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DISCRETE QUASICONFORMAL GROUPS TTIAT AR.E

NOT THE QUASI9.ONFORMAL CO|{.trUGATES
OF MOBIUS GROUPS*

GAVENJ. MÄRTIN

1. Introduction

In this paper we provide exlmples of discrete quasiconformal groups that are not

the quasiconformal conjugates of Möbius groups. Gehring and Palka [G. P.] first

asked the question whether every such group was in fact the quasiconformal conju-

gate of a conformal, or Möbius, group.

In the case of quasiconformal groups acting on subsets of the Riemann sphere

the question was answered in the aff.rmative by Sullivan [S] and Tukia [T. 2]. The

idea of the proof was to construct, for a given quasiconformal group G, a G-invariant

measurable Riemannian structure in which G acts conformally, that is a measurable

mapp:.R *,S, where S is the space of positive definite symmetric nXn matrices

with determinant l, such that for each g€G

p(x) : ldet g'(x)l - 2 r' . g' (x)t p(g(x)) g'(x).

When n:2 the measurable Riemann mapping theorem implies that this structure is

in fact the pull-back, under a quasiconformal mapping, of the standard conformal

structure, and so the group G can be conjugated by a quasiconformal mapping, so as

to be conformal.
No such measurable Riemann mapping theorem is true in higher dimensions,

however Tukia [T. 4] has shown that if the measurable G-invariant Riemannian struc-

ture is continuous at a limit point of the group (or approximately continuous at a
conical limit point), then the group is in fact the quasiconformal conjugate of a Mö-
bius group. He does this by blowing up neighbourhoods of a limit point, where the

action of G is like a Möbius group. In particular this implies that every cocompact

Fuchsian quasiconformal group is quasiconformally conjugate to a quasiconformal

group whose action is conformal on §'-1. We show that the cocompactness hypoth'
esis cannot be removed.

*) Work partially supported by the A,P. Sloan Foundation and N.S.F. Grant no. MCS

82-01607.
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Previously Tukia [T.3] had given examples of quasiconformal groups of En,
r>3, which were not the quasiconformal conjugates of any Möbius group. His
examples were not discrete and depended heavily on that fact to require that the orbit
of a point be a particularly nasty (n- l)-cell in R'. The orbit of a point under the
quasiconformal conjugate of a Möbius group was then shown not to have such bad
behaviour.

Gehring and Martin [G. M.] began to study discrete quasiconformal groups. We
found many similarities between conformal and quasiconformal groups, particularly
in the structure, classification ofthe elements, the associated Poincard series and be-
haviour of the limit sets. In particular any loxodromic element of a quasiconformal
group was quasiconformally conjugate to a loxodromic Möbius transformation. Ihe
natural question was then whether every discrete quasiconformal group is quasicon-
formally conjugate to a Möbius group.

We pursue Tukia's ideas in the discrete case and show in fact, that every discrete
subgroup of maximal rank in Tukia's group is not the quasiconformal conjugate of
any Möbius group. We modify Tukia's construction a little so as to be able to pro-
vide non-elementary (uncountably many limit points) examples as well. In the process

we obtain some results on the conjugacy of Möbius groups to translation groups and
find an exarnple of a locally quasiconformally flat (n - l)-cell in .Rn, which is topolo-
gically flat but not quasiconformally flat. We finally appeal to the L. Q. C. Haupt-
vermutung in the cocompact case, together with the results of Farrell and Hsiang
[F. H.] to show that in some sense our examples are best possible.

I wish to thank F. W. Gehring for suggesting the problem and P. Tukia for
reading the first draft and making many helpful comments as well as suggesting the
method of construction for the non-elementary examples.

Finally I wish to thank the Technische Universität Berlin for space and resources
during the completion of this work.

1.1. Definitions and notation

We denote by Möb (n) the group of all Möbius transformations ofE', and a Mö-
bius group is a subgroup of Möb (n). E(n), O(n) and A(n) denote the groups of
euclidean isometries, orthogonal transformations and affine mappings respectively.
Our standard reference for definitions and results concerning quasiconformal mapp-
ings is [V]. We remark here, however, that conformal (or l-quasiconformal) homeo-
morphisms of .E'are'precisely the Möbius transformations. We also note that the
subgroup of Möb (n) fixing 8", the unit ball, is precisely the group of hyperbolic
isometries of B.

A group G of self homeomorphisms of a domain UcR' is called a quasi-
conformal.group if there is some finite K such that each g(G is K-quasiconformal.
We then observe that if H is a Möbius group acting on UcE', then for any K-quasi-



Discrete quasiconformal groups that are nöt the quasiconformal conjugates of Möbius groups 181

conformal embedding f:U*Ro, the group

fHf-'

is a K2-quasiconformal group ofl(U).
If U is the unit ball or the upper half-space of fto, then a quasiconformal group

acting on U will be called a Fuchsian quasiconformal group. By a K-quasiconf'ormal,

or just quasiconformal, hyperplane we mean the image of .R'-1 under a K-quasicon-

formal homeomorphism of R'. For two groups Aand B we denoteby A><B the

semidirect product of the .groups I and B. lf A and B act as a group of self homeo-

morphisms of UcP, then we can define the action of A><B on Uas

(a, b)(x) : a(b(x)) for (a, b)e'l><a'

Since each affine transformation C:R"*-N (we set C(-):*) is quasiconformal,

the groups
A(n) and A(n)><Möb (n)

are groups of self homeomorphisms of fr'for which every element is quasiconformal

but neither is a quasiconformal group. Notice that the group structure of
l(n)><Möb (n) is not the usual composition of homeomorphisms.

For a proper subdomain D of Ro we define the quasihyperbolic distance in D as

the distance function, kr(x,y), associated with the generalized Riemannian metric

d(x,0D)-2ldxl2, where d(x,lO) is the euclidean distance from x(D to the bound-

ary of D. Thus for two points x1, x2(D

kr(xr, x) : inf t, d(x, 0D)-1 ldxl,

where the infinum is taken over all locally rectifiable arcs a joining rt to x2 in D. The

quasihyperbolic metric is the natural generalization of the hyperbolic metric to do-

mains in space. The basic properties of this metric can be found in [G. O.] and [M].

