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BILIPSCHITZ AND QUASISYMMETRIC
EXTENSION PROPERTIES

JUSSI VAISALA

1. Introduction

Let X and Y be metric spaces with distance denoted by |a—b|. A map f: X—Y
is called L-bilipschitz, L=1, if

Ix=yI/L = fx)—f)] = Lix-yl|

for all x, y€ X. We say that a set AcX has the bilipschitz extension property (ab-
breviated BLEP) in (X, Y) if there is L,>1 such that if 1=L=L,, then every
L-bilipschitz  f: A~Y has an L,-bilipschitz extension g: X—Y, where L,=
L(L,A,X,Y)~1 as L—1.

Similarly, A4 has the quasisymmetric extension property (abbreviated QSEP) in
(X, Y) if there is s5,>0 such that if 0=s=s,, then every s-quasisymmetric f: 4—~Y
has an s;-quasisymmetric extension g: X—Y, where s,=s5,(s5,4,X,Y)~0 as
s—0. The definition of quasisymmetric maps will be recalled in 2.2.

We also say that 4 has one of these properties in X if 4 has this property in (X, X).
If A4 has both the BLEP and the QSEP in (X, Y) or in X, we say that 4 has the exzen-
sion properties in (X, Y') or in X, respectively.

In this paper we consider the case where X is the euclidean n-space R" and Y is
an inner product space. Without loss of generality, we may assume that Y is a linear
subspace of the Hilbert space /,. The main results are Theorems 5.5 and 6.2. These
give sufficient conditions for a set 4CR" to have the extension properties, the first
one in R", the second one in (R", Y). Both conditions are somewhat implicit, but
we show that the first one applies to all compact DIFF and PL (n— 1)-manifolds, the
second one to all compact convex sets and to all quasisymmetric n-cells.

In a joint paper [TV,] with Pekka Tukia, we proved that R? and S” have the
extension properties in R” for p=n—1. In Section 4 we extend these results to the
relative case (R", Y).

The basic idea of the extension proofs of the present paper is the same as in
[TV,]: We choose a suitable triangulation of R™\ 4, define the extension g at the
vertices, and extend affinely to the simplexes. Thus g will be PL outside A. However,
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to define g at the vertices, we must replace the rather explicit constructions of [TV,]
by an auxiliary approximation theorem, which will be given in Section 3.

In Section 7 we give several examples of sets ACR" which do not have the
extension properties in R" or in (R", Y). It is not easy to find an example which has
only one of these properties. In fact, I conjecture that if 4 has the QSEP in R", it has
also the BLEP, and that for n=4 the proof can be based on the ideas of [1V;]
together with careful estimates on the bilipschitz constants. In 7.5 we give an example
of a set Ac R? which has the BLEP but not the QSEP in R2. However, I do not
know of any such example where 4 is connected.

I thank Jouni Luukkainen and Pekka Tukia for reading various drafts of this
paper and for several valuable remarks and corrections.

2. Preliminaries

In this section we give the basic notation and terminology used in this paper,
some properties of quasisymmetric maps, and elementary results on affine and PL
maps.

2.1. Notation. We let I, denote the Hilbert space of all square summable se-
quences of real numbers. Let (e, e, ...) be its natural basis. We identify the
euclidean n-space R" with the linear subspace of /, spanned by e, ...,e,. Then
RPCR" for p=n. Open balls in R" are written as B"(x, r) and spheres as 5"~'(x,7);
the superscript may be dropped. We also set

B"(r) =B"(0,r), B"=B'(1), $"'(r)=5"10,r), §'=5"D),
R = {x¢R": x,=0}, B} =B"NnR}.

If Acl,, we let T(A) denote the affine subspace spanned by A. In each metric
space, |a—b| denotes the distance between a and b. If f and g are maps into /,,
defined on a set X, we set

If—glx = sup {I/(x)—g(X)I: x€X}.
If fis a bounded linear map between normed spaces, we let | /| denote its sup-norm.

2.2. Quasisymmetric maps. These maps were introduced in [1V;]. We recall the
definition. Let X and Y be metric spaces. An embedding f: X—Y is quasisymmetric
(abbreviated QS) if there is a homeomorphism #: R} ~RY such that if a, b, x€X
with |a—x|=1|b—x]|, then |f(a)—f(X)|=n()f(b)—f(x)|. We also say that 1 is
7—QS. If s=>0, we say that f'is s—QS if fis QS and satisfies the following condi-
tion: If t=1/s and if a,b,x€X with |a—x|=t|b—x|, then |f(a)—f(x)|=
(t+3)|/ ©)~f ().
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In [TV,] we used a slightly different definition of s-quasisymmetry. We said that
fiss—QS ifitis #—QS for some 7 in

N(@d,s)={n: In()—t|=s for 0=1t=1/s}

Clearly this condition implies that f is s—QS in the sense given above. Con-
versely, if f is s—QS, then for every s'=s thereis #€ N(id, s") such that f is —QS.

We say that fis a similarity or 0— QS if thereis L=0 suchthat | f(x)—f(y)|=
Lix—y| for all x,y€X.In other words, fis #—QS with n=id. Every L-bilipschitz
map is s—QS with s=(L*~1)V2. If | f(x)—f(»)|=|x—y| for all x,y€X, fis an
isometry. An isometry need not be surjective.

If G is open in R", n=2, an n—QS map f: G—-R" is K-quasiconformal
(abbreviated K—QC) with K=#x(1)"~1. The converse is not in general true but a
K—QC mapf: R">R" is s—QS where s=s(K,n)—~0 as K—1, see[1V,, 2.6].

It is often a laborious task to prove that a given embedding f: X—~Y is QS,
since one must consider all triples a, b, x¢ X. However, it is often possible to exclude
triples where the ratio ¢=|a—x|/|b—x| is small or large. See, for example [TV;,
2.16, 3.10]. For connected spaces, we prove the following useful result:

23. Lemma. Let X and Y be metric spaces with X connected. Suppose that
O<s=1/4 and that f: X—Y is a nonconstant continuous map such that

(2.4) [f(@ =/ = ¢+ (B) =/
whenever la—x|=t|b—x| and 1/2=t=2. Then fis n—QS with a universal n, and
also s,— QS, where s,=s5,(5)—0 as s—0.

Proof. Let a, b, x be distinct points in X with |b—x|=r, |a—x|=tr. Suppose
first that O<7<1/2. We show that (2.4) is also valid in this case. Choose an integer
m=2 such that 2-"=¢<2-™*1 and set f,=¢Y". Then 1/2=t,<2-'2 Since X
is connected, we can choose points b=x,, Xy, ..., X,=a such that |x;—x|=1}r.
Since |x;+1—x|=1,[x;—x|, we have

/(40 =fG) = (G + )/ (x) =/ ()],
1f@)—f()| = (t+5)"/(B)—f ().

(to+s)"—t =272 4s)ym—2"2 =35,

and hence

Here

since 2-Y245=2-1241/4<1. Hence (2.4) is true.

