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NORIUALITY AI§D THE STIIMIZU_NTLFORS
CHARATERISTIC FUNCTION

SHINJI YAIVIASHITA

1. Introduction

We shall propose criteria for a function meromorphic in the open unit disk D to
be normal in the sense of O. Lehto and K. I. Virtanen [2] in terms of the Shimizu-
Ahlfors characteristic function. The spirit of the proof is available to find criteria for
a holomorphic function f in D to be Bloch in terms of mean values. Furthermore,
we observe that if f is holomorphic and bounded, lf l=l in D, then f is of hyper-
bolic Hardy class ä1 [4] in each disk of center #0 internally tangent to 0D.

Forlfmeromorphic in D: {lrl= l}, the Shimizu-Ahlfors characteristic function
of/is a nondecreasing function of g, 0< q= l, defined by

T(0, f): "-, lir-rf,firr-,f+ (z)z dx ityJdt,

where .f*:lf'll!+ l/12). Therefore, the Shimizu-Ahlfors characteristic function
ot f(a+(l-lal)z), zeD(a€D), is

r(Q, a, f) = n-t ti r-r lf[ 
^",, 

f+ (z), dx dyl dt, 0 = q = t,

where D(a, p): {lz-al=(l- Ial)e}, a(D,0< q<1. In particular, T(e,f):
T(p,0,f), 0=p= 1.

A necessary and sufficient condition for/meromorphic in D to be normal is that

§ups6e (l -lzl)f+ (z) = *.

Theorem 1. For f meromorphic in D, the followtng are mutually equiualent.
(l) f is normal in D.

(ll) For each c,0<c<1, we haue

(1.1) 
"jilr,_rt(r, 

a, f).--.

Qll) Thereexist c,O<c=|, and 8,0=g=1, suchthat

(r.2) 
"j;l_r 

r(n, a, f) = *.
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Thus,/is normal in D if and only if/is of bounded characteristic "uniformly" in

each disk D(a,l) when a is near åD.
What is the holomorphic analogue of Theorem 1? We shall give criteria for/

holomorphic in D to be Bloch, namelY,

sup (l - lzl'?)l f' (z)l = *,

in terms of the mean values. For a subharmonic in D we set

M(o,u) : * l:" u(qet)dt, o < s < 1.

Replacing uby u(a+(l-laD4, e€D, we set

M(Q, a,rr : + I:" u@+(r-lal)qe\ dt.

Then, M(p, u): M(Q,O, a). We further set M(7, d, u):li6o-, M(Q, a,u), so that

M(l,u):11[(1,0, n).

Theorem 2. Forf holomorphic in D, thefollowing are nrutually equh:almt.

(I),f ,s Bloch.
(ll) Foreach c,0<c<1, wehaue

(1.3) 
"jllP=,r(,, 

a,lf-f(a)1z\ < *,.

(lll) There exiyt c, 0<c< l, and Q, 0< Q= l, such that

(r.4) 
"jl]l-,r(n, 

a,roelf-f(a)l) =*.

Thus, /is Bloch if and only if/is of Hardy class I12 "uniformly" in each disk

D(a,l) when a is near åD.
We note that (1.4) is weaker than

(1.s) 
"ji:r,=,r(n,a,lf 

-f(a\l\=*.

As is observed by Lehto [1] (see also [4]),

(1.6) M(Q, a,lf*f(a)l'):27'(q, a,f),

where

r,(q, a, f) : "-, I:,-,.III ^,,rlf' 
Q)l' dx dyldt, 0 = I < 1 ;

this is a consequence of the Green formula

t$ a1t, a,lf -f(a)l\ : § II ,r,,,t Å(f -flo)l\ dx dv,
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together wrth Å(lf-f (a)lr)=4lf'12. one can now recognize that (1.3) (t.s;, re-
spectively) is an analogue of (1.1)((1.2)).