2. Tukia's construction anrl a morlification

We begin with an outline of Tukia's construction (see [T. 3, Section 3J) and pay

particular attention to the details that concern us. In order to construct the discrete

non-elementary examples in the latter section we need to modify the construction so

that the map F'that Tukia obtains is in fact conformal in a uniformly large neigh-

bourhood of each point of {n*i:nQZ\, while the map remains unchanged outside

some slightly larger set. To do this we need a quantitative version of the annulus the-

orem for quasiconformal mappings, for we must alter F'infinitely often and yet still
ask that it be K-quasiconformal for some finite K.
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We first construct the well-known, non-rectifiable quasiconformal arc "I as fol-
lows../'is the limit of the arcs J;,l;,"ri... illustrated below.

Since JJ3 is a subarc of"I' and likewise.I' is a subarc of 3l', if we set

"[ 
: LJr*o lt(t, v 1- t,1)

we obtain an open arc./. There is a natural map

such that 
f: lo' lf * 1"

f(4'x) :3'f(x),
if i>0 and 0=x=4'x=1. We can then define an extension fr: R*l by

(2.r) fi(*.4tx\:t3'f(x),
if i>0 and x€[0, U.

This mapfr is then a quasisymmetric embedding of .R into R2. That is there is a
constant I1>1 suchthat

I f,b) - f,(x)l = H l f,(b) - fi (x)l

for all a, b, x€R satisfying la- xl=lb- xl.
Suchquasisymmetricembeddings can be extended(see (11) of [T.3]) to a quasi-

conformal homeomorphism Fr: Rz*Rz with FrlR:1, in such a way that F, is
bilipschitz in the quasihyperbolic metric, i.e. there is an Z> I such that if U is a
component ofR\R and U': Ft(U), then forall x,y€U

(2.2) |nr(x, y) s ka,(n(x), A(y)) = Lku(x, y).

It follows from this and the above (see (5) of [T.3]) that there is a constant M> I
such that for all u,u€R

*luln = d(Fr(u, a), J) = Mlul'

where a : lo g 3 llog 4 (l I u:Hausdorff dimension of J).
For details of the preceeding discussion see [T.3, Section 3]. Our first observa-

tion is that

2.4. Lemma. For all i>O and x€R

fi(*'4'ix): f 3rå(x)'

I
(,

44

(2.3)

g_,^_ \_AJJ
ri
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Proof. Let x€R, for simplicity we may assume x>0. Then there is aa m>O
such that y:4-*x(10, 11. Since 4-y: * we see from (2.1) that

fr(x) : fr(4^ y) : 3^f(y)
and hence

f,.(4'x) : fr(4i** y) : 3r+^ f(y) : 3tfr(x).

It follows easily from (2.3) that for all n€Z

(2.5) u M = d(Fr(n, l), J) = M.

We now need the following version of the annulus theorem. It is a consequenc€

of the quantitative version of the annulus theorem (see [T. V., Theorem 5.8]).

2.6. Theorem. Let L>-1 and d=0. Then there are L, and 6>0, depmdW
on n, such that for each L-bilipschitz embedding f: B(d)*p with "/(0):0, there is
an L1-bilipschitz embedding g: B'(d)*R' with the following properties:

(1) g-f new §'*'(d).

@ CIB'(ö): identitY.

Proof. Sine/is Z-bilipschitz a(7p1, ,f (S'-t(d»)=dlL. We denote by A(a, b)
the annulus {x€R': a<lxl<bl. I-et a:dlQlL), b:dl(lL) and c:&dllO. Define

t f@)' x€.A(c, d)
lr(x) : [*, x€A(a,b).

We claimfr is a 4Z-bilipschitz embedding, thus let x,y€A(a,b)vA(c, d). The result
is trivial if both x and y lie in one of A(c, d) or A(a, å), and so we suppo se x(A(a, b),

t€A(c,d). Then

f,a =- c-b = lx-yl = d+b =2it
and since fr(x):x,

* o = i - t = lf,(x) -f,(y)l = Ld + b = 2Lit.

Thus
I

* lx - tl = lf,@) -f,(v)l = 4Llx - vl-

The diameter of fr(,9-1(d)) is the same as that of/(S"-l(d) and so is no more
than Ld,while the diameter of l (S'-l(a)) is a, the ratio of these diameters is then at
most 1024. We now appeal to the quantitative version of the bilipschitz annulus
theorem alluded to in Remark 5.9 in [T. V.] following the quasiconformal version

Theorem 5.8.
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(1)

(2)

(3)

We:thus obtain an embedding g: B"(d)*R" with the following properties:

g is ä-bilipschitz.
g-fi:f near St'-'(tl).

gl,S'-' (a) : frls'r'-'(o) : identity.

The constant Z, depends only on the constants L, a, b, c, d,n and the ratio we have
bounded by 10L2. Thus Z1 depends only on L,nandd.We are done once we set
6:a and extend g by the identity on B'(ä).

2.7. Corollary. Let D be a proper subdomain of P,L>l,d>O and
O<e=R<-. Then there are L, and ö=0, depending on n, with the following
properties. If f: D*D' is a homeomorphism which is L-bilipschitz in the quasihyper-

bolic metrics of D and D' and if x(D with d:d(x,lD) and e=d(f(x),0D)=p,
then there is a homeomorphism g:D*D'with the followtng properties:

(l) g rs Lr-bilipschitz in the quasihyperbolic metrics of D and D'.
(2) 8.fD\B'(x, a)=/lD\Bo(x, a), where a:(dl2L) log (l +ei5R)=a.
(3) gfB'(x, ö) is atranslation,i.e. g(y):y*g(x), y€B(x,ö).

Proof. We first show that the hypotheses imply that / is lr-bilipschitz in the
euclidean metric in a neighbourhood of x and that both Lrand the size of this neigh-
bourhood depend only on the constants in the hypotheses. We may pre and post
composeyfwith translations so that a:l'(x):O. We must then show

Q)' glD\B'(a) :/lD\B'(a).
(3)' gl8'(ä) : identity.

l-et mbe so large that m>5 and

"R(exp (2Llm)-t) 
= els.

Notice that dlm=a=d. Let A:B'(dlm).We easily obtain from Lemma 6.5 of
[T. V.], where we have cr=2 since d(A)ld(,1,0W911=112,

(2.8) *fu-ul = kr(u,u) = jW-t)l for all u, u€A.

Similarly if ts- B'(el5), then

(2.9) * lu-ul = ko,(u, u) = |W-ul for all u, t)€8.