From [TV,, 2.20] it follows that fis an embedding. It is easy to verify that f
satisfies the conditions of [TV,, 3.10] with A,=2,=3/4, h=4/3, and H=2. Hence
f is n—QS with a universal 7. Indeed, by [TV;, 3.11] we can choose
n(t)=4 max (£/2, 1*5).
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To show that fis s;(s)—QS with s5,(s)—0, let ¢>0. Suppose that r=1/e. It
suffices to show that there is §=4J(¢)=0 such that if s=0, then

_ @/l
I/ (B) =)l

If =2, this is true for s=e. Suppose that 2<t¢=1/e. Choose an integer n=2
such that 2"-'<¢=2". Setting #,=1"/" we have 1<#,=2. Since X is connected, we
can choose points b=y, ..., y,=a such that |y;—x|=#jr. Then

L[+ =S| = (141 () =/ ),
[f@—fX)] = (2+9)" /) —fX)].

v = t+e.

which implies

Thus t’=t+s" with
s =+ -1 = Q245 —-2" = s,(s, n).

Since 2"-'<t=1/e, n has an upper bound of the form n=mn;(¢). Hence s'=
51(s,m(e))~0 as s—0, and thus s'=¢ forsmalls. O

2.5. Remark. It follows from the proof of 2.3 that for a connected X, fis s— QS
if it satisfies (2.4) for 7€[1/2, 1/s]and if s=1/4. This is an improvement of [TV,,2.4].

2.6. Simplexes and affine maps. Let k=1 and let 4=a,...q;, be a k-simplex in
I, with vertices ay, ..., a,. We let b; denote the distance of a; from the (k— 1)-plane
spanned by the opposite face, and we set

b(4) = min (b,, ..., by).
The diameter d(4) of 4 is the largest edge |a;—a;|. The number
e =d(DbNH =1
is called the flatness of 4. We let 4° denote the set of vertices of 4.
Let Tcl, be a finite-dimensional plane (affine subspace), and let f: 7/, be

affine. We let L,=L(f) and /,=I(f) denote the smallest and the largest number,
respectively, such that

Llx=yl = /) -/l = Ly|x—yl|

for all x,y€T. Thus fis a similarity if and only if /;=L,>0, and an isometry il and
only if /;= L =1. Moreover, fis injective if and only if /;>0. In this case, the num-
ber Hy=L/l, isthe metric dilatation of f.

Recall that an origin-preserving isometry of an inner product space into an inner
product space is linear and preserves the inner product. Such a map is called an
orthogonal map. A sense-preserving orthogonal map R"—R" is called a rotation.

2.7. Lemma. Suppose that ACl, is an n-simplex, that f: A—1, is affine and
that h: A—~l, is a similarity such that

lh(@)—f@)| = aL,b(4)/(n+1)
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for every vertex v of A, where 0=a=1/2. Then
L;=L,(1+2a), I, = L,/(1+20), H; = (1+20)
If ACR" and f,h: A—~R", thenh is sense-preserving if and only if fis sense-preserving.

Proof. Extend h to a bijective similarity h;: l,—~I,. Replacing f'by h{'f we may
assume that A=id. The proof of [TV,, 3.3] is then valid also in the present situation.d

2.8. Lemma. Let A=a,...a, be a k-simplex in R" with a,=0. Suppose that
g: T(4)—~R" isan orthogonal map such that ga;=a; for 0=j=k—1 and |ga,—a|=
=08. Then there is an orthogonal map u: R*—R" such that ugld=id and |u—id|=
3/b(4). If k<n, u can be chosen to be a rotation.

Proof. If k=n, either g=id or g is the reflection in T(ay, ..., a;—). In the
first case we choose u=id. In the second case we have J0=|ga,—a,|=2b,=2b(4).
Since |g—id|=2=0J/b(4), we can choose u=g.

Suppose that k<n. Let E be the linear subspace of R" spanned by a, ..., a;_;.
Let ¢,: R"—~E and ¢,: R"—~E*' be the orthogonal projections. Let T be a two-
dimensional linear subspace of E*+ containing the vectors x;=¢,ga, and x,=¢,a;.
Since ga,=gq,a,+gq,a, andsince g|E=id, we have gx,=x;, and thus [x;|=|x,][.
Consequently, there is a rotation u of T with ux;=x,. Extend uto a rotation u: R~
R" with 4|T+=id. Since |x;—x,[=0, |u—id|=6/|x,]. Here |x;|=d(a;, E)=b(4),
and the lemma follows. O

2.9. Lemma. Let A4=a,...a, be a p-simplex in R" with a,=0. Suppose that
h: T(4)~R" is an orthogonal map such that |ha;—a;|=6 for all j. Then there is an
orthogonal map u: R*—~R" such that

uhl4 =id, |h—id| = lu—id| = b)) p(1+e(4))P~*s.
If p<n, u can be chosen to be a rotation.

Proof. We define inductively orthogonal maps u,: R*—R", 0=k=p, as follows:
Let u,=id. Assume that we have constructed u,, ..., #,_, such that setting g;=
uj_y...19, we have g;ha;=a; for i<j=k. Apply 2.8 with the substitution

ke—k, A4, = a,...a;, g ghT(4y), 6 — 5, = max {|g.ha;—a;|: 1 =i

(A

p}-

We obtain an orthogonal map #,: R"—~R" such that u,gh|4,=id and |y,—id|=
d:/b(4,). Thus
21104, = id, lu,—id] = b(4)725,.

We show by induction that
(2.10) S = (1+0)* 14,
where g9=0(4). This is clearly true for k=1. Suppose that (2.10) holds for k<s.
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Since |a;|=d(4)=0b(4), we obtain
lgsha;—a| = |us—1 gs~1ha;— gs-1 hail +|g;-1ha; —aj
= b(4)716,-1lai] +05-1
= (Q+ 1)65—1 = (Q+ 1)3_153

which gives (2.10) for k=s.
Since
lge+1—1d| = |ugp—gil + 18 —1d| = |up—id| +] g —id|

|y —id] = b(4) 716, = b(A) (1 +0)P76,

and

we obtain
|8y +1—id| = [ty —id|+ ... +|u,—id] = b(4)~p(1+)*~15.

Since h=g,},|T(4), the lemma is true with u=g,,;. O

2.11. Lemma. Let AcCl, be a p-simplex. Suppose that h,k: T(A)—1l, are
similarities such that |h(z)—k(z)|=6 for all z€ A°. Then

|Ly—Ly| = 26/d(4),
[h(x)—k(x)| = 6(1+d(4)"M|x—0])
for all x€T(4) and veA°, where
M =4+60(4)p(1+o(4))P-2.
Proof. Observing that
L, d(4) = d(hd) = d(kA)+26 = L, d(4)+26

and interchanging the roles of & and k, we obtain the first inequality.

To prove the second inequality, we may assume that 4 RP, that »=0 and
that h, k: RP—~R", n=2p+1. Assume first that #(0)=0= k(0). Extend 4 to a sim-
ilarity h;: R"—~R". Then the map g=(L,/L,)h{'k: R?—~R" is an orthogonal map.
If zeA° we have

lgz—2z| = |(L,/L)hi kz—h{tkz)+|hitkz—z|
= |L,/L,—1|L,|z|/L,+|kz—hz|/L, = 35/L,.

