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NORMALITY AND THE SHIMIZU—AHLFORS
CHARATERISTIC FUNCTION

SHINJI YAMASHITA

1. Introduction

We shall propose criteria for a function meromorphic in the open unit disk D to
be normal in the sense of O. Lehto and K. 1. Virtanen [2] in terms of the Shimizu—
Ahlfors characteristic function. The spirit of the proof is available to find criteria for
a holomorphic function fin D to be Bloch in terms of mean values. Furthermore,
we observe that if f is holomorphic and bounded, | f|<1 in D, then f'is of hyper-
bolic Hardy class H! [4] in each disk of center <0 internally tangent to dD.

For fmeromorphic in D= {|z|<1}, the Shimizu—Ahlfors characteristic function
of f'is a nondecreasing function of ¢, 0<g=1, defined by

T, ==t :t‘l [fflzl<x f*(2)?2dx dy] dt,
where f*=|f’|/(1+|f[?). Therefore, the Shimizu—Ahlfors characteristic function
of f(a+(1—lal)z), z€D(a€D), is
T.a, = [ [, f*@rdxdy]d, 0<es1,

where D(a, ¢9)={|lz—a|l<(1—|a])¢}, a€D,0<p=1. In nparticular, T(p,f)=
T(0,0,f), 0<e=1.
A necessary and sufficient condition for f meromorphic in D to be normal is that
supzep (1 =12 * (2) <eo.

Theorem 1. For f meromorphic in D, the following are mutually equivalent.
() fis normal in D.
(1) For each c,0<c<1, we have

1.1 sup T(1,a, f) <.

c=la|<1

(III) There exist ¢,0<c<1, and 9,0<g<1, such that
(1.2) sup T(g, a, f) <<e.

c=la]<1
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Thus, fis normal in D if and only if fis of bounded characteristic “uniformly” in
each disk D(a, 1) when a is near 9D.

What is the holomorphic analogue of Theorem 1? We shall give criteria for f
holomorphic in D to be Bloch, namely,

sup(1=[z)1f" (2] <o,
zZ€D
in terms of the mean values. For # subharmonic in D we set
1 pon i
Mg, ) = 5 [T uleedt, 0<o<1.
Replacing u by u(a+(1—lal)z), zED, we set
_ 1 pom ;
M(g, a,u) = —Z?fo u(a+(1—|al)ge™) dt.

Then, M(o,u)=M(o,0,u). We further set M(1, a, u)=lim,, M(g, a, u), so that
M@, w)=M(1, 0, u).

Theorem 2. For f holomorphic in D, the following are mutually equivalent.

(D) fis Bloch.
(1) For each c,0<c<1, we have
(1'3) sup M(ls a, |f—~f(a)|2) <o

c=laj<1

(III) There exist ¢, O<c<1, and @,0<g<1, such that

(1.4 sup M(g, a,log|f—f(a)]) <=

c=laj<1

Thus, fis Bloch if and only if £ is of Hardy class H? “uniformly” in each disk
D(a, 1) when a is near 9D.
We note that (1.4) is weaker than

(1.5) sup M(o, a, |f —f(@)?) <=

c=lal<1

As is observed by Lehto [1] (see also [4]),
(1.6) M(g, a, |f—f(a)l) = 2T:(e, a, /),

where
T a N=n" [ [ff, W @Fdxdy]d, 0<e=1;

this is a consequence of the Green formula

- M0, 1) = o [ ., 407 =F@) dx .
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together with A(| f—f (a)|*)=4| f’|>. One can now recognize that (1.3) ((1.5), re-
spectively) is an analogue of (1.1)((1.2)).

Finally, let o(z, w)=tanh~!|(z—w)/(1—wz)| be the non-Euclidean hyperbolic
distance of z and w in D. Let /' be holomorphic and bounded, [f|<1, in D. As will
be observed later, we have

(1.7 IM(Q, a, o(f; f(a))) —T:(o, a,f)l =log2, 0<g=<1,
where
To(e.a )=nt [L[[f, 1*(2rdxdy]dr,
with f*=|f"|/(1—|f]®. Since by the Schwarz—Pick lemma
(I-lzP)f*(2) =1, zeD,
we shall be able to prove

Theorem 3. For f holomorphic and bounded, | f|<1, in D, and for each c,
O<c<1, we have

(1.8) sup M(1,a,0(f, () =

——;——L———+10g2.
eslal<1 Ve(l+c)

The condition (1.8) reads that fis of hyperbolic Hardy class H [4] “uniformly”
in each D(a, 1) when a is near 9D.

2. Proof of Theorem 1

Parts of the following lemmas will be of use.

Lemma 1. The hyperbolic area
S@o = ff,,, A-lzD2dxdy

of D(a, @), a#0, 0<g<1, satisfies

2n 0? - _ T 02
@D DGy =g = 5@ 9 = T T

Proof. For wéD, O<r<1, we set
AWw, r) = {z€D; |z—w|/|l —wz| < r}.

With the aid of the well-known facts (see for example [3, p. 511]) we obtain D(a, ¢)=
A(p, R), where

2R=A—(A2—4)'2, A4 = {1+]a]+(1—]a])e%/e
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(we do not need the expression of p). Since
S=5(a, 0 =7R*/(1-R?
[3, p. 509], it follows that

(_1?_—7:)'%;_1/—2—‘5‘-1 =VQ [1+]al+(1=lal) > +(Q (1 —g?))],

where Q=(1+|a|)?—(1—la|)?0% We thus obtain (2.1).