Thus if we set ,Lr:641 {6Ldle,6LRldl, then the inequalities (2.8) and (2.9) together
with the fact that/is Z-bilipschitz in the quasihyperbolic metric will imply that flA
is lr-bilipschitz in the euclidean metric, provided we show f(A)cB. To see this
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suppose zeg-r@lm). Then from (2.8), kr(O, z)=21m, and so kD,(O,f(z))=2llm,
Since d(0, 0D1=p, we see from [G. O., (1.2)] that

Thus
ko,(o, f(r)) = log (t + lf(r)l/Å).

lfk)l = A (.rp (2Llm)-1) = els,

the latter inequality following from the choice of m.
We can now appeal to Theorem 2.6with dreplac*dby dlm, and find an Lranda

ä=0, depending only on Lr, dfm and n, and an lr-bilipschitz embedding
g: B(dlm)*B'(dlm) agreeing with / near S'-l(d, nt) and the identity on .B'(d).

The map g has all the desired properties provided we show that g is lr-bilipschitz in
the quasihyperbolic metric. This is clear for points in or sufficiently near D\B"(dlm),
since there 7:g, while in B'(dlm) we can again put together the estimates (2.8) and
(2.9) with the fact that g is lr-bilipschitz in the euclidean metric of B'(dlm),to see

that glB"(dln) is max {6Lrdle,6LrRldl-bilipschitz in the quasihyperbolic metrics

of D and D'. The result will now follow immediately from Lemma 6.21 of [T. V.]
which says that a homeomorphism of D onto D' which is locally Z-bilipschitz in the
quasihyperbolic metrics of D and D'is actually Z-bilipschitz in these metrics. The
proof is complete.

We now turn back to Tukia's construction. Let F, be the map of (2.2). We
observe that if in Corollary 2.7, d:l,e:\f M and R:M, then the number a ob-
tained is less than ll4. Let U denote the upper half-plane and consider

(2.10) F1:U*F.(U).

Corollary 2.7 enables us to alter F, to obtain a map F2: U* Fr(U) and a ä>0 such

that
l), o) - F| U\U m€z B'((*, 1), a)

a translation, for atrl m€2.

We may do this since we change nothing outside of l)^rrB2((*,7),a) and we
further note that by Corollary 2.7, Fz is locally Zr-bilipschitz in the quasihyperbolic
metric, where .L, depends only on L, d((nt,l),lD): l, and the constant M of (2.5),

ä too depends only on these quantities. F, is then Zr-bilipschitz in the quasihyperbolic
metrics of U and FJU): Fr(U) as noted above by Lemma 6.21 of [T. V.].

We now extend the map F, to the lower half-plane via Fr. We observe that we
only used the quantitative version of the annulus theorem wher, n:2 to obtain our
map Fz. In this dimension the theorem is somewhat easier to obtain and does not
depend on the deep results of Sullivan.

For x€R'(henceforth n>3) we set x:(z,y)(RzX.Ro-2. We then define

(2,I 1) I (l) rrl U\U, €z Bz((nr,

t (zl Frl Br((*, 1), ä) is

I F(*) - (rrk),y)
t A(x) - (Fr(r), y).

(2.12)
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Then F and F* are topological homeomorphisms of Å', neither of these maps is

quasiconformal as we shall see later.
Let T be the following group of translations.

T: {x * x+a: a : (at,O, aB, ..., ar), aiQR\.

Tukia's main results are then

2.13. Theorem. The group G:FoToF-L is a Lipschitz (and hmce quasicon'

formal) group of N acting transitiuely on the (n-l)-cell S:JXR'-z.

Rickman had earlier observed

2.14. Theorem. The (n-l)-cell S:./XR'-2 is not locally quasiconformally

flat. In pdrticular there is no quasiconformal self homeomorphism g of R' such that
g(A'-1)=§.

The Bieberbach theorems now imply that for such groups as G the orbit of a point

should be a quasiconformal hyperplane if in fact the group is the quasiconformal con-
jugate of a Möbius group. This cannot be the case for S is the orbit of the origin under

G. Hence

2.15. Theorem. The group G is not the conjugate of any Möbius group by any

quasiconformal self homeomorphism of R.

Notice that the group G easily extends to a quasiconformal group of R-n. One

may prove exactly as in the proof of Theorem 2.13 (see [T. 3, Theorem 2]) that the

group ä:F*7F;1is also Lipschitz group of .R' acting transitively on the (r- l)-cell
S. In fact the group IllS=Gl§.

We then easily obtain the following

2.16. Theor em. The group H is a Lipschitz group of N which is not the quasicon'

formal conjugate of any Möbius group.

We went to the trouble to construct 11, since a certain discrete subgroup of 11

will act conformally in a uniformly large neighbourhood of some point. This will
enable us to construct the discrete non-elementary examples we seek.

3. The discrete examples

3.1. Lemma. Let G be a disuete group of Möbius transformations acting on

fu which is the topological conjugate of d group of translations T of rank n. Then there is

s€A(n) »< Möb (n)
such that

gGg-L: T'

In paniculor the map g is quasiconformal.
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Proof.Letfbe a topological homeomorphism such that G:fTf -'. lf hcG,then
thereissome l€7 sothat h:ftf-'. Hence

fix (h) : fix (ftf -L) :f(fix(t)):.f(-).
Thus every h(G hasthe unique fixed point f(*).Let Y be aMöbius transformation
for which Y(/(-»:-. Then G':Y-IGY is a discrete group of Möbius trans-
formation which fix infinity and so each h€G' is a similarity and so has the form

h(x): rAx*b,
forsome A(O(n'), r(R and b€R". lf r*1, then (rA-I) is invertible and so å
has the fixed point -(rA- t1-r6 which is impossible. Thus r:1 and so

G'c E(n).

As the topological conjugate of 7, which is a discrete group of translations of rank n
and so a crystallographic group G' is a uniform discrete subgroup of E(n) isomorphic
to the crystallographic group 7. Ihus by the Bieberbach theorems [W,3.2.2] there is
an affine maP B such that 

BG'B-r : T.

Thus g(x): B.V(x) is the desired map. As we observed in the introduction g is
quasiconformal for Y is conformal and.B is quasiconformal.

The following refinement of the above lemma is what we need in the discrete case

to replace Lemma 6 of [I. 3].