Hence 2.9 implies that
lg—id]| = b(4)"1L;M,$

with M,=3p(1+0(4))’-*. Consequently
|h—k| = L,|hy*k—id|
= Lylhi*k—gl+Lylg—id|
= |L,— L +b(4)"1 M, 5
= d(4)-M0)2.
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In the general case, set K (x)=h(x)—h(0), k'(x)=k(x)—k(0), and apply the
inequality above to the linear maps k', k” with d replaced by 25. We obtain

Ih(x)—k(x)| = [h()—k(O)| +|h'(x) =k’ (x)] = 6(1+d(4) M|x]). 0

2.12. Lemma. Let ACR" be an (n—1)-simplex. Suppose that h,k: R*—~R" are
sense-preserving similarities such that |h(z)—k(z)|=5 for all z€A°. Then the inequal-
ities of 2.11 are true with p=n—1 for all x€R" and ve A°.

Proof. We repeat the proof of 2.11 with a slight modification. When applying
2.9 we first obtain a rotation u: R"—R" satisfying the inequality of 2.9. Since ug is
a rotation with ug|d=id, we have u=g™%, which imglies |u—id|=|g—id|. The
rest of the proof is unchanged. O

2.13. Suppose that K is a simplicial complex. We say that a map f: |K|—>/,
is simplicial if f is affine on every simplex of K. We let K° denote the set of vertices
of K.

The proof of the following lemma is based on an idea of J. Luukkainen.

2.14. Lemma. Let K be a finite simplicial complex in l,. Then there is oy=0y(K)>
0 such that if 0=a=oy, f: |K|—>l, is simplicial, h: K°~1l, is a similarity and
| f—hllgoe=caL,, then

Lylx=y|/A = 1fX)—f()| = AL,|x—y|

for all x,y€|K|, where A=A(e, K)=~1 as a—0.
If u: |K|—~1, is a similarity, one can choose oy(uK)=L,00(K) and A(e, uK)=
A(e/L,, K).

Proof. The last statement of the lemma is clear. Replacing f'and i by f/L, and
h/L,, we may assume that /i is an isometry.

We say that a pair 4,, 4, of simplexes is a proper simplex pair if 4, &4, and
Ay, & A, If K has no proper simplex pairs, the lemma follows from 2.7. The lemma is
clearly true if dim K=0. Let 0=p=¢=1 be integers. We make the inductive hypo-
thesis that the lemma holds for all K such that if (4,, 4,) is a proper simplex pair of K
with dim 4,=dim 4,, then either dim 4,<q or dim 4,=¢q and dim4,<p. It
suffices to prove the lemma in the case where K has exactly two principal simplexes
4y, 4, with dim 4,=p, dim 4,=q. Extending h to a bijective isometry h; of /, and
replacing f by h7'f, we may assume that h=id. Since f—id is simplicial, we have
I f—id]| K| =

Set A=A4,n4,. Let x€A\4, ye4,\4. We must find an upper and a lower
bound for |f(x)—/(/Ix=yl.

Case1. 4=0. Now d(4,, 4,)=06=0, and
IfG) =/ = x—yl+2a = (1+20/6)|x—yl,
f() =/ )] = |x—y| =20 = (1 -20/5)|x—y].
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Hence we can choose
OCO(K) = min (5/39 0‘O(Al), o‘O(A2), A(OC, K))
= max ((1 —20/6)71, A(w, 47), A(e, Az)).

Case 2. 45£0. By the inductive hypothesis, the lemma holds for the complexes
KN\{4,} and K\{4,}. Choose ¢,>0 and a function A: [0, ae]—~[1, =) with the
properties given by the lemma for these complexes. Let 0=a=0a,. Choose acA4.
Then x€ab and y€ac for some b€dA N4 and c€dd,\ 4. We may assume that

lb—al _ |c—al
lx—al = |y—al

M
= A.

Then there is z€xb such that |z—a|=A1|x—al, and thus z—c=A(x—y). Since f
is affine on ab and on ac, we have f(z)—f(c) =A(f(x)—f(»)), and hence

=S =AM (@D =f(O)l = AA7 z—c| = Alx—yl,
and similarly

@)= =47 x—yl.
Hence one can choose oy(K)=0, and A(x, K)=A(x). O

We next give an estimate for the flatness of a simplex. This will be needed in the
proof of 5.19.

2.15. Lemma. Suppose that ACR? is a p-simplex with ¢(4)=M. Suppose
that v is a point in RP** such that v,,,=6d(4), 6>0, and d(v, 4)=cd(4). Then v4
is a (p+ 1)-simplex with ¢(v4)=M,(M, 9, c, p).

Proof. Let ay, ..., a, bethe vertices of 4, and set 4,=vA4. We first derive a
lower bound for the numbers b;=b;(4,) (see 2.6). Clearly b,.,=v,.,=0d(4). For
0=j=p we may assume j=0. Writing 4d,=a,...a,p we have by=(p+1)m,,,(4,)/
m,(4,), where m, is the p-measure. For any p-simplex ¢ we have

plm,(0) = b(o)*~1d(o),
which can easily be proved by induction on p. This implies

m,(4)6d(4) _ Sb(4A)P~1d(4)

Since
m,(4) = d(4y)? = (1+c)Pd(4)”,
we obtain
d(4)
by =

pl(1+c)P MP~L "
Since d(4,)=(1+c¢)d(4), the lemma is true with
M, =p!(1+)PFIMPYS. O



Bilipschitz and quasisymmetric extension properties 247

3. Approximation by similarities and by isometries

Intuitively, an L-bilipschitz map with small L is close to an isometry, and an
s— QS map with small s is close to a similarity. We shall give a precise meaning for
this in this section.

3.1. Theorem. Let ACR? be compact, let Y be a linear subspace of I, with
dim Y=p, and let f: A—~Y be s—QS. Then there is a similarity h: RP—Y such
that

(3.2 Ih=flla = %(s, p) L, d(A),

where s—x(s, p) is an increasing function and »(s,p)—~0 as s—0.
Iffis L-bilipschitz and s=(L?*—1)"/?, then h can be chosen to be an isometry.

Proof. Suppose that the first part of the theorem is false. Then there exist 1=0
and a sequence f;: 4;~Y; of n;—QS maps such that each 4; is compact in
Rpa ”JEN(ld’ 10)3 and
(3.3) 1fi—hla, = AL,d(4)
for every similarity h: RP—Y;. Passing to a subsequence we may assume that
dim T'(4;)=k does not depend on ;. For each positive integer j we choose points
a}, ..., dc A; as follows: Let a)€A; be arbitrary, and let aj*! be a point x€4; at
which the distance d(x, T(a}, ..., a})) is maximal.

