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SPLITTING TWISTED SUMS OF NUCLEAR KOTHE
SPACES

KAISA NYBERG

1. Introduction. In the present paper we continue the work started in [2]. There
we showed that the middle space X in a short exact sequence 0—E—X-F—0 of
nuclear Fréchet spaces can be represented as the direct sum of E and F equipped with
the topology “twisted” by a sequence of linear maps from a dense subspzacz of Fto
E [2, Theorem 2.5]. This representation was used to give a sufficient condition for
splitting short exact sequences of nuclear K&the spaces. In this paper we shall prove
the necessity of this condition.

Other splitting conditions have been introduced by D. Vogt in [6]. One of these,
called (S*), which is known to be necessary, was recently proved by J. Krone and
Vogt to be sufficient for nuclear Kothe spaces [3]). We shall directly show that (S*)
implies our splitting condition; thus we have a second proof for the sufficiency of
(S*) essentially contained in [2].

Applications of the sufficient splitting condition can be found in [2] and [4] (see
also [1]), and in [3]. We refer to [2] for the unexplained terminology.

2. The splitting. In nuclear Fréchet spaces E and F we consider fundamental sys-
tems of continuous seminorms || . ||, such that the corresponding unit balls form
neighbourhood bases of the origin. In the dual space E’ we have RuU {}-valued
norms defined as follows:

1%, = sup {I¢x, X)) [Ix], = 1, x€E}.

Assume that E has a basis (e,) and let (e)) be the corresponding coordinate func-
tionals. By virtue of nuclearity, the topology of E is determined by the fundamental
system of seminorms

Ixl, = sup 1Ges el leall, (o xl, = 37 1<xs el el ).

We call these the sup-seminorms (or sum-seminorms) in E with respect to (e,).
! The proof of this theorem contains a mistake which was pointed out to the authors by Pawet
Domariski. To correct the theorem it is sufficient (and also necessary) to assume that the second

space F has a continuous norm. For example, the short exact sequence 0-s—s—s¥—0 constructed
in [5, Lemma 1.6] cannot be represented in this way.
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Let us recall the following splitting condition given in [2]:

(1S) Yo: N> N39: N> N VYp,q,p>¢q,x€E’, yc¢F

S0 X1 lew = 1% 117 o+ 1% 110 Lo -
An equivalent formulation of this condition is
(TS Yo: N—- N 3Jo: N> NVYp,q,p>q,x'€E’, yeF
Jnax [ X, [yloe = 1%l 1¥lew + 1% 1517 lecrr-

To verify that (TS’) implies (TS), let o: N— N be arbitrary. Let ¢ be such that
1¥loy=2""l¥llyey forall ré N and y€F. Now use (1S’) for ¢ to get o. Then this ¢
satisfies (TS) with o.

Lemma 2.1. If the nuclear Fréchet spaces E and F have bases, then (1S) implies
that F admits a continuous norm.

Proof. Let (e,) and (f,,) be bases in E and F. Let o and ¢ be such that (TS) is
satisfied, and assume that there is no continuous norm in F. Then there is ¢ and m
such that || £,ll,,,=0. By (1S) we have

(1) "fm“ a(r) “e;”r = “fm”e(l)) "el’l“p

forall n, p, and r, p>r=gq. There is ry such that | f,l,.,>0 for every r=r,. Also,
for every n, there is p such that ||| ,< <. Thus it follows from (1) that len|l,< oo for
every nand r, r=r,. By nuclearity thereis p, p=r=r,, such that

lim [ /lesl, = lim Le/leal, = 0.

Consequently, by (1), || full;,=0 for all r=r,, which cannot be true since F is
Hausdorff.
We have the following theorem.

Theorem 2.2. Assume that the nuclear Fréchet spaces E and F have bases (e,) and
(fw)- Then the following three assertions are equivalent:

() (IS) holds for every fundamental system of sum-seminorms | .|, in E such
that 1im, . lle,ll /el ,+1=0, pEN. o

(i) There is a fundamental system of seminorms in E such that (1S) is satisfied.

(iii) F admits a continuous norm and every short exact sequence 0—~E—~X-F—~0
splits.
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Proof. The implication (ii)=(iii) is Theorem 4.1. of [2] together with the previous
lemma. It remains to prove that (iii) implies (i).

We shall first construct a suitable short exact sequence. To do this, we consider
the sup-seminorms in E. Let ¢,>0 be such that > ¢,=1. Now fix » and m for
a moment and let g<r. Since F has a continuous norm and E is nuclear, there is an
index n{m, r, g) such that

(2) ”er:”r/n e;”q = Cr “fm][a(q)/”f;n”o(r)

for n=n(m,r,q). Thus there exist indices n(m, r) such that n(m,r)<n(m,r+1)
and n(m, r)=max,=,<, n(m,r, q).

