'is not an interpre-
tation of', that is G<H. Clearly G=Il implies I(G)e L@). However if Z(G)g
L(H) then I(G) is in L(H) and hence there is a grammar F<I/ with L(F\=
L(G). But G and H have the same simple form therefore G< F and, hence, G= H.
Finally proper inclusion implies H +G by a similar argument.

Other examples of this kind are easily obtained, however what happens when
there is no difierence in the lengths of words generated by the two grammars? For
example let Gr: S*ab; Gr; S*aa then L(G)cL(Gr) and all words are of
length two. In [MSWI] this led to the notion of interpretations of directed graphs and
hence to directed graph families, see [S]. Basically each word specifies an edge, so aå

is an edge between nodes a and b. It was demonstrated in [MSWI] that there are
infinitely many grammatical families between Z(Gr) and L(Gr).Moreover for any
two families Gr and Gn satisfying L(G)=L(Gr)cL(Gi)e_L(Gr) there is a G,
properly in between G, and Gn, that is I(Gr)c Z,(Gr)c L(G). For this reason we say

that the interaal defined by L(Gr) and, L(Gr), denoted by (Gr,G2), is dmse. ln
[MSW3] a quite surprising result is proved, namely, the interval (G',G) is dense,

whenerer L(G'):L(REG) and L(G):L(CF). thus there are dense intervals oi
sub-regular grammatical families and also dense intervals of super-regplar grammati-
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cal families. One basic question about such intervals is: Are there maximal dense

intervals? That is are there dense intervals which cannot be extended either above or
below while retaining density. In this paper we partially solve this problem for regular

intervals by demonstrating that there are no maximal dense regular intervals whose

upper family is .tas6. Extending this result to all regular dense intervals is not
immediate, even if it holds, whereas for context-free dense intervals it probably does

not hold.
Apart from this partial solution to the maximality question we also demonstrate

that denseness is decidable for regular intervals. It has recently been shown that den-

seness is undecidable for context-free intervals [N].
These solutions are obtained by way of language forms and linguistical families,

concepts introduced in [MSW ] and further investigated in [MSWS]. For a regular
grammar form G is it well-known [OSW] that L(G) is characterized completely by
L(G), in the following sense. Consider a regular language L' I Z'* and let L: L(G)
with X the alphabet of Z. We write L'=L if there is a strict alphabetic morphism
h:2'* *D* such that h(L')=Z. In analogy with the introduction of the grammatical

family of a grammar form we define the regular linguistical family of the regulm
language form Lby: L,(L):{L': L'=L and L'is regular}. It is proved in [OSW]
that if L(G)7L(REG) then Z(G): L,(L(G)). This characterization implies that
we need only treat regular language forms and regular linguistical families, rather

than the more indirect (regular) grammar forms and regular grammatical families.

2. Some definitional and theoretical preliminaries

Given a language L and a language L' we say Z' is an interpretation of L if there

is a strict alphabetic morphism ft such that h(L')EI. We denote this by L'=L.
Wesay L'isaregularinterpretationof Lif L'<L ar,dL' isregular,thisisdenotedby
L'=,L. Note that Z itself need not be regular. Similarly we say L' is afinite interpre-
tation of Z, denoted by L'=rL, if L'=L and L'is finite. Moreover, we write
L'= L(L' =,L, L' <1L) if L'= L but I is not an interpretation of L' (and L' is regu-

lar, finite, respectively). lf L'=L and L= L' then we say that L and L' are equiv-
alent, denoted by L- L'.

The corresponding linguistical families are denoted by L(L), L,(L), and Lt(L),
respectively. These notions are tied together in the following theorem, see [MSW4].

Theorem 2.1. For all languages Lrand Lrthefollowing statements are equiualmt:

(1) L(L,):71211
(2) L,(Lr): L,(L)
(3) 4(Lr): Lr(L).

The above theorem has the obvious implication that to obtain distinct linguisti-
cal families we only need obtain distinct regular-linguistical families or, even, distinct
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finiteJinguistical families. These, it is assumed, will be easier to handle. Note that
L(Lr)Z L(Lr) if and only if LL< Lz if and only if L,(L)e L,(Lr) if and only if
Lr(L)q L1(L).

In analogy with the definition of dense interval for grammar forms we say that
(Lr,Lr\ denotes an interual if L1-L, and hence L(Lr)cL(Lr). The interval
(Lr, Lr) is dense if for all languages L, ar,d L4that satisfy Lr= Lr< Lu=Z, there is an
.L, with Ls< Lr<. Lr. Similarly we say that an interval (Lr, Lr) is regular if both I,
and Lrare regular and it is regular dense, r-dense for short, ifit is regular and for all
regular lan guages L" and L;that satisfy Lr= , Lr<, Lr€, Lz there is a regular language
Iu with Lr<,Lr<,Ln.