Using auxiliary similarities of R” and /,, we may assume that R’CY; and that

a)=0, a}=e, ai€intR, for 2=i=k,

f@) =0, fi(a)=e, f(a)eR, for 2=i=k

Then A;cB* and 1=d(4;)=2. Applying [TV, 2.5] with the substitution A
{0,e,}, B—~A4;, f—f;, yields

d(f;4)) = 2,(d(4)) = 21;) =2Q+1) =5
for j=2. Applying (3.3) with h=id we find x;€4; such that

for all j=2. Passing to a subsequence and performing an auxiliary isometry ¢ of ,
with ¢@|R*=id, we may assume that the following sequences converge as j— co:

ai—~a€B,, 0=i=k,
fi(a) -~ b'eBL(5), 0=i=k,
x; ~ xo€ B,
fi(x) = yo€B*+1(5).

Moreover, a’=b°=0 and a'=bl=e;.
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Put T=T(d, ...,d"), s=dim 7. Then s=k and d'cint R, for i=s. Since
n;€N(id, 1/j), we have
1fi@) £,  |a*—0|
. a2' = — — a2 i
@ =170~ Te=or 1
Hence |b%=|a?|. Changing the roles of 0 and e;, a similar argument shows that
|b®—e,|=|a*—ey|. Since a? b*€R%:, we obtain a?=5b% Proceeding inductively, we
similarly obtain a'=b' for 0=i=s. Since

lim max dx,T) =0,

J+oo x€

we have x,¢T. Ifiand/are distinct mtegers on [0, s],

b=l _ iy VDL _ iy o] el

la'—a'| == |fi(@)—fi(@)] ~ i== laj—ail ~ la'—a'"
Thus |y,—a'|=|x,—a'| for 0=i=s. Since a° ..., a* are affinely independent in T
and x,€7, this implies x,=y,. Since |x,—y,/=4, this is a contradiction.

The bilipschitz case could be proved in a similar manner, but it also follows from
the QS case. Assume that f: A—Y is L-bilipschitz. Then fis s—QS with s=
(L2—1)"2. Choose a similarity h: R?—Y satisfying (3.2). We may assume that
0€A4 and that h(0)=0. Then h,=h/L, is an isometry. For each x€A4 we have

G =) = /() =h()l+1h(x)—hy (x)]
= #(s, p)Ly d(4) +11—1/L,| |h(x)]
= 1.(s, p)d(4),

where
(34 #1(s, p) = Lyx(s, p)+11—L,|.
On the other hand,
3.5 L,d(A) = d(hA) = d(fA)+2x(s, p)L, d(A4).
This implies
L= T-_zfm

assoon as L—1 isso smallthat 2x(s, p)<1. Similarly, we obtain a lower bound for
L,, and (3.4) yields
#:(s, p) = 6(L, p) >~ 0
as L-1. O
3.6. Remarks. 1. Theorem 3.1 is true with (3.2) replaced by the inequality

(3.7 |f—hla = x(s, p) d(f4),
replacing x» by another function with the same properties. This follows easily from
(3.5).
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2. In the QS case of (3.2) and (3.7) one can always choose x(s,p)=2. By
auxiliary similarities we can normalize the situation so that 0€4, f(0)=0, and
d(A)=d(fA)=1. Then

lf—=id], =d(fA)+d(4) = 2.

This observation is due to J. Luukkainen.
We next prove converse results of 3.1. These are not needed in the rest of the

paper.
3.8. Theorem. Let 0<d<1/2, let XCRP, and let f: X—1, be a map such

that for every bounded ACX there is an isometry h: RP—I, such that |h—f| =
0d(A). Then fis L-bilipschitz with L=(1-—26)"1.

Proof. Let a,b€X with a=b. Set A={a, b}, and choose the corresponding
isometry h. Now
1f(a) /(D)) = |h(a) —h(D)|+]h(a) —f (@) +|h(B)—f(B)I

=(14+20)|a—b|l =(1-26)"*|a—b|,
and similarly

If(@)—f(B)l = (1-26)la—b]. O

3.9. Theorem. Let O<x=1/25, let XCR? be connected, and let f: X1,
be a map such that for every bounded ACX there is a similarity h: RP—l, such that
lh—flla=%L,d(A). Then fis s—QS, where s=s(»)—0 as »x—0.

Proof. We first show that f'is injective. Let a, b€ X with a=b. Set A={a, b}
and choose the corresponding similarity 4. Then

If(@)—f(b)l = (1-2x)|h(a)—h(D)| = O.

Now assume that a, b, x are distinct points in X with |a—x|=t|b—x|. Set A=
{a, b, x} and choose the corresponding similarity h: R?--l,. Since

I/ () —f()] = [h(b)—h(x)| —2xL, d(4) = L, |b—x|—2xL, d(A),

we obtain

|f(@)—f(X)| = |h(a)—h ()| +2xL, d(4)

=t f(b)—f ()| +2(1+ =L, d(A).
Since
d(4) = la—x|+|b—x| = (1+H]|b—xl,
we obtain
L,d(4) = (1+0)|h(b)—h(x)|

= (1+0fB)—f ()| +2(1 + 1)L, d(A).
Assume 7=x"V2. Since »=1/25, we have 2(1+1¢)x<1/2, and thus

L,d(4) = 2(1+9lf(B)—f ()l
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Consequently, |f(a)—f)|=t"17®)—f(x)] with
(3.10) t = t+4dxe(1+10)>2

Assuming t=x""* this implies

¥ = t+9x12%
Hence, if fis QS, it is s—QS with
s = s(x) = max (x4, 9%1/2).

To show that fis QS, we verify that f satisfies the conditions (1) and (2) of
[TV,, 3.10] with A;=21,=1/2, h=2, H=4. Since X is connected, it is A—HD. If
t=2, then r=»""% and hence t'=t+9x%'"?*<4. If r=1/4, then (3.10) implies
t’=1/2. The quasisymmetry of f follows then from the proof of [TV, 3.10] and from
[TVy,221]. O

4. Planes and spheres

In [TV,] we proved that R? and S” have the extension properties in R" for p<n.
In this section we show that R”" can be replaced by (R", Y) where Y is any linear sub-
space of I, with dim Y=n. The result will be needed in Section 6.

4.1. Theorem. Let Y be a linear subspace of I, with dim Y=n, and let 1=p=
n—1. Then RP has the extension properties in (R", Y). The numbers in the definition
of the extension properties do not depend on Y, thus Ly=Ly(n), Ly=L,(L,n),so=
So(n), s1=15,(s, n).

Proof. The proof can be carried out by rewriting the proof of [TV}, 5.3, 5.4] in
this more general setting. However, some modifications have to be made. We shall
only give these modifications.

The lemmas of [1V,, Section 3] are easily generalized to the new setting and
partly given in Section 2 of the present paper. The results of [1V,, Section 4] concern-
ing frames are still valid in the general case but in the proofs one cannot make use of
the compactness of the space ¥ ?(Y) of all orthonormal n-frames of Y. However, the
uniform differentiability formulas [1V,, (4.2), (4.3)] of the Gram—Schmidt map
G: V,(Y)-V2(Y) are still valid in some neighborhood N of ¥,)(Y) in V,(Y), as
easily follows from the definition of G. Hence we obtain the interpolation lemma
[1V,, 4.4] with R" replaced by Y. The crucial extension lemma [1V,, 4.9] also remains
valid with R" replaced by Y. Although ¥(Y) is not necessarily compact, G is still
uniformly continuous in a neighborhood of it. On the other hand, we cannot use the
diagonal process to conclude that it suffices to define the map u: #(p)—~V 2 (Y) only
on #(p, k). Instead, we give a direct construction of u on the whole #(p).