3.2 Theorem. Suppose that G is a discrete group of Möbius transformations of
fu which is the topological conjugate of a group of translations T of rank n-1. Then
there is a subgroup G* offinite index in G and

seA(n) >< Möb (z)
such that

gG*g-L: T'
In particular g is quasiconformal.

Proof. Proceeding as in Lemma 3.1 we find that there is a Möbius transformation
ry' such that

H: rttQlll-t c E(n).

Then by the Bieberbach theorems (see [W, 3.2.8» after a change of origin, there is a
normal subgroup H1 of finite index in H, a vector subgroup VqR' and a toral
subgroup OcO(n), with 0 acting trivially on Z, such that

Hrc O><V.

Since Tand hence G, H and Hrare free abelian on n- I generators we see dimY:
n- l. That is Z is a hyperplane in [', passing through the origin. Since O acts trivially
on a hyperplane and since OcO(n) there are at most two elements of O. Namely the
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identity and possibly reflection in the hyperplaneV. This corresponds to the possi-

bilities that the components of .R'\Z are fixed or permuted. We can then pass to
a subgroup Hrof Hl of index at most 2 and so of finite index in 11, with HrcY.We
may choose an orthogonal transformalion A,with A-1V:.R'-1 and set

H* : A'rHzA.

Thus If *cRo-t (as groups), acts on -R' and is free abelian on n- I generators.

We may also choose an orthogonal transformation .B such that B-LTBcN-L,
where each a(Rn-r is identified with the translation x*x*a giving,Rn-1the usual
group structure. Now since ä was isomorphic to 7 (in fact conjugate) ä* is iso-
morphic to a finite index subgroup of .B -rTB, but any finite index subgroup of a
translation group is isomorphic (in fact affinely conjugate by a change of basis) to
that group and so we see ä is isomorphic to B -rTB. Restricting the actions to the
invariant hyperplane .R'-r we see ä*lR'-l is isomorphic to the discrete uniform
(and hence crystallographic) group B-LTBlRil-l. Thus these two groups are affinely
conjugate by the Bieberbach theorems, by some Cr(A(n- l). Since the action of
each group is trivial on (Rn-r)r, that is it is obtained by producting the restriction
witlr the identity we see that the groups ä * and B -tTB are affinely conjugate by the

mapping

r: (? ?)
The result now follows if we set

G* : rL-rAH*AL.
Then

g - B-rCA-ttL.

It remains only to observe that A and B were orthogonal so that g is quasiconformal.

Tukia has pointed out that the result is not true if the rank of the translation
groupislessthan r-1. Forinstance if g(x):(eiez,y+l) where 0 isan irrational
multiple of z and if /(x):vaer we see the groups (g) and (t) are topologically
conjugate (the quotient spaces R'lk) and .R'/(r) are homeomorphic to Å'-lXSr),
but no subgroup of finite index in (g) can be affinely conjugate to (t). To see this we

observe that a finite index subgroup would be generated by some power ofg, we would
then have for some affine map A ar,dinteger n

g'(x) : (et'oz, y+n) : A-rtA(x) - v,lA-7ey

which is impossible.

3.3. C o ro ll ar y. If G is a disoete quasiconformal group ac ting on fu , which is the

topological conjugate ofa translation group T, oJ'rank n-1, then G is the quasiconfor-

mal conjugate oJ'a Möbius group only if there is a subgroup G* of finite index in G which

is the quasiconformal conjugate of T. In particular the orbit of a point, G* (x), must lie
in a quasiconformal hyperplane.
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Proof. suppose G were the conjugate of the Möbius group r/, by a quasiconfor-
mal homeomorphism 7: F'*E'. Thus

G: fHf-t'
Since G is the topological conjugate ofa translation group and since G is discrete we
see that ä is both discrete and also the topological conjugate ofa translation group.
By Theorem 3.2 there is a subgroup ä* of finite index in H and a g€r4(r)><Möb (r)
so that

gfi*g-t : T'

If we set G*=fHY-r, we see that for h:gf-L
hG*h-L : T.

f he result now follows once we observe that the orbit of a point under the group I
must lie in a hyperplane, and so G*(x)=å-tTh(x) lies in a quasiconformal hyper-
plane.

We now set out to prove that every discrete subgroup of maximal rank in Tukia's
group G (there are many such) is not the quasiconformal conjugate of a Möbius
group. This will be essentially due to Theorem 2.14 and, Corollary 3.3.

suppose that G' is a subgroup of G which is both discrete and of maximal rank,
n-1. Corresponding to G'is the discrete group of translations T,:F*rG,F. We
now suppose

(*) G'is the quasiccnformal conjugate of a Möbius group.

we will show the supposition (*) leads to a contradiction. By corolrary 3.3
there is a subgroup G* of G' of finite index and a quasiconformal map g, such that

gfrG* gr: T"
It is not difficult to see that a discrete subgroup of rank n-l of
f- {x*x*az a.:(a1,0, ar...a)\ is affinely conjugate to the discrete subgroup

T* : (x * X*€ii i : 1, 3, 4...n),

as this is again just a change of basis. Thus we may assume that there is a quasicon-
formal mapping g: En*R' such that

g-'c*g: T*'
Define for each integer mthe map h^: Rn -Ro by

for x- (r, y)€nzx.Rn-2. We set

and

h^(x) - (4^2,3^!),

T*: h-^T*h^

G^: E|^F-L'
Notice that To:T* and Go:G*
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The idea now is that the groups 7. become dense in T as m gets large while up to
a conformal scaling the orbit G*(0) remains the same, so that if G* (0) lies in a K-quasi-
conformal hyperplane (as our supposition (*) asserts via Corollary 3.3), then so does

G.(0) for every m. This we show is impossible.

Since å-.: h;t we see T^is a discrete group generated by the maps

X * xl4-^er, X * Xf3-m€i, i : 3,4,,..n.
Thus we set

V: {x : (xr, xz, ..., xn)€Et': ,z : 0}

we see 7. is a group of translations of R'Ieaving V invariant. The vectors 4-^e1and
3-^ei, i:3,4,..., ,?. span V and all have length no more than 3-'. Hence by the
archimedean property of the reals for each a(V there is a sequence of points
a4QT^(0) such that

@m* @, as m +@.