We have defined these notions in terms of interpretations rather than in terms of
linguistical families, but since Lr= Lrif and only it L(LL)=/,(Z,) this is only a mat-
ter of convenience.

Density and regular density are somewhat related as we will show below, but we
first need to define super-disjoint union.

I.et LL=»i and Lre Zf, be two languages. Then the super-disjoint union of L1

and Lr, denoted by LrU Lr, is their union if ZlnEr:Q and is undefined otherwise.
We call it super-disjoint union since it is not only a disjoint union (Zrn Lz:O), bat
also .ErnIr: g.lf LLand Lrare arbitrary language forms, then we can always rename
the alphabet of L1, say, to obtain disjoint alphabets, hence, in this case, we assume

that LtU Lz is always well-defined. We use the ordinary union sign for super-
disjoint unions, because of typographical reasons.

We now relate dense and regular dense intervals.

Theorem 2.2. Let (Lr, Lr) be a regular interual. I.f (Lr, Lr) is dense then (L1, Lr)
is regular dense,

Proof. Consider an arbitrary regular interval (Lr, Lu) that satisfies Lr<,L, and
Ln=,Lr; clearly such an interval always exists. Since (Lr, Lr) is dense there is an .Lu

with Lr<,Ls<La. Now by Theorem 2.1 this implies there is a finite language F
which is an interpretation of Z, but not of Zr. Consider I:IsUF. Clearly Ls<,L,
I is regular, therefore L= ,Lr, and hence L< rLa. In other words (2, , lr) is a regu-
lar dense interval. tr

If an interval (LL, Lz) contains no language Z properly in between L, and Lr,
then we say that Lris a predecessor of Lrand Lrhas a predecessor.

Predecessors and density are complementary notions, since we have:

Proposition 2.3. Let (Lr, Lr) be an interual. Then (Lr., Lz) is dense if and only if
it contains no language Lhauing a predecessor in the interual.

It turns out that characterizing those languages which have predecessors is one
step on the way to characteraing those intervals which are dense. For this purpose we
require three auxiliary notions.
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l*t L be a language and 2 be its alphabet. We say Z is coherent if for all non-
empty disjoint alphabets .81 and .8, with Elvår:2, there is a word x in L with x in
»*»L»*»z»*v2"ErZ*ErE*. We say L is incoherent otherwise. Observe that if L is
incoherent then there are L, and Z, with L: L1U L2, where 0 * L,+ {1}, i: l, 2.

A language form I is minimal if there is no language form L' c L with L1L'1:
L(L). lf L is finite, then minimality is clearly decidable and if I is finite and non-mini-
mal then the construction of an equivalent minimal L'cL is straightforward.

We now introduce our third notion, looping languages. A language L is looping
if either Z contains a word containing two appearances of the same letter, or there
exist distinct words wr, ...,w, in Land distinct letters dl, ...,ao ii alph(L),for
n>2, suchthat aiand ar*rateinwi, l<i<n andanandarareinwr.If Iisnot
looping we say it is nonlooping. (alph (L) is the smallest alphabet I such that IE ^X*.)

Given a language form L, L'is a nonlooping interpretation of L, denoted by
L' =nL if L'< L and Z'is nonlooping. We therefore have L,(L) as well.

In [MSW2] the following result is to be found.

Propositio n 2.4. Let L be a finite languege.
(i) If L is minimal and coherent, then L has a preCecessor if and only if L is non-

looping.
(ii) If L is minimal, then L has a preCecessor if anC only if I=KUJV for some

K and nontriuial N, where N is nonlooping,
We extend tlLis result to arbitrary languages, by first treating the coherent case.

Theorem 2.5. Let L be a coherent minimal language. Then L has a predecessotr

if and only if L is nonlooping.

Proof.lf Z is finite the result follows by Proposition 2.4, therefore assume .L
is infinite. Since each language is over a finite alphabet an infinite language is always
looping. Therefore we only need demonstrate that an infinite language never has a
predecessor to complete the Theorem. Assume L has a predecessor P. We argue by
contradiction demonstrating that there is always a language properly in between P
and L. By Theorem 2.1, there exists a finite F with F= I and .Ff P. This implies
P<PUF=L We also have If PUF. This follows from the coherence of l,, the
finitenessof 4 and P<.L. Thus P<PUF<L and we have obtained a language
properly in between Pand Z as required, therefore ,L has no predecessor. !

We now generalize the second part of Proposition 2.4.