We again start with the cube Q,=J” and define uy =1,. Next we inductively
define Up, for Q;=2/J? directly by Uo,_, for all positive integers j. For each j we
consider the family of the 3°—1 cubes R€.J%;(p) with R~Q;, R#(Q;, and define
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ug directly by U, - Next we define u, for the principal subcubes Py of these cubes R
directly by ug. Then we apply the generalized version of [1V,, 4.4] to define u,, for
every Q¢.%_,(p) in the convex hull E;_, of the union of these principal subcubes,
except for those Q for which u, has already been defined directly by uQ . Proceed-
ing in this manner, it is easy to see that we obtain a map u: S(p)—~V,) (Y ) with the
desired properties provided that g=2-?-*

The extension g: R"—Y of the given L-bilipschitz or s—QS map f: RP~Y
can now be constructed and its continuity proved as in the proofs of Theorems 5.3
and 5.4 of [TV,]. However, we must give a new proof for the fact that g is L;-bilip-
schitz or s,—QS, because the old one was based on the convexity of gR" in the
bilipschitz case and on the theory of QC maps in the QS case. We shall prove the QS
case. The proof for the bilipschitz case is similar but easier; observe that the convexity
of RP implies that g is lipschitz.

To show that gis s;,—QS we use 2.3. Thus assume that a, b, x are distinct points
in R* with |b—x|=r, |a—x|=tr, t=2. We must find an estimate

(4.2) lg(@)—g ()| = (t+s)lg(B)—g(x)l,

where s,=s,(q9,n)—~0 as g—0.
Using the notation of [1V,] we again obtain the estimate

(4.3) lg—hglzo = Mqog, M =24n*

[TVy, (5.9)]. Here Q is an arbitrary cube in S(p), hy: RP—Y is a similarity, and
0o=L(hy) Ly, where A, is the length of the side of Q. For Q€.#(p) set

We may assume that x€ R"™\R”. Then there is Q¢ .#(p) such that xcY,. We divide
the rest of the proof into two cases:

Case 1. r=/J,/4. Now
[a—x[ = XQ/Z = d(YQ, R"\YQ”).

Hence {x,a,b}cYy. Let W be the subcomplex of W with [|=Y7. Let a,=
ay(Wy) and A= A(a, W) be the numbers given by 2.14. One can choose

dy = yohg, At W) = Ao(2/Ag, 1),

for some y,=7,(n)=0 and for some function A, with lim,_, A,(a, n)=1. Let R be
the unique cube in S(p) with Az=2J, and QCR. Then Y”CZ r- Hence (4.3)
implies

ilg—hxlly; = Mgogr = aL(hg)

with a=2Mql,. We give the new restriction

q = 7/2M.
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Then a=o0,=y,4y, and Lemma 2.14 implies (4.2) with
s, = 2(4,2Mgq, n)*—1).

Case 2. r>1y/4. Let O=R,CR,C... be the unique sequence of cubes of J(p)
such that k(R;.;)=k(R;)+1. Let m be the smallest integer for which Z contains
{a,b}, and set R=R,. Since d(Zp , R"™\Zg,, )=7g, We have r=2,/8. From
(4.3) we obtain

lg—hglz, = MqL(hg) g

lg(@)—g()| = L(hg)(tr+2Mglp),
lg(b)—g ()| = L(hg)(r—2Mqlg).
Assuming g<1/16M we obtain

lg(@—gX)| _ 1+16Mq
lg(b)—g)| — 1-16Mq’

Hence

which implies (4.2). O

4.4. Corollary. Let Y be a linear subspace of ly, and let p=n=dim Y. Then
a set AC R? has the BLEP or the QSEP in (R?, Y) if and only if it has the same prop-
erty in (R", Y). In particular, the extension properties in R" and in (R?, R") are equiv-
alent for ACR?. O

It is natural to ask whether R" has the extension properties in /,. I do not know
the answer. However, the following result in this direction can be established:

4.5. Theorem. Every L-bilipschitz f: R"—~R" can be extended to an L-bilip-
schitz homeomorphism g: ly—~1,, and every s—QS f: R"—>R" can be extended to an
51— QS  homeomorphism g: l,—~1, such that s;=s,(s,n)—~0 as s—0. Moreover,
gY=Y forevery linear subspace Y of I, containing R".

Proof. Let E be the orthogonal complement of R" in /,. The bilipschitz case is
easy; we define g(x+y)=f(x)+y for x€R", y€E.

Suppose that f: R*~R" is s—QS. Then fis K—QC with K=K(s,n). By
[TV,], f can be extended to a homeomorphism F: R%*'—~R’*! such that Flint R"+*
is H-bilipschitz in the hyperbolic metric with H=H(s, n). The required homeo-
morphism g is then the rotation of F around K". More precisely, let e€E be a unit
vector. If x€R" and =0, we define g(x+te)=x"+1t'e, where (x’, t’) is determined
by x'+t'e,.1=F(x+1te,.1). If a, b, x are points in /,, there is a linear subspace
Y of I, with dim Y=n+3 containing these points and R". Arguing as in [1Vj,
3.13], we see that g definesa K;—QC map g;: Y—Y with K;=K,(s,n). Hence g,
is 5,—QS with s;=s,(s,n). Herc:gis s,—QS.

If s is small, the extension F of fcan also be obtained from the fact that R" has
the QSEP in R**'. Then Fis s,— QS with small s,. However, we need the fact that the
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hyperbolic bilipschitz constant H of F|int R**? is close to 1. This follows rather easily
from the proof of [TV, 5.4]. This implies that s,(s, n)—~0 as s—0. O

4.6. Theorem. If'Y is a linear supspace of I, and if p<n=dim Y, then S?, R5*!
and BP*! have the extension properties in (R, Y).

Proof. The case p=0 needs a separate argument, which is omitted. Assume
p=1. The case A=S? follows from 4.1 by means of auxiliary inversions as in
[1V,, 5.23]. The awkward proof of [1V,, 5.22] can be essentially simplified by means
of quasimébius maps, see [Vi,, 3.11].

The case A=RA*! can be proved by modifying the proof of 4.1. By 4.4, we may
assume n=p+1. If f: R, —Y is L-bilipschitz or s—QS with small L or s, we
define an extension g,: R”.—Y of f|RP as in the proof of 4.1. However, when defin-
ing the orthogonal frames u,€V,(Y), we do not make use of the results of [1V,,
Section 4]. Instead, we can now define w{2= f(ag+Age;)—f(ap) also for j=n, and
we let uy be the Gram—Schmidt orthogonalization of wQ=(w§, ...» o). We obtain
an extension g: R"—~Y of f. We still have to show that g is L, -bilipschitz or s,—QS.
It follows from the proof of 4.1 that it suffices to show that

1= holz3 = 24n* o

for sufficiently small L or s, where Zg =Z,NR’. This follows rather easily from a
slightly modified version of [1V,, 3.10]. We omit the details.