Hence if s€S:./XR', then p:F-r(s)€Y. Then accordingly there is a sequence

a^€T^(O), with a^*a. Since F(0):9 we see

s.:F(6rr)*5
and that

s^€ FT^F-1(0) : G-(0) c'S'
Thus

r? §.t J for each s€,S, there is a sequence of points {r-}
I such that s,(G,(0) and r,*r as m+@.

Hence G.(0) becomes dense in S as m+@, and so we are able to prove the follow-
ing.

3.6. Lemma. There is nofinite K such that each G^(0) lies in a K-quasiconformal

hyperplane.

Proof. Srtppose there were such a finite K. Then for each m there would be a
K-quasiconformal mapping f^; R"*R' such that

G^(0) cf.(R'-1).

We may normalize the maps {f*} by auxiliary Möbius transformations and an

orthogonal rotation so that

å(0) :0, f-(-) -*, | =lf-(er)l=2
and

G.(0) c f^(V).

Then there exists a K-quasiconformal self homeomorphism /: Ro*En and a sub-
sequence of the {f*}, which we relabel as {f.} again, such that

f* * f uniformly in Rr.
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(see [2, Corollary 37.4D. We wish to show that in this case Sr_f (Y) which would be
impossible by theorem 2.14. Let s€S. We denote by q(x,y) the chordal distance
between two points x, y€Ro. By (3.5) there is a sequence {s.} such that

s.*J and s,(G.(O).

In particular s^(f,,(Y). Let ä>0. Then by the uniform convergence there is an
integer y'f such thatif m>N, then for all x€E'

s(f^(x), /(x)) = ä.

There is also an integer M suchthat if m-M, then q(s,, s)<ä.
We then see that if n>MlN,

q(s,f(Y)) s q(s, s^)*q(s-,f(V))

<.2ö,

since s.€Å(Z). Since ä was arbitrary we must conclude

s 
=f(v),

which we have already observed is impossible due to the fact S is not locally quasi-
conformally flat. The lernma is proved.

thus, the preceding lemma says that all the G.(0) cannot lie in a quasiconfor-
mal hyperplane. the following lemma will imply that if Go(0) lies in a K-quasicon-
formal hyperplane then so does G.(0) for all m.

3.7. Lemma. If g*(G^, then g*(0):3-kr(0) for some go(Go. In particular
if iD^is the conformal mapping iL*(x)=t-*2;, 11r"n

G.(0) : iD;t GoQ *(0) : 3' Go(0).

Proof.lf g^(G-, then there is a t€T* such that

g^: Fh-^th^F-'.

We accordingly choose go:FtF-t.
If t(x):761 (a1,0, as, ,.., an), then

3'g-(0) :3^Fh-^t(O\ (since r(0) : Iz.(0):0)
: 3 F(4-^ ar, O, 3-^ ar,,.., 3-^ an)

: 3 (Ft(4-* ar, o), 3-^ as, ..., 3-^ a,)

by the definition of F (see (2.12)). Now (4-^ar,0)6.Rc.*R2 *A
Ft((4-^ab 0)):fr(4-^ar). We then observe from Lemma 2.4

3*.fr(4-* ar) : ft(ar).
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Thus 
3'g,(o) : (fr(a), as, ..., dn)

: (Fr(rr,O), ca, ..., an)

= Fr(0) : FrF-r(Q): Bo(0).

The lemma is nowproved.
Recalling that Go:@*, we see from the above Iemma that if G*(0) lies in a

K-quasiconformal hyperplane, then so does G,(0) for all lz. Thus by Lemma 3.6
this cannot be the case. That is G*(0) lies in no quasiconformal hyperplane. But
according to our supposition (*) and Corollary 3.3 G*(0) does lie in such a hyper-
plane. We must conclude the supposition (*) is false. We have then obtained the
following.

3.8. Theorem. Euery discrete subgroup of maximal rank n-1, in Tukia's group
G is not the quasiconformal conjugate of any Möbius group.

Thus in every dimension n greater than two there is a properly discontinuous
quasiconformal group G acting on.R' which is not the quasiconformal conjugate of
any Möbius group.

In fact Lemmas 3.6 and 3.7 show that the orbit of the origin under any discrete
subgroup of maximal rank in Tukia's group cannot lie in a quasiconformal hyper-
plane. Since in our construction of the map .F* G". Q.lz)) we ensured that
F*lV: FlV, see (2.2), we see every discrete subgroup of maximal rank in the group
H: F*TFiL is also not the quasiconformal conjugate of any Möbius group.

3.9. Coroll ary. Euery discrete subgroup of maximal rank in the group H is not
the quasiconformal conjugate of any Möbius group.

From (4) in [T. U we see that

1

filal =lf!(x+a)-fL@)l = *tlal.

Thus the image of any uniformly discrete subset of .R (see below) is uniformly dis-
crete in "I. It then follows that the orbit of the origin under any maximal rank discrete
subgroup is uniformly discrete in § (since the corresponding orbit will be uniformly
discrete in Y). We may choose an arbitrarily coarse discrete subgroup (i.e. large
fundamental domain) and we then find

3.10. Corollary. For each M>O there is a uniformly discrete set
Zc§:.IXAo-z, that isfor each x€L

dist (x, f\x) = Jtr',

and L lies in no K-quasiconformal hyperplane for any K.
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This is essentially due to the factthat any uniformly discrete subset of the (rr:- l)-
cell § is dense at infinity, where S is not quasiconformally flat. Notice that the set

L : ft(Z)x(Z)'-L
is the orbit of the origin under the group FI*.F-lcG and so cannot Iie in any quasi-

conformal hyperplane. There is a natural P. L. map of .R'-1 with these points as ver-
tices which we construct as follows. Let

ff,: l0,ll * 4, i:0,1,2... be the natural P. L. map

outlined in Tukia's construction. Notice that in the construction each vertex at each

stage is retained. If j€t4t,4i+1fnZ, thenthe point pr(4-t7) is a vertex of Ji, and
so therefore of Jj for all 7=;. 51r""

ft(i) : 3' .f(4-' i) : 3t pi( -t i)
we see that f (j) is a vertex of 3tJi. We then define P: R*ftz as

P(x) = 3tP,(4-ix)

for x€[4', 4r+1] and P(-x): - P(x) It is not difficult to ses that P is a well defined
P. L. embedding. P(^R) is illustrated below, it is merely the natural P. L. map con-
necting the integer spaced vertices of the non-rectifiable arc J. A more compact for-
mula for P is given by

P(x): (t-r)f,(n)+rt@+D
if x:n*r, 0=r< 1.