Theorem 2.6. Let Lbe a minimal language. Then Lhas a predecessor if and only
if L: KU N, /br some language K and some nontriuial, nonlooping N.

Proof.The proof for finite Z is to be found in [MSW2]. The infinite case follows
analogously, we merely give a brief proof sketch. Assume I is infinite. If I is coherent
then -L has no predecessor by Theorem 2.5 and it has no decomposition of the required
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form. Thus the Theorem holds in this case. Therefore assume t is incoherent.lf L:
.KU,IV, where N is nontrivial and nonlooping, then N has a predecessor P and we

need to show that KU P is a predecessor of L. On the other hand if Z has no nontri-
vial, nonlooping component N, then it only remains to demonstrate that there is a
language properly in between P and L for any P<.L. ln both cases we make heavy

use of the observation that if a coherent language Q satisfies Q=L, then Q is an

interpretation of some coherent component of Z. tr

3. The density characterization theorems

One of the major obstacles to proving decidability results for intervals of gram-

matical families has been the lack of a density characterization theorem for such

intervals. In the present section we provide such theorems which are then used to
provide examples of dense intervals.

First we need to introduce some additional notation and terminology concerning

nonlooping languages. We say that two languages .L1 and Lrare nonlooping equitalent,

denoted by L1-,Lr, if L,(L): L,(Lr) and are nonlooping inequiualent, d?noted by

L, *nLr, if L,(Lr)# L,(Lr). We also say that a language L is nonlooping complete

or n-complete if L,(L) is the family of all nonlooping languages.

Theorem 3.1. The first density characterization theorem. Gfuen two languages

Ll and Lswith Lr= Lr, then (L1, Lr) is dense if and only if LL-nLz. Similarly if L1

and Lrare regular, then (Lr, Lr) is r'dense if and only if LL-oLz.

Proof.The second statement follows from the first by way of Theorem2'2, hence

we will only prove the first statement here.

Without loss of generality assume both Zr and Lrare minimal.

I/. Assume L1-oL2. Observe that for all I satisfying

' Lr= L< Lz

we have L-rLr, i=1, 2. Hence, ifwe show that for Lr-rLz and Lr< L, there is an

Z such that Lr<[-<.Lr, then the "if-part" follows immediately.
Let Lz:L;UMrU...UM^, for distinct, nontrivial coherent minimal nonloop-

ing Mi, l=i=m and Llrlooping, where Llrcannot be further decomposed under U
into a nontrivial nonlooping language and a looping language' We say the above

decomposition of L, is a maximal nonlooping decomposition of Lr. Similarly, let

L.:LiU&U...U& be a maximal nonlooping decomposition of Zr. Note that
L:L= L;, sinc: a looping language cannot be an interpretation of a nonlooping one.

Since L, -,I z, Mr= Lr, 7=i=m. Furthermore Ir{# L; since if it viere, then

Mr=Li which contradicts the minimality of Lr. Therefore Mi=Kj for some 7'.

Similarly K, is an interpretation of the same Mi, otherwise I, is not minimal. Hence
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Mi-Ki. This implies we can write ,L, as LiUM1U...l)M*l)NLU...UjV,, where
z>0 and the l/, are nontrivial, coherent, minimal, and nonlooping.

Notethat L;#9. Otherwise Li:$ and n:0, hence Lt-Lz, a contradiction.
Finally consider minimal LuandZn such that

Lr=La<Lqs Lz.

Then by similar arguments to those for I, above we can express Z, as

and Ln as

L;u MLLJ .. .U Mn, U 
^ä 

LJ ... U trr"

L;U MLLJ .. .U M*LJ 
^ä[J 

... U N,, where I 
= 

/=s sn.

Moreover Lican be expressed as "r1U...uJo and Lnas KrU...l)Kq, where each
of the "I, and Ki are looping and coherent. we now show that we can always con-
struct an Z such that Lr< l<. Ln, thatis (21, Zr) is dense.

(i) s:t. In this case there exists an i such that for all j, l=j=p either JrSK,
or lr<.K,. For otherwise Li- t; and hence Ls- La. Since § is looping it has no
predecessor (by Theorem 2.5). therefore consider a K',<Ki which also satisfies
K! *Ji, l=i=p. Such a Ki must exist since there are only finitely many .rrsK,, but
infinitely many inequivalent Ki with Ki< Kr. To conclude this subcase observe that
L,UK; is properly between Lrand Ln.

(ii) s>/. Now //r*rU...UN"=&U...1)Ko, otherwise Z, would not be mini-
mal. In particular this implies Nr*r=Kr for some i, l<i=q. Consider a Ki such
that N,*.<Ki <K;. Surely such a Ki exists and furthermore as in subcase (i) I,=
LsUK!=Lr.