We denote the algebraic linear span of the basis (f;,) by F, and define linear
maps A,: Fy—E as follows:

Ay f,, =0, mEN,
Avsafo = Aefut | flow 2003 lerl en.
Since ([ 4,41/w— A fulls =1 fullsry» the maps A4,,r€ N, define a short exact sequence
©) 0—E—Ef, Fp~ F—~0,

where the middle space is the completion of the direct sum EX F equipped with the
topology defined by the seminorms

(x’ y) = [E(x9 y)”r = !Ix—Aryllr+ “y“o(r)

[2, Lemma 2.3 and Theorem 2.4]. By the assumption (3) splits; consequently, by
[2, Theorem 2.6], there exists a map 4: Fy—E and a function g: N— N suchthat
for every r and m

(4) “Afm—’Arfm”r = ”fm“e(r)'

Now let ¢, p, g<p and m be arbitrarily fixed. We have three possibilities.
(i) n=n(m, q). By the definition of the maps 4, we have

Zf;; ufm”a(r) Her’t”r = Zf;ql <Ar+1fm-Arfm’ el:> = <Apfm’ el’1>_<Aq.fma el’l>
= <Apfm_Afm’ e;>+<Afm_Aq mo el,l> = "fm"a(p)”e;“p_{'”fm][e(q)”e;tnq’

where the last inequality is obtained by (4).
(ii) n(m, p)<n. In this case we use (2):

72y Walewllely = 272 el fulloa lenlla = 21 fullsa lenly-

Now choose g such that 2| . |[,,=| - > and we have (TS).
(iii) n(m, g)<n=n(m, p). This case is a combination of (i) and (ii). There is an
ro, gq=ro<p suchthat n(m, r))<n=n(m, ry+1). Let us devide the sum

el flewlenls = S+ 3000
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into two parts and apply (ii) to the first part. As to the second part, we observe
that, by the definition of the maps 4,, we have (A4,,; fp—A4, [, €,)=0 for g=r=r,
because n>n(m, ry)=n(m,r). Thus

f-::;+1 nfm"o‘(r) "e;“r = ,{:-:;4_1 <Ar+1fm—Arfm’ er’n> = Zf;; <Ar+1fm—Arf;ua e}’l>9

and we can continue as in (i). Finally, increasing ¢ we put the parts together to obtain
(1S) for the basis vectors.
Let us now assume that we have the sum-seminorms in E. Then

1%, = sup [es, X"l [ ezl
neN

Since (TS) does not depend on the chosen system of seminorms in F, we may consider
the sup-norms. Now it is easy to see that (TS) holds for all vectors x”in E” and y in F.
It might be of some interest to compare (IS) with the following condition:

CY) Vu 3ng, k VK, m 3n: [ Xyl = 151l yln+ 1% 1yl % €E% yEF,

which, as a result of completely different methods, has also been proved to characterize
the splitting of every short exact sequence 0—~E-X-F—0 at least for nuclear
Kothe spaces E and F [3].

It is easy to show directly that (S*) implies (TS).

Proposition 2.3. If (S*) holds for given fundamental systems of seminorms

in E and F, then, passing to a subsequence of the system of seminorms in E, we
have (1S).

Proof. We use (S*) and choose for every u indices ny and k=k(u) such that

(S*) is satisfied. Since ||x'|[;=|xlls for every k=k(u) and x’€E’, (S*) holds
for every k=k(u). Thus, passing to a sequence of seminorms in E, we have

(®»  Vu 3n, Yk=u+1 VK m 3n: [ X y]n = Xl + 1%k [ ¥]a-

Now let o: N— N be a function and g<r<p. We use (5) to get n,=¢(g) such
that for every k=r, m=0o(r) and K=p thereis n=n(r, p, ) such that

11 1oy = 1X 1oyl o+ 1515 1 ]a-
We set ¢(p)=max, ., n(r, p, 0); then for every r, g<r<p, we have

X1 1Mo = 1% 1o 17l o+ X 1o 1V e -

Now we increase g if necessary to obtain (TS’).



Splitting twisted sums of nuclear Kothe spaces 237

References

[1] HEBBECKER, J.: Auswertung der Splittingbedingungen S, und S, fiir Potenzreihenrdume und
Lg-rdume. - Diplomarbeit, Wuppertal, 1984.

[2] KeToNEN, T., and K. NYBERG: Twisted sums of nuclear Fréchet spaces. - Ann. Acad. Sci. Fenn.
Ser. A I Math. 7, 1982, 323—335.

[3] KronE, J., and D. Vogr: The splitting relation for Koéthe spaces. - Math. Z. 190, 1985, 387—400.

[4] NYBERG, K.: Tamzness of pairs of nuclear power series spaces and related topics. - Trans. Amer.
Math. Soc. 283:2, 1984, 645—659.

[5] Vogt, D.: Characterisierung der Unterrdume von s. - Math. Z. 155, 1977, 109—177.

[6] VogT, D.: On the functors Ext! (E, F) for Fréchet spaces. - Preprint.

University of Helsinki
Department of Mathematics
SF-00100 Helsinki

Finland

Received 7 March 1985