"6 
(8)

"fr(01

10

Y
6
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We see Pis a P. L. embedding with the following two properties:

(1) lP(n)-P(n+l)l : t.

A) The angle between successive vertices is z/3. We then set

&(x) : (rtq, y)

where x:(/,0,lr)€R2XR'-'. So P1:Y*R is a P. L. map having fi(Z)x(R)-z
as its only corners. It is rather easy to see that Q": PJV)cR' is locally quasi-

conformally flat, in fact since the angle is nl3 and P, is an isometry on each

fn,n* llx.R'-z the map

(y,0, y) * (y, ol3, y)

shows that Ql is locally 3'-1-quasiconformally flat. Q cannot be quasiconformally

flat for that would imply that Qn andhence fr(Z)X(Z)'-' lay in a quasiconformal

hyperplane which we know is impossible. We can do even better than this. It is easy

to see one may smooth out the corners of our above example in such a way as to
ensure that the vertices lie in the smoothed hyperplane. Such a smooth hyperplane is

(l + e)-locally quasiccnformally flat for each positive e, (since the projection from the

tangent plane at a point, down to the hyperplane is almost conformal in a sufficiently
small neighbourhood of that point). this smooth hyperplane cannot be quasicon-

formally flat as we hrve seen. Gehring [G] and "Iukia [T. l] have similar examples.

The difference between their examples and ours is that ours is uniformly nice at every
point, while Gehring's example osciliates wildly at the origin and Tukia's examples

are low dimensional and exhibit rather peculiar behaviour at one point where it is

the limit of Fox-Artin spheres. We note that the P. L. map P:R*R2 previously
constructed is also quasisymmetric, (this is easy to see locally, while globally it fol-
lows since P(n):fr(n) for all n(2, and sinceli is quasisymmetric) and so has a
quasiconformal extension P:f,2*82, which is quasiconformal. f hen the ccmpo-
nents of n'g\P(n) are uniform domains (see [M]). thus the map PXId: A'*R' is

a topological flattening of p', (in fact since P1-1: € \4e see that this gives a flatten-
ing of the (n-l)-sphere 0'in fi'), that is FxIdlV:P1. Notice that as noted in

fI. 3, p. 158] if DcRz is unbounded and uniform, then DXR-å is uniform. Hence
both components of R'\0' are uniform domains. We now see the interesting aspect

of examples such as ours. The (n- l)-sphere Qn is locally quasiconformally flat ex-

cept at one point and not quasiconformally flat (it is topologically flat). While such

examples as these are not surprising for low dimensions (n=3), it is unusual for
dimension n>4. For there flatness offa discrete set is a removable condition. that
is if a sphere is locally flat except at a discrete subset, then it is flat [D., Corollary
3A. 5.1. Such a result is evid:ntly not true in the quasiconformal category as the above

examples point out. We summarize the above discussion in the following (c.f. [G,
Example2l).
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3.11. Theorem. For etery n>3 there is a topologicallyflat (n-l)-sphere in
P, which is locally (l+e)-quasiconformally fiat except at one point and not quasicon-

formally flat. Further both the components of the complement oJ'this sphere canbe chosen

to be uniform domains.

The importance of the conclusion that the complementary components of such

a sphere be uniform domains (which they are not in Gehring's example) stems from
my paper [M]where I tried to find high dimensional counterexamples to the decom-
position theorem for uniform domains (see [G. O.]). I found such an example in
dimension 3, where the idea was to force bad behaviour at one point. Such examples

as indicated in theorem 3.11 seem to suggest that higher dimensional counterexam-

ples may also be found using similar techniques.

4. Fuchsian anil non-elementary examples

We now wish to construct from our previous examples, Fuchsian and nonele-

mentary examples of discrete quasiconformal groups which are not the quasiconfor-

mal conjugates of Möbius groups. We denote by U'the upper half-space

(1, : {X: (Ir, Xz, ,..,rr)€R,: ,, = 0}.

In this section a Fuchsian group will be a discrete subgroup of Möb+(r), the group

of orientation preserving Möbius transformations of R', acting on (Jn as a group of
hyperbrlic isometries. A quasiconformal Fuchsian group is a discrete orientation
preserving quasiconformal group of U'. The restriction to the orientation preserving

case is merely for simplicity, the general case follows easily, see [T.4, Remark F2].
We identify the boundary of U'with R'-1.

If G is a K-quasiconformal Fuchsian group, then G extends naturally by reflec-

tion to a K-quasiconformal group G of R', see |V,32.51. The group G;B-' is then

a K-quasiconformal group of R'-t. When n:3, GlRz is quasiconformally conju-
gate to a subgroup of Möb+(2), (this group is often denoted PSL (2Cy{+1}), by
a K-quasiconformal mapping fr; Rz*Rz, see [T.2]. Now every such quasiconfor-

mal mapping can be extended to a K'-qaasiconformal mapping 7: E3*83, where

K' depends only on K and n:3 (this extension theorem is in fact true in all dimen-
sions and is quite deep, see tT. V.]). Thus the group fGf -t is a KK'2-quasiconfor-

mal group of U3 with conformal (or Möbius) boundary values, i.e.

fcf-rlR, c Möb+(2).

Hence in dimension three every quasiconformal Fuchsian group is quasicon-

formally conjugate to a quasiconformal Fuchsian group with conformal boundary
values. Consequently the nice situation in dimension two affects the behaviour of three

dimensional quasiconformal Fuchsian groups. It then seems that three dimensional
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quasiconforrnal Fuchsian groups that are not the quasiconformal conjugates of
Fuchsian groups may be difficult to find. Indeed Tukia and I propose the following

4.1. Conjecttre. Eaery three dimensional quasiconformal Fuchsian group is the

quasiconformal conjugate of a Fuchsian group.

It seems very likely that this is the case. The obvious candidate for the conjugacy

is the Poincar6 extension of the conformal boundary group, indeed if the associated

Möbius group has finite volume then up to a Möbius transformation of U3, this is
the only possible candidate by Mostow rigidity.