Only tf: Assume (Lr, Lr) is dense. lf L, *nLr, then there exists a coherent non-
looping Nwith N= L, such that N#Lr. But this implies L1<Lrl)N= L, andby
Theorem 2.6 LLUP is a predecessor of zrUN, if Pis a predecessor of l[. But this
implies (Lr, Lr) is not dense, a contradiction. tr

corollary 3.2. For an arbitrary regular language L, (L, a*) is r-dense if and onry
if L is n-complete and L,(L)c L(REG).

Corollary 3.3. For two arbitrary languages L, and L, with L1<,Lr, (Lr, Lr)
is not r-dense if L, is nonlooping,

This follows by observing that if I, is nonlooping then Lr# Lrand hence L, *, Lr.
on the other hand if .L, is looping then it can generate arbitrarily long chains
of words (or broken loops, see [MSW2]) and Llcannot. Hence once again Lr*nLr.

Corollary 3.4. The interual (L,a*) is not r-dense, where L:(d*-{rr}),
'{ab, ba, b},

Proof. Consider the language 114: {ab, acd, befl. Clearly M is nonlooping and
Mis minimal and coherent. Now both a andb appear in a word of length 3. Therefore
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letting h be a morphism such that h(M)eL, it follows that h(acS:h(bef):aaa
and hence h(ab):aa. But aa is not in L,hence M#L and by Corollary 3.2 (L, a*)

is not dense. tr

To enable us to present specific r-dense intervals of the form (L, a*) we need to

strengthen Theorem 3.1 for the case of r-completeness. This we now do by way of the

following definitions.
Let L9I* be an arbitrary nonlooping language and let L':L-t. We say

a word w in Lis an end word if

alph(w)nalph(L'-{w}) : {o}, for some a in Z.

In this case we say a connecls w and L'- {r\.
Lemma 3.5.

(i) Euery nontriuial, coherent, nonlooping language N has at least one end word

if #N=2.
(ii) If N is a coherent, nonlooping language and w is an end w ord in N, then N- {r}

is cohermt.

Proof.lmmediate. D

We are now ready to state and prove our second chatactetization theorem.

Theorem 3.6. The second density characterization theorem. Let L be an arbi'

trary language.

Then (L, a*) is r-dense if and only if L has a nontriuial subset L' for which the

following condition obt ains :
For all letters a in alph (L') and for all i, i>0 there is a word x in (alph (L'))t

and a word y in (alph (L'))i such that xay is in L' .

In other words L is n-complete if and only if it has such a subset L' .

Proof. In this proof whenever an n-complete language is mentioned we always

assume it is also minimal in the sense that every proper subset of it is not r-complete.

Clearly this is no loss of generality since each n-complete language has a minimal

n-complete subset.

Because of Corollary 3.2 we only need consider the case that L is n-complete,

since a* is obviously r-complete. Moreover we observe that L is n-complete if and

only if JV< Z for every coherent nonlooping language N'
If : To show that Z is n-complete we need to prove that every nonlooping coher'

ent language N has a morphic image in L' and hence in Z. We prove this by induc'

tion on the cardinality of N. Note that ,L'contains words of all lengths. For +If:1,
since the only word must consist of distinct letters it trivially has a morphic image

in L'.
Now assume that for some fr>1, overy coherent, nonlooping -lfwith 4N=k,

has a morphic image which is a subset of Z'.
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Irt if be a nonlooping language with *N=å* l. For w an end word in N
there is a morphism å such that h(N- {r}) ir a subset of Z.

Consider the symbol a which connects w and Z. Then we can write w as å1...
biabr*r...bn, where 0<i= n. Clearly there is a word u in L'satisfying

a - 4h(a)x2,

where fxrl:i and lxrl:r-i. Note that the letters å1, ...,b, are distinct frorn each
other and from alph (ar- {r}). Hence we can extend å to these new symbols such
tlra;t h(w):p. In other words å(M)Sl' completing this part of the proof.

only if: r is minimal and rz-complete by assumption, hence we prove it satisfies
the property in the Theorem statement.

lnt abe a letter in alph (L) and let xay be a word in z. clearly there must beat
least one such word otherwise a would not be h alph (L).