Lemma 2. For f meromorphic in D the following hold.
() fis normal in D if and only if there exist ¢, O<c<1, and r, O<r<1, such that

sup ff )f#(z)zdxdy<n.

c=|w|<1

(b) lim; ), (122 f*(2)=0 if and only if there exists r, O<r<1, such that
lzvilr-r}l f/A(w,r) f# (Z)z dx dy = 0.

This is [5, Lemma 3.2]; our Lemma 2 is worded somewhat differently in (a), but
the proof is the same as in [5, p. 354] because (1—|z[|?) /¥(z) is continuousin D.

We begin with the proof of (I)=(II) in Theorem 1.

There exists K=0 such that

f#(z)zéK(l—lzlz)_Zs Z€D,
so that, by (2.1) with c=|a|<1, we have

K 0*
Ye(l+¢) (L=

ffD(a’e) [*(2)?dxdy =

Consequently, T(1,a,f)=K/{Vc(1+¢)} for c=la<l.
Since (II)= (I11) is trivial, what remains for us to prove is (III)=(I). The func-
tion X(z; a, t) is defined for z€D to be one if z€D(a, t) and zero otherwise. Then

T(o,a, ) =n [ [[117X(z5 a, ) di] f# (22 dxdy

e(1—lal)

—-n‘lffp( F#(2)?log = Idxdy

Letting p be the supremum in (1.2) we choose § such that 0<J&<e™*. Since

4(a, ¢5/3) < D(a, ¢6) < D(a, 0),
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it then follows that
=1 H 2 Q_(I.:@.
L=n fjbw)f (2)2log 7] dx dy

=n"1(-logd) [[ ey [T @ dx dy

= n~1(~log ) [ jA F*(2)?dx dy,

(a, @8/3)
or,

2 - -
/ fd(a,em) f¥(2)¢dxdy <m2<m.

It follows from the “if” part in (a) of Lemma 2 that fis normal in D. This completes
the proof of Theorem 1.
It is now an easy exercise to prove

Theorem 4. For f meromorphic in D, the following are mutually equivalent.
@ [limQ —|z[Af*(2) = 0.
1) [lilr_{ll T({,a, f)=0.
(III) There exists @, 0<g<1, such that
lim T(e,a, /) = 0.

As is observed in Section 1, there is a simple relation (1.6) for holomorphic
functions. This is also the case for meromorphic functions.

A meromorphic function fin D can be expressed as f=fi/f;, where f; and f;
are holomorphic with no common zero in D. Then F=log (| fil*+] f21?) is subhar-
monic in D with AF=4f*2 With the aid of the Green formula

d -
er(r, a, F~F(a)) = 2z~ [ [ et @ dxdy,

one can obtain
M(o, a, F-F(a)) =2T(0,a,f), 0<g¢=1

3. Proof of Theorem 2

The proof of (I)=(II) is similar to that of Theorem 1 in view of (1.6).
Since (II)=(III) is trivial, we shall show that (II)=(I). There exists a holo-
morphic function g on D such that

zg(2) = f(a+(1—lal)ez)—f(@), z€D,
so that g(0)=(1—lal)ef’(a)- Since log |g| is subharmonic on D, it follows that

log |g(0)] = M (1, log lgl) = M(o, a, log |f—f(d)]) = K,
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where K is the supremum in (1.4) and c=la]<1. Consequently,

sup [ —laP)|f’(a)| = 2¢¥/e,

c=la|<

which, together with the continuity of (1—|z[*)| f"(z)] in D, shows that fis Bloch.
This completes the proof of Theorem 2.
In a similar manner we can prove

Theorem 5. For f holomorphic in D, the following are mutually equivalent.
@ fim A-1z)17@I=0.
an 1!};’31 M(1, a,|f-f(a)]%) = 0.
(III) There exists @, 0<g<1, such that
lim M(e, a, log lf—f(@)l) = — ==
For each p, 0<p<-<o, we have

exp [ pM(e, a, log | f—f ()] = M(e, a, | f—/(a)I?)
= M(l’ a, If—f(a)lp),
so that, setting p=2, one can conclude that (II) implies (III).

4. Proof of Theorem 3

First of all, if fis holomorphic and bounded, | f|<1, in D, then both
logo(f,0) and log [log T:%?—IE)
are subharmonic in D; see [4]. Setting

¢4 (2) = (z—w)/(1-Wz), z, weD,
we have

—log (1—lp,of 1) = 20(f, w) = —log (1—|@,of ") +1og 4,

because —log (1—x?)=20(x,0)=—log(1—x*+log4 for O=x<1. Since
—Adlog(1-|p,of |H)=4f*% weD, it follows that

P (M0 () log (1~ gl ) = 77 [ [, FFdxdy.

We thus obtain
M(Qa a, —(1/2) IOg (1 —Igof(a)of|2)) = T2(Qa aaf)’

whence (1.7). Theorem 3 is now easily proved.
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We finally propose

Theorem 6. For f holomorphic and bounded, |f|<1, in D, the following are
mutually equivalent.

@ ‘131211(1 —|z1)f*(2) = 0.
M) lim M(1, a, —log(1=1¢s@ef1)) = 0.
(II1) There exists @,0<g<1, such that
lim M(e, a, log{~log (1 ~lp@ef 1Y) = —==.

It is easy to see that (II) implies (III). The detailed proof of (III)=(I) must be
given.
There exists a holomorphic function g on D such that

28(2) = (ps@mof)(a+(1—lalez), z€D,
so that |g|<1 in D, and |g(0)|=(1—|al)ef*(a). Since
12(0)|2 = —log (1—2(0)]2),

21og [g(0)| = M(1, log {—log (1 —|gI®)})

= M(Qs a, 10g {—IOg (1 _l¢f(a)ofl2)})a
whence lim,-; (1—|a]) f*(@)=0.

it follows that
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