Finally, let o(z,w)=tanh-rl(z-w)lQ-fr2)l be the non-Euclidean hyperbolic
distance of z and w in D.Letf be holomorphic and bounded, lf l=1, tn D. As will
be observed later, we have

(1.7) ltut(o,a,oU,f@)))-Tr(o,o,f)l=los2, 0 = q = 1,

where

T,(q, a, f) : "-, I:r-rlll or,of*e), itx dyldt,

with jf*: lf'llL- l/l'?). Since by the Schwarz-Pick lemma

(l-lzl2)f*(z) = l, z€D,

we shall be able to prove

Theorem 3. For f holomorphic and bounded, lf l=1, in D, and for each c,
0=c= l, we haue

(1.8) sup M(t,a,o(f, f(a)))= J- *bg2.c=lal<r ll c(l*c)

The condition (1.8) reads that/is of hyperbolic Hardy class I1l [4] "uniformly"
in each D(a,l) when a is near äD.

2. ProofofTheorem 1

Parts of the following lemmas will be of use.

Lemma l. The hyperbolic area

,s(a, e) : f f or",n {t-lzl\-z dx ity

of D(a, q), a*0, 0< 4< l, satisfus

\-.-., -(i1;,Dffijl Gffi: v\!,, *,: yrrnr+loD!-11)u-i.

Proof. For w(D, 0<r<.1., we set

Å(w, r) : {z(D; lz-wllll-frzl = rl.

With the aid of the well-known facts (see for example [3, p. 5t l]) we obtain D(a, p):
./ (p, R), where

2R: A_(Az_4)ttz, ,q. : {t+lal+(1 _laDgrlle
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(we do not need the expression ofp). Since

§ : §(4, s) : zrR'z/(l-R2)

[3, p. 509], it follows that

2nQ'
(t -A,Iz-s-t: @ tl+lal+(1-lal)q'z+ (Q0-e\)'tI,

where 2:11+ lal)'-(1- laD'e'. We thus obtain (2.1).

Lemma 2. For f meromorphic in D the following hold,
(a) f is normal in D if and only if there exist c, 0=c= l, and r, O<r<1, such that

)f§'rll o""'' f+ (z)'dx dY = n'

(b) lim1"1-r 0-lzl\f+(z):O if and only if there exists r, 0<r<1, such that

,*P, II or*,,rf+ 
(z)'dx dv : x'

This is [5, Lemma 3.2]; our Lemma 2 is worded somewhat differently in (a), btit
the proof is the same as in [5, p. 35a] because (l - 12121 1'+ 1z) is continuous in D.

We begin with the proof of (I)==+(II) in Iheorem 1.

There exists K>0 such that

f+ (z), = I((l -lzlz)-2, z€D,

so that, by (2.1) with c< lal=|, we have

[lr*,rf"(z)zdxdY =ffiC#
Consequently, T(1, a, f)= Kl {1ft(l + c)} for c< lal= 1.

Since (II)+(III) is trivial, what remains for us to prove is (III)+(I). The func-

tion X(z;a,t)is defined for z€D to be one if z(D(a,l) andzero otherwise. Then

T(Q, a, fi : n-' II rl[a rtx(z; a, D dtl f+ Q)z dx dv

n-, f f or",..,f+tz),rceffiaxa».

Letting p be the supremum in (1.2) we choose ä such that 0<ä<e-ep. Since

Å(a, aö13) c D(a, qö) c. D(a, Q),
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it then follows that

p = n-, II ,s,,051f+ 
(z)zroeffi a* at

= n-t (-'bg» ![ ,r.,n, f+ (z)' ilx d!

= n-L (-bg» [! 
^@,ca,.)f+ 

(z)z dx itv,

of,

f I oo,norrtfo 
(z)z itx dv < nl2 = n.

It follows from the "if" part in (a) of Lemma 2 that f is normal in D' This completes

the proofofTheorem 1.

It is now an easy exercise to Prove

Theorem 4. For f meromorphic in D, the following are mutually equiaalent.

(I) åigt, -lzlz)f +(z): o.