If we assume no torsion, then a quasiconformal Fuchsian group acts properly

discontinuously and effectively (see [G. M.]) so the quotient space will be a manifold.
If we then obtain a topological conjugacy to a Möbius group we can obtain a quasi-

conformal conjugacy by appealing to the L. Q. C.-Hauptvermutung in the compact
case, (see the next section). We may obtain such a topological conjugacy by using
some three manifold theory in some special cases,forinstance if the quotient mani-
fold is a compact Haken manifold, see [H]. Notice that the quotient of the associated

Möbius group acting on UB is always a hyperbolic manifold of constant negative

curvature. We will take another opportunity to discuss this conjecture in more

detail.
For higher dimensions we can easily construct discrete quasiconformal Fuchsian

groups which are not the quasiconformal conjugates of Möbius groups as follows.
Let G' be any discrete subgroup of maximal rank in Tukia's group. then G' is not
the quasiconformal conjugate of any Möbius group and G'is a Lipschitz group, that
is there is an L such that each g(G' is l-bilipschitz in the euclidean metric, see

Theorem 2.l3.T.he groap H:G'XId acting on U'+1 by

h(X) : (S'@), t) X : (x, t)€.Uo+t, h€H,

is also a Lipschitz group, and hence a quasiconformal Fuchsian group. Suppose for
contradiction that there was a quasiconformal mapping f: (ln+LtUo+l such that

fHf-' was a Fuchsian group. We observe that f extends to a quasiconformal map-
pingl: Un+t+An+L. Also the Fuchsian group fHf -1 is naturally defned on -Uo+l.

We then see

/f n,o.rf 1n ol-llR', : I lN o G' o I -tlr

is a Möbius group. With our choice of G'this is impossible. We have shown

4.2. Theorem. For euery n>4, there is a discrete quasiconformal Fuchsian
group which is not the quasicontormal conjugate of any Fuchsian (Möbius) group.

Indeed we may observe that any Möbius group, not ne@ssarily Fuchsian, con-
jugate to F/ would have to be free abelian on n-2 generators, and every element

would have to be parabolic. Thus such groups would be conjugate into E(n) by
a Möbius transformation.
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We now set

II' : F*oToF;t,

wheredisthemapof(2.12)andlisthegroupoftranslationsgeneratedby x*x*€1;
x*x*e1, i:3,4...n.

By Corollary 3.9, H'is not the quasiconformal conjugate of any Möbius group.

Now
r'*(x) : (fr/),y) x: (z,y)€RzXRn-8,

and
Fzll).ez Bz((m,l),6) is a translation on each component.

So therefore is F*ld where

E = l)^ez Br((*,1), ä)XR,-r.

We next observe that if t<7, then l(E)=.E. Thus if the euclidean ball

B : r*(8',((0, l, 0, ...,0), ä)),

then hlB is a translation for every h(H'. Actually we have found a subset B, of the
fundamental domain, on which ä'is conformal. We will see from the following
combination theorem that this is all that is necessary to construct quite complicated
quasiconformal groups. The main point is that if we combine a quasiconformal
group which is not the quasiconformal conjugate of a Möbius group, with any other
group, then the combination @nnot be the quasiconformal conjugate of a Möbius
group either. I am indebted to P. Tukia for suggesting the following version of the

classical combination theorem, see [F, Section 25, Theorem l3].

4.3. Theore m. Let Gt, i<1, be a family of K-quasiconformal groups of fu each

withfundamental domain Dy Suppose for each i€I there is an open set B1cD, such

that
giis conformal near Blfor all gftG1,

and that if i*j' then 
81.a, c .ar.

Then the group
G: (Gi: i€I),

the group gmerated by the Gi, is the free product of the Gi and is a K-quasiconformal
group and acts discontinuously in the open set

int((_l;61D).

Proof. We first show that the group is K-quasiconformal. bt SeC. Then we

can write g in the form
g: gnogn-to...og2og!

where no g; is the identity and no two consecutive g, and gt*l belong to the same

group G1. For each i=1,2,...'7, we set B,:8. and Dj:2;, where i€.I is an

index such that g;CGy
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We consider the sequence

x * gr(x) * gzgr(x) *...t g(x).
There are three cases.

(1) x€Bf. In this case 91 is conformal near x and since gr(Bf)aB{:0,
gr.@)eBt. thus we are reduced to considering this case again with the element
gnogn-to... og, with x replaced by g, (x). Recursively we see that g is conformal near x.

Q) x{Bi and gr(x)(Bf. In this case 8,1 is K-quasiconformal near x and
gr(x)eE'\B-lcB}. Then from case (l) we see that the element gnog,-ro...og, is

conformal near gr(x) so that g is K-quasiconformal near x.

13) x(BI and gr(x)€Bf . In this case g.r must be conformal near x for g;1 is

conformal near gr(x). Thus we need only examine the three cases again with the
element gnogn-ro...og, and x replaced by Cr(x).

Hence each g(G is K-quasiconformal. We may also see in a similar manner that
G acts discontinuously in int (nD,), this helps too to see that G is the free product.
Thus we assume that g€G has the above form and that the B, are again appropri-
ately relabeled. If int (nD,) is empty there is nothing to prove (this may indeed be the
case, in order then to see that G is the free product we need only observe that we could
assume that the index set l was finite so that int (nD,) was not empty), otherwise let
x(int(nD;). Then x(Df, sothat

cr(x)€R',\Di c R',\Bf c BI c D{.

Similarly, grgr(x)(Dt, and so on. Finally $'e see g(x)€ft"\D), so that

g(x)(OierDi,

for g(x) does not lie in Dj,. The proof is complete.
Returning to our construction we recall that we have shown that the group

H' : F*T*F-L,

was not the quasiconformal conjugate of any Möbius group and that each h€H' was
conformal on the euclidean Uall .B: F* (B'((0, l, 0, ... , 0), ä». A fundamental domain
for the group Zis easily seen to be

D : {(xr, x2, ..., x,): 0 = x, = l, i : 1,3,4...n}.

Thus a fundamental domain for the groap H' is then D' : F *(D).Notice that B c D' .