Finally, the case A=B%*! follows from the preceding case by auxiliary inver-
sions. Alternatively, it is a special case of 6.13.1. O

5. The first condition

In Theorem 5.5 we shall give a sufficient condition for a set ACR" to have the
extension properties in R". We then show that this condition holds for all compact
(n— 1)-dimensional DIFF and PL manifolds and for certain other sets in R".

5.1. The Whitney triangulation. Let GCR" be an open set, 0G#R". The
relative size of a compact set ACG is defined as

_d@)
(=3, 56)

Let K be the Whitney decomposition of G into closed n-cubes such that
=16(0) =4

for all Q¢€K, where 1, and /, are positive constants. See e.g. [St, p. 167] or [TV,,
7.2]. One can choose A,=1/7 and 21,=}n/2, but these constants can obviously be
chosen to be arbitrarily small.
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We define a subdivision of K to a simplicial complex ¥ as follows: Suppose that
we have defined a simplicial subdivision W? of the p-skeleton K? of K. Let Q be a
(p+ 1)-cube of K, and let v, be the center of Q. Since dQ is the underlying space ofa
subcomplex L, of W7, the cone construction vyL, gives a simplicial subdivision of Q,
and we obtain W?*. The complex W is called a Whitney triangulation of G.

If ¢ is an n-simplex of W, we can write

(52 0(0) = 0,, a,=716(0) = as,

where the numbers g,, a;, a, depend only on n. Indeed, since the simplexes of ¥ be-
long to a finite number of similarity classes, the first inequality of (5.2) is true. In the
second one, we can choose a,=4,/3)/n and a,=1,/2.

5.3. Terminology. Let ACR". We say that a simplex 4 is a simplex of 4 if
A°cA. If 4 is a an n-simplex of 4 and if f: A—~R" is a map, we say that f]4° is
sense-preserving if the unique affine extension g: R"—>R" of f |4° is sense-preserving.
Two p-simplexes 4, 4’ of A are said to be M-related in A, M=1, if there is a finite
sequence A=A, ..., 4,=4" of p-simplexes of 4 such that

(1) ed)=M for 0=j=k,
@ UYM=d4)jdd;-)=M for 1=j=k,
(3) d(4;-1,4;) = Mmin(d(4;-1),d(4)) for 1=j=k.

5.4. Lemma. Let n be a positive integer, let M=1, and let s=s(M, n) be such
that x(s,n)=1/10M3(n+1), where x is the function of 3.1. Suppose that ACR",
that f: A~R" is s—QS and that the n-simplexes Ay, 4, of A are M-related in A.
Then f14% and f |43 are either both sense-preserving or both sense-reversing.

Proof. We may assume that the sequence 4o, ..., 4, of 5.3 is the pair (4;, 45).
Suppose that f|49 is sense-preserving. Set

F = {x€4:d(x,4,) =2M d(4,)}.
Then d(F)=5Md(4,). For every z€A, we have
d(z, 4y = d(Az)+d(Az, 4,) =2M d(4,).

Hence AJCF. Applying 3.1 we choose a similarity h: R"—~R" such that

L,d(4,)
—fl. = _h AT
Since o(4,)=M=M?2, we have
L,d(4)

If(2)—h(2)] = FICESVIZA)
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for every ze€A?. By 2.7, h is sense-preserving. Furthermore, since d(4,)=Md(4,),

we have for every yecA49,

__ Ld4y
IfO)-hO) = 2(n+1)g—(m'

Again by 2.7, f|43 is sense-preserving. [J

5.5. Theorem. Suppose that n=2, that A is closed in R", that A is bounded
and that int A has a finite number of components. For x€ R™\A and b=>1 we set

E(x, b) = An B(x, bd(x, A)).

Suppose that there exist numbers b,=b,>1, M=1, and that for every A=0 there
is ro>0 such that if xéR"™\A and d(x, A)=r=r,, then one of the following two
conditions is satisfied:
(a) There is an (n—1)-simplex 4 of E(x, b,) and an (n—1)-plane TCR* such
that

(a) o) =M,

(a) d(4) =r/M,

(a) E(x, b)) c T+irB"

(b) There is an n-simplex A of E(x, by) such that
(b) d(4) =r/M,

(by) 4 is M-related to an n-simplex A’ in A with d(4")=1/M.
Then A has the extension properties in R".

Proof. Choose an auxiliary parameter g=0. To prove the QSEP, it suffices to
show that there are g,=0 and for every g€(0, g,] a number s=s(g, 4, n)>0 such
that every s—QS embedding f: 4—R" has an extensiontoa K—QC map g: R"—~
R*, where K=K(q, A,n)—~1 as g—0. In the bilipschitz case, we find L= L(q, 4, n)
such that every L-bilipschitz map f: A—R" has an extension to an L,-bilipschitz
g: R"—~R" with L,=L,(q, A,n)~1 as g—0.

To begin with, we only assume O<g=1. In the course of the proof, we shall
give more restrictions on ¢ of the form g=g¢,(4, n).

Choose R=4 such that d4AcB"(R/2b;), and set B=B"(R). Next choose
r;>0 such that every component of int A contains a ball B(x,r)cCB. Set i=q/4
and choose the corresponding r,. We may assume ry=1. Let » be the function given
by 3.1. Choose s=s(g, 4, n)€(0, g] such that (s, n) is smaller than the numbers

(5.6) 1 g g4
) 10RM3by(n+1)" 2R’ 4b,” 5R°

We show that s is the required number provided that ¢ is sufficiently small. In the
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bilipschitz case, we set L=L(g, 4, n)=(s2+1)/%. Then every L-bilipschitz map is
s—QS.
Suppose that f: A—~R" is s—QS. By 3.1, there is a similarity 4 of R such that
Ih—fllane = %(s, n) L, d(4 0 B) = 2RL,%(s, n).
Replacing /by h~'f'we may assume that
(5.7) “f'—' id”AﬂB = 2Rx (S, n).

Set

G = R™\4, G(ry) ={x£G: d(x, A) < ry}.
Let G, be the set of all points x€G(r,) which satisfy the condition (a), and set G,=
G(ro)\G;. For x€G we define

Ex = E(x, bl) lf xEGl,
E, = E(x, b)) if x¢G\G,.

We associate to every x€G a similarity h, of R" as follows: If x€G\G(ro),
we choose h,=id. Assume x€G(r,). Then d(x, A)=r<r,. If x€G,, we apply
3.1 to find a similarity k, such that

(5.8) Ik =f e, = % (s, ) L(k,) d(EJ) = 2byrL(ky)x(s, ).

If k, is sense-preserving, we choose h,=k,. Otherwise, we set h,=k,y, where ¥ is
the reflection in the (n—1)-plane T given by (a). Finally, if x€G,, we again apply
3.1 and choose #, so that

(59) “hx—f]iEx = %(S, n)L(hx) d(Ex) = 2b2rL(hx)x(s, I’l).

Now h, is defined for all x€G. In the bilipschitz case, h, is chosen to be an isometry.