(II) ,lim- 7(1, a, f):0.
lol* L

(lll) There exists q, 0<q< l, such that

,l!m- 7(q, o, f):0.lal*r

As is observed in Section 1, there is a simple relation (1.6) for holomorphic

functions. This is also the case for meromorphic functions.

A meromorphic function f in D can be expressed as f:frlfr, where;fi and .fs

are holomorphic with no common zeto in D. Then F:log (1,61'+1,61') is subhar-

monic in D with ÅF:4f+2. With the aid of the Green formula

il_
, fr a(r, a, F - F(a)) : z"-' fi oro,,rf+ 

(z)' dx dY,

one can obtain
M(Q, a, F- F(a)) = 2T(Q, a,f), 0 = q = l'

3. Proof of Theorem 2

The proof of (I)=+(II) is similar to that of Theorem 1 in view of (1.6).

Since (II)+(III) is trivial, we shall show that (III)+(I). There exists a holo-

morphic function g on D such that

zg(z) : f(a + (r -lal)qz) -f(a), z(D,

so that g:(0):(1- la)Of '@). Since log lgl is subharmonic on D, it follows that

log lg(0)l = M(t,loe lgl) - M(e, a,toglf-f(a)l) = K'
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where Kis the supremum in (1.4) and cslal< l. Consequently,

"j[P=, 
Q - lal'z)l f ' (a)l 

= 2eK I P'

which, together with the continuity of (1-lzl\lf'@)l in D, shows thatf is Bloch.
This completes the proof of Theorem 2.

In a similar manner we can prove

Theorem 5. For f holomorphic in D, the following are mutually equiualent.

(D 
r1ig,«t -lzlz)lf' (z\l : o'

0D lÅ\*(r, a,lf-f(a)lz) : s.

(lll) There ertsts q,0< g< l, such that

,lÅ\r, 
u (n, a, log I f -f (a) l) : - *.

For each p,0=p=6, we have

exp lpM (0, a, loglf-f(r)l)] = M (s, a, lf-f(a)l\
= M(1, a,lf-f(a)lr),

so that, setting p:2, one can conclude that (II) implies (III).

4. Proof of Theorem 3

First of all, if/is holomorphic and bounded , I f l= l, in D, then both

logo(I o) and r"r (t"*6fu)
are subharmonic in D; see [4]. Setting

we have 
q*(z): (z-w)l(l-fr2), z, w(D,

-log (l -lE*"f11 = 2o(f, w) = -log (l -lE*o.f l\ *log 4,

because -log (1-x'z)=2o(x,0)= *Iog (1-x'z)+log 4 for Q=1< 1. Since

- Ålog(l-lE*ofl\:4f*', w(D, it follows that

,${rr,a, -(tI2) log(1- lvpro7111: n-'f f rr,,,,f*(z)'dxdt.

We thus obtain

M(Q, a, -(Uz)log(l-Vpfl")"fl\): Tz(Q, a,f),

whence (1.7). Theorem 3 is now easily proved.
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We finally propose

Theorem 6. For f holomorphic and bounded, lfl-l, in D, the following are

mutually equiualent.

(D ,l!m- (l -lzlz)f*(z) : Q.
lzl+ L

(ID 
åifrrn(t, 

a, *log(1 -lax">"fl\) : o.

(lll) There exists 8,0<g<1, such that

,l"ig 
r(n, a, log {-log (r -lqrc»"fl')}) : - -.

It is easy to see that (II) implies (III). The detailed proof of (III)+(I) must be

given.

There exists a holomorphic function g on D such that

zg(z) : (ep1of)(a+(t - lal)ee), z€D,

so that lgl< I in D, and lg(0)l:(1- lal)o/*(a). Since

le(0)l' = -log (t *lg(0)l'),
it follows that

2log lg(0)l =- M(t,log {-log (l -lel')})
: M(Q, a,log {-log (L-lEraffl\}),

whence lim;o1 -r Q - lal) f * (a): a.
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