Now there is a nonlooping language N such that whenever å(I[ S Z, then there
is a word w in N with h(w): sr. If this is not the case L- {xay) is also rz-complete,
contradicting the minimality of .L. We define nonlooping languages M,, for all
i,j=o by:

For every symbol s in alph (IQ add a word

a1.,.aisbr..,b;

to N, where a, and b^ are new symbols for every symbol s in alph (N).
Now since each Mii isnonloopingwehave Mrj=L forall i, j=0. Moreover

whenever g(Mie L, for some morphism g, then g(w): xay by the above remarks
Hence g(ar...arsbr...bi):xfllr, for some sin alph(N), where lxrl:i and lyrl:i.
since xrayt is in r, L satisfies the property in the theorem statement, completing the
proof. tr

This leads immediately to some specific examples of n-complete languages and
hence dense intervals.

Corollary 3.7. L1={a,bl*-{ai,bi: i>2) is n-complete and hence (Lr,a*)
is an r-dense interaal.

Proof. Lrclearly satisfies the condition of Theorem 3.6. tr

Corollary 3.8. L2: {a, b, cl* - {ar, br, c3, aab, aac, aba, aca, baa, caa, bbc, bcb,
cbb\ is n-complete.

More importantly:

C o rollary 3.9. Let E ^: {dr, az, ..., a^l and K*: (»i- »2^) v {arar, ozas, ...,
a^arl. Thm K^ is n-complete.
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4. Decidability and maximality

In this section we first prove that n-completeness is decidable for context-free

languages, and then show that there is no maximally r-dense interval (L, a*).

Theorem 4.1. N-completeness is decidable for context-free languages.

Proof. Z is n-complete if and only if it has a subset I', which satisfies the condition
ofTheorem 3.6,that is L' : LnE* for some E 7alph(I). Now define finite substitu-

tions äo for all a in .E by:
ö,(a) : lf, a\

ö"(b): 177, for all ä in E, b * a,

where/is a new symbol. Clearly t'satisfies the condition of Theorem 3.6. if and only
if Mo:5o17')af*af* equals .f*oJ'*, for all ain E.

this is decidable sinc,e f*aJ* is a bounded regular set and M, is context-free. tr

This together with Theorem 3.1 immediately gives:

Corollary 4.2.Giuen a contextfree (regular) language L it is decidable whether

or not (L, a*) is dense (r'dense).

In order to prove the maximality result we need to consider directed cycles of
length m, denoted by C^. Letting Z^: lQr., az, ,.., a,) we define C, by:

C*: {arar, azay, ..., a^atl.

It is a straightforward observation that

C, = C^ if and onlY if r : 0 (mod m)-

On the other hand every nonlooping language NcEz is an interpretation of C, for all

m>-1.
We now have:

Lemma 4.3. Let L be an n-complete language. Then there is an ru and a bijection
g such that g(C^)9L.

Proof.We only need considet L':{w is in L: lwl:)}. Let * L':r. Now since

all nonlooping languages are interpretations of .L, then in particular

P, : {arar, azog, .,., arar+tt dt +tar+z\

where the at's are different letters for different i's, is an interpretation of Z', that is

there is a morphism å such that h(P)=-L'. Now å cannot be one'to-one, since

*P=r*l>+L'. Therefore å merges at least two letters and hence there is an

rn>l such that C^eh(P,). But this implies g(C^)Qt?2 for some bijection g

completing the proof. tr
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We also need:

Lemma 4.4. Let L, and L2 be (regular) languages. Then there is a (regalar)
language L such that

and 
L(L): L(L)aL(L)

L,(L): L,(Lr)aL,(L).

Proof. This follows along the lines of the proof of Theorem 4.2 in [MSWS] and
therefore it is left to the reader. E

We are now able to prove our final result:

Theorem 4.5. There is no (regular) language L such that (L,a*) is maximally
dense (r-dense).

Proof. We show that every dense interval (L, a*) can be extended. In other words
that there exists an Io such that Lo< L and (Io, a*) is dense.

From Lemma 4.3 we know that there is an integer m>l and a bijection g such
that g(C*)Q L. Let mobe the greatest such lrl.

Immediately L':{w is in Z: lwl:2} is not an interpretation of C,o*r, since
C.o#C-o+t'

Now consider Kro+r from Corollary 3.9. Then C.o*rEK.o+r and moreover
is not an interpretation of Kno+t. Now let Lobe a language such that

L(L): L(L)nL(K.o+).

Note that Lo< L, since I is not in L(K,o*r) and so it is not in L(Lo).
It remains to demonstrate that Io is n-complete. However Z is n-complete by

assumption and K.o*, is n-complete by Corollary 3.9. Hence Zo is z-complete and
(Lo, a*) is both dense and an extension of (L, a*) as required.

If Z is regular, then Io can be chosen to be regular (Lemma 4.4) since K.o*,
is regular. Hence by Theorem 2.2,the "regular" version of the theorem follows. tr
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