We next show that h, is sense-preserving for every x€G. For x€G\G,, this
follows directly from the construction. Suppose x€G,. Let 4 and 4" be the n-sim-
plexes of 4 given by (b), and let 4=4,, ..., 4,=4" be the sequence given by the
definition 5.3 of M-relatedness, We first show that one can choose 4” to be a simplex
of AnB. If A is bounded, AcB, and this is trivial. Assume that 4 is unbounded.
Then A contains R™\B"(R/2). If all vertices of A" are in R™\B"(R/2), we can con-
tinuously deform 4’ in R™\B"(R/2) to a simplex 4” of B\B"(R/2) with d(4")=
R/4=1=1/M without changing its similarity class. Thus 4 is M-related to 4” in A4.
If A’ has vertices both in B"(R/2) and R™\B, we choose a translation ¢ of R" such
that @A’nB"(R/2)=0#@4’n4’. Then the sequence Ao, ..., 4y, 4’ still satisfies
the conditions of 5.3, and the situation reduces to the preceding case.

Since x(s,n)=1/4(n+1)RM? and since b(4d)=d(4")/e(4)=1/M? (5.7)
implies

__b)

f)—x] = m
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for every vertex x of 4”. By 2.7, f|(4")° is sense-preserving. Hence, by Lemma 5.4
and by (5.6), /|4° is sense-preserving. Since b(4)=r/M?, 2.7, (5.6) and (5.9) imply
that h, is sense-preserving.

We next prove the inequality

forevery x¢G. Set r=d(x, A). We divide the proof into four cases.

Case 1. r=r,. If A is not bounded, GCB"(R/2b,). Hence r=R/2b,, which
implies E,C AnB. This is clearly also true if 4 is bounded. Since h,=id and since
x(s, n)=qry/2R, we obtain

[he—=fle, = lid=flans = 2Rx(s, n) = qrL(h,).
Case 2. r<ry,, x€G;, h,=k,. Now (5.10) follows from (5.8) and from the
inequality x(s, n)=q/4b,<q/2b,.
Case 3. r<ry, x€G,, h,=yk,. Now L(h,)=L(k,). For every y€E,, (5.8)
yields
[h () =) = k(¥ ) =K O + 1. () =W
= 2L(h)Ar+2by;rL(h)%(s, n).
Since A=g/4 and since x(s, n)=q/4b,=q/4b,, we obtain (5.10).

Case 4. r<r,, x€G,. Since x(s, n)=q/4b,<q/2b,, this case follows from (5.9).
Thus (5.10) is proved.
Choose a Whitney triangulation W of G satisfying (5.2). Here we choose

a; = min (1, (b;—1)/2).

The constants a; and a, depend only on 4 and ».
For every vertex v of IV we set

g(v) = h,(v),

and extend g affinely to every simplex of W. Setting g|A=f we obtain a map g: R"~
R". We claim that g is the desired extension of f.

We first show that g is continuous. This is clearly true in G and in int 4. Suppose
that x,€04=0G, and let ¢=0. Since f is continuous, there is >0 such that
| f(x)—f(xp)|=¢ whenever x€4 and |x—x,|=J. Choose J,<5 such that E,c
B(xy, ) and d(v, A)=r, whenever v is a vertex of any n-simplex 6€W such that
d(x,, 0)=06,. Suppose that x€G with [x—x,/=J;. Choose an n-simplex ccW
containing x. It suffices to find an estimate

¢.11 lg(@)—f(x0)] = Mye

for the vertices v of ¢ with some constant M;. In what follows, we let M,, M, ...
denote constants M ;=1 depending only on 4 and n. Set r=d(v, A), and choose
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y€A with [y—v|=r. Since g=1, (5.10) implies

1g@) =)l = |k, () =B, +1h, ) =S +1f ) =S (o)l
= L(h)r+qrL(h,)+¢
= 2rL(h,) +e.
Since r=r,, E, contains points x,, X, with [x;—x.|=r/M. We give the restriction
g=1/4M. Then (5.10) implies
rL(h,)/M = L(h,)| %, —xa| = |h,(x1) = h, (x2)]
= [f(e) —f(x) +2grL(h,)
= 2¢+rL(h,)2M,
and hence rL(h,)=4Me. This implies (5.11) with M;=8M+1 and proves the con-
tinuity of g.
Let ¢ be an n-simplex of W, and let v be the vertex of & which is closest to 4. We
want to estimate |h,—g| in ¢°. Set r=d(v, A). If r=ry, h,=id=g in a°. Assume

that r<r,. Set
b,—1

C = E—(BZ—_—I—)', r =qr.
Then ¢, depends only on 4, and
as =c = _1_.
by—1 ~ "7 27

Choose y€A with |y—z|=r. Let z be the unique point on the segment vy such that
|z—y|=r’. A direct computation shows

(5.12) [v—z|+ by’ = r(1+by)/2.
Moreover, »’=d(z, A). Let x€E(z, by). If u€a®, then

lu—v| =d(6) = ayd(o, 4A) = (b;—1)r/2.
Hence (5.12) gives

x—u| = |x—z|+|z—v|+|v—u|l = byr = by d(u, 4).
Thus

(5.13) E(z,by) © AnB(u, byr) € E(u, b)) C E,.

Since 7’<r,, thereis an (n—1)-simplex 4 of E(z, b,) such that ¢(4)=M and
d(4)=r'|[M. If z€G,, 4 is a suitable face of the n-simplex given by (b). Since
d(u, A)=(1+ay)r=2r, (5.10) and (5.13) yield for every x€A4°:

(5.14) |h, () — B, (0)] = 11, () =) + /() —h,(X)]
= gqrL(h,)+2qrL(h,).
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We give the new restriction g=c,/8M. Since r=Md(4)/c,, (5.10) and (5.13) imply
L(h,)d(4) = d(h,d4) = d(f4)+2|h,—f ],
= d(f4°+4qrL(h,)
= d(f4°)+L(h,)d(4)/2.
Since A°CE,, this yields
L(h,) d(4) =2d(f4°) = 2d(h, 4)+4[h,—f e,

= 2L(h,)d(4)+4qrL(h,) < 3L(h,)d(4).
Hence (5.14) gives

“ hu_hu"Ao = 7qu(hu)'
By (5.13), |x—u|=b,r for every x€A°. Since @(4A)=M and d(d)=c,r/M, 2.12
yields

|h, () —g ()| = M,qrL(h,).
Furthermore,
r=d(o)+d(e, A) = (1+a7Y)e,b(o).

We set M;=2(1+a;Y)e,(n+1)M, and give the new restriction g=1/M,. Then
2.7 implies that g|o is sense-preserving and that

(5.15) L(glo) = L(h,)(1+M,q), I(glo) = L(h,)/(1+M;q),
H(glo) = (1+M;9)*

In the bilipschitz case L(h,)=1, and hence glo is (14 M;q)-bilipschitz.

We use degree theory to show that g is a homeomorphism onto R". The topologi-
cal degree u(y,f, D) is an integer defined whenever D is a bounded domain in R",
f: D—R" is continuous, and y€ R™\ f0D; seee.g.[Do, IV. 5] or [RR,IL 2]. If GCR"
is open and if /1 G—~R" is continuous, fis said to be sense-preserving if u(y, f, D)=0
whenever D is compact in G and y€fD\ foD.