Next let Q be any Möbius group with fundamental domain containing A\8.
There are many such groups, for instance the group generated by inversion in the
sphere S-'((r, 1,0...0), ö12) or more generally a Schottky group generated by
reflections in spheres lying inside B. Then from Theorem 4.3. the group

G: (H,,e),
the group freely generated by H' and Q,will be a quasiconformalgroup. Sinceinfin-
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ity cannot be fixed by Q, as it is interior to a fundamental domain, we see that the
group cannot be elementary for infinity is a limit point for the group ä', so that

Q(*):{q(*): q€Qi is also contained in the limit set. this set must then be an

uncountable perfect set, see [G. ]\{.1. the group G could not be the quasiconformal

conjugate of a Möbius group since it contains the group ä' which is not quasicon-

formally conjugate to any Möbius group.
The group G will be discrete since it acts discontinuously in the region

D'nR'1,B=D\B+0.
Actually it is not difficult to see what a fundamental domain for G should be, although
proving that is rather complicated and immaterial to our considerations. Also we
could extend H'to a quasiconformal Fuchsian group, say flr:Il' XId, (this is pos-

sible since H' is actrally a Lipschitz group from Section 2).1f Qois a Möbius Fuchsian
group with fundamental domain containing U'\B'+1((0, 1,0...0), ö12), then we
see, as above, that the group Go: (Ho, Q) is a quasiconformal Fuchsian group,
since each element of I1o and Qo preserves U'+1, which is both discrete and non-ele-

mentary. By a process of infinite combination of such groups, or if we combined 110

with a sufficiently complicated Fuchsian group, we could have arranged that the limit
set was quite complicated, perhaps even all of P:DU'+l. However we could not
have arranged that a fundamental domain for Go was compact in (J'+L for then by
Tukia's result [f.4] the boundary group GolR'would be quasiconformally conjugate
to a Möbius group, which we know is impossible. We summarize the above discussion
in the following two theorems,

4.4.Theorem. For et:ery n>3 there is a discrete quaiconformal group of P
which is non-elementary and not the quasiconformal conjugate oJ'any Möbius group.

4.5. Theorem. For et;ery n>4 there is a discrete quasiconformal Fuchsian
group of U" which is non-elementary and not the quasiconformal conjugate of any

Fuchsian ( Möbius) group.

5. Quasiconformal groups and the L. Q. C. Hauptvermutung

If we consider properly discontinuous, free actions G on R', then there is a natu-
ral manifold to consider, namely the quotient space R"fG.If G is a K-quasiconformal
group then.R'/G will have a natural quasiconformal structure of bounded dilation K.
If ä is another properly discontinuous free action on .tr|', then G is conjugate to 11

if and only if there is a homeomorphism F:R"fG*R"/ä such that the following
diagram commutes,

Rtr I. Ro

IGI " llu
RnlG r- tr1n111,
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where F is the homeomorphismsuchthat FGF-L:H. We also note that this is
true with Un replacing R'. The L. Q.C.Hauptvermutung says that if two quasi-

conformal manifolds are homeomorphic, then there is in fact a locally quasi-

conformal homeomorphism between them, see [T. V.], if the dimension is not four,
or in the case the manifolds have boundary, the dimension should not be four or five.

In the case that H is a discrete subgroup ofrank n - I ofthe translation group 7
earlier described, and G is the corresponding subgroup of Tukia's group, then .F/ and
G are topologically conjugate, by construction, and so the manifolds R'iG and R'lH
are homeomorphic. They both have K-quasiconformal structures, in fact R'lH has a
conformal structure, hence by the L. Q. C. Hauptvermutung they are locally quasi-

conformally homeomorphic. They cannot be quasiconformally homeomorphic since
this quasiconformal homeomorphism would lift to a quasiconformal mapping con-
jugating the groups, which we have shown is impossible. The usual example of such
manifolds is of course the unit ball and .Rn, each of these has a l-quasiconformal
structure but there is no quasiconformal mapping between them, see [V, Theorem
17]. In the special case that G and ä are cocompact, that is R'lG and R'lH are com-
pact, topological conjugacy implies quasiconformal conjugacy, if n*4, for a locally
quasiconformal mapping on a compact manifold is quasiconformal. We have then
observed

5.1. Theorem.If G and H are co-compact K-quasiconformal groupsactingprop-
erly discontinuously and freely on Ro,n*A (resp.U') which are topologically con-
jugate, then in fact there is a quasiconformal self mapping of R' (resp. U') such that

fGf-r: n'
The problem of topological conjugacy of isomorphic groups is a difficult one.

Farrell and Hsiang [F. H.] have shown that if G is a co-compact properly discontin-
uous free action on .R' which is isomorphic to Zn as groups, then G is topologically
conjugate to the standard action of 7 on R', that is as a rank n translation group.

We thus obtain the following corollary which in some sense asserts that the
groups which we have constructed (the discrete quasiconformal Z'-r actions on R'
which are not the quasiconformal conjugates of the standard Zn-L action) are the
best possible.

5.2. Corollary. If G is a cocompact K-quasiconformal group acting on R,
n#4, properly discontinuously andfreely, andwhich is isomorphic to Z' as a group,
then G is quasiconformally conjugate to the standard Zn action on R'.

Farrell and Hsiang have also obtained some results on groups acting cocompactly
oi U', which would then imply some results in the quasiconformal category. It is
true that every R-manifold (n*4 without boundary and n#4,5 with boundary)
has a local quasiconformal structure, see [T. V.]. It would be very interesting to know
just when this structure is quasiconformal, that is when is there an atlas of K-quasi-
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conformal coordinate charts? This is always the case if the manifold is compact and
Kuusalo, [K], has shown that every L. Q. C.-2-manifold has a conformal atlas. An-
other interesting question is to decide when the quasiconformal universal cover of a
manifold is Un? Note that U" and Rn are quasiconformally inequivalent. Such mani-
folds can be of fairly general type, for instance all the constant negative curvature
manifolds. However such manifolds must have some inherent geometry since the
fundamental group must then act as a quasiconformal Fuchsian group and such

actions must be reasonably nice. Indeed in the case n:3 and the cocompact case for
all n (as we had earlier remarked), the fundamental group must in fact be quasicon-

formally conjugate to a subgroup of Möb (n-l), see [T. 4'l.lf n:3, Möb+ (2) can
be thought of as PSL(2,C)l{tll and such manifolds are known as hyperbolic
manifolds (conjugation into PSL (2, C) is a stronger conclusion than the usual

requirement that there be a discrete and faithful embedding into this group). It seems

clear that the geometry and structure of quasiconformal Fuchsian groups, as well as

general quasiconformal groups, may play an important role in the general theory of
geometric structures on manifolds in all dimensions, including the case z:3.
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