We first show that glint A=f|int A4 is sense-preserving. Let V' be a component
of int A. Then there is a ball B,=B(x,,r)VnB. By (5.6), »(s,n)=r;/5R, and

therefore
| f—id] s, = 2Rx(s, n) < ry/2.

Consequently, the segmental homotopy h,: f~id satisfies h,(x,)¢h,0B;, and thus
#(f(xv): f; BV) = I’l(xV, lda BV) =1

Since |V is an embedding, f|int A4 is sense-preserving.

We next show that g is sense-preserving. Let DC R® be a bounded domain, and
let ycgD\gdD. Set Y=90AU|W"'|, where W"-! is the (n—1)-skeleton of W.
Then int Y=0. Since g|04 is an embedding and since g|G is PL, we have int g¥=
0. Let U be the y-component of R"™\gdD. Then D,=Dng~'U is open and non-
empty, and so is Dy\Y. Since g|R™\Y is an immersion, g[Dy\Y] is open. Hence
we can choose a point z€gDy\gY. Since z€U, u(y, g, D)=pu(z, g, D). On the other
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hand, Dng~(z) is a finite nonempty subset of D\ Y, and g|D\Y is a sense-preserv-
ing immersion. Hence

u(z, g, D) = card (Dn g~ (2)) >0,

which implies that g is sense-preserving.

Clearly each fiber g=*(y) is countable. Consequently, g is light and sense-preserv-
ing, hence discrete and open [TY, Corollary, p. 333]. Furthermore, g|R™\B is a
homeomorphism onto a neighborhood of . Indeed, if 4 is bounded, g|R"™\B=id.
If 4 is unbounded, g|R"™\B=f|R"\B is a QS embedding, and g(x)—~c as x—oo.
Hence there is a ball B;=B"(R,) containing B such that gBng[R"\B;]=0. Let
V be the bounded component of R™\g0B,. Then u(y, g, By)=k is independent of
y€V. Choosing y€V\gB we see k=1. Hence we obtain for every y€V

1= u(y, g B) = 2{i(x, g): x€B; N g~ (y)} = card g7 (),
where i(x, g) is the local degree of g at x. Thus g is a homeomorphism onto R".

In the bilipschitz case, it follows from (5.15) that g is L,-bilipschitz with L,=
max (L, 1+ Myq). In the QS case, it follows from (5.15) and from a standard remov-
ability theorem [V, 35.1] that g|G is (14 M,q)*~*~QC. If 04 is of g-finite (n— 1)-
measure, [Vd,, 35.1] implies that g is K—QC with

K = max ((1+s)"%, (1+ M;9)*3),

and thus A has the QSEP. Since this case is sufficient in the applications 5.17 and
5.19, and since a detailed proof of the general case would take several pages, we only
give a sketch of it.

To show that g is QC, it suffices to find a uniform upper bound for the metric
dilatation H(x, g), see [V4,, 34.1]. Once this has been done, the desired estimate for
the dilatation of g is easily obtained by considering the derivative of g at points of
density of 9A.

Let z€04 and x€G with |x—z|=r, where r is small. Choose a suitable c,>1
and apply 3.1 to find a similarity s such that [h(y)—f())|=M,qL,r for y€An
B(z, c,r). It suffices to find M such that

(5.16) Lyr/M; = |g(x)—f(2)| = M;L,r.

The second inequality is fairly easy. With a small loss of generality, assume
x€W°. Let r=d(x, A) and choose y€A with |y—x|=r,. We may assume that
E,c AnB(z, c,r). Then

lg(x) = (2| = [h(x) = b O + [ O) =S+ )=k ()]
+h () —=h ()| +h(2)—f(2)|
= L(h)r,+L(h)qri+2M,qL,r+cyL,r.

Thus it suffices to show that L(h)r,=MsL,r. For this, observe that E, contains
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a point a with r,=2M/|a—y|. Then
L(h)la—yl = |k (@) —hO)| = | f(@)—fWI+4L(hy) gM|a—yl.
Since we may assume that g=1/8M, this gives
L(h)la—y| =2|f(@)—fO)] = 2L,|la—y|+4M,qL,T,
Lh)r, =Q+MyL,r.

The first inequality of (5.16) is harder. We first replace b, by b=
max (by, 2(2+a,)(1+a,)) and show that this is no loss of generality. Choose ¢ with
x€o€W. Consider a vertex v of g, set ar=d(v, A), and consider separately three
cases: (1) a=e, for a suitable small &y, (2) ay<a=1/b;, (3) a>1/b;. O

and hence

5.17. Theorem. Let ACR* be a compact (n—1)-dimensional C-manifold,
with or without boundary. Then A has the extension properties in R".

Proof. If n=1, then 4 is a finite set, and the result is obvious. Suppose n=2.
For every y€A, let T(y) be the tangent (n—1)-plane of 4 at y, and let P,: R"~
T(») be the orthogonal projection. For =0, set

D@y, y=T()NB"(», D), Z(y, )= P;D(y, ).

Let A(y,t) be the y-component of AnZ(y, ). There it #,>0 such that if =1,
then P,|A(y, t)isinjectiveand AnB"(y, 1) A(y, t). By compactness, we can choose
f, to be independent of y. If 04=0, we have P,A(y,?)=D(y, ), butin any case,
we can choose 7, so that for t=t,, P,A(y,t)=C(y,t) contains a regular (n—1)-
simplex 4 with d(4)=1/2.

Let ¢,: C(p, t)~A(y, ) be the local inverse of P,, satisfying P,p,=id. By
differentiability, we can write

(5.18) lpy(y+h)—(y+h)| = |hle(h]),

where ¢: [0, t,]—~R® is an increasing function and &(¢)—~0 as ¢—0. By compactness,
¢ can be chosen to be independent of y.

We show that A satisfies the condition (a) of 5.5 with b;=3. Let 0=1=1.
Choose t,, 0<t,=t,, suchthat ¢(r;)=1/5, and szt r,=1,/5. Assume that x€ R"™\4
with d(x, A)=r=r,. Choose y€A with |x—y|=r. Then, with the notation of
5.5 we have

E(x,3)c AnB(y,5°) < A(y, 5v) € T(y)+ArB".

Let 4, be a regular (n— 1)-simplex in C(p, r) with d(4,)=r/2, and let 4 be the
simplex with 4°=¢,4%. Since &(r)=1/5, (5.18) implies that d(4)=2d(4,). Since
b(4)=b(4,), we have

o(4) = 2¢(4)) = go»
where g, depends only on n. Furthermore, for every z€A(y, r) we have

lz—x] = |z—P,,zl+lerz——y!+|y—xl = re(r)+r+r <3r.
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Hence A(y, r)CE(x, 3), which implies that 4 is a simplex of E(x, 3). The theorem
follows now from 5.5. O

5.19. Theorem. Let n=2, and let ACR" be a finite union of simplexes of
dimensions n and n—1. Then A has the extension properties in R".

Proof. Suppose that A4 is a finite union of n-simplexes ¢; and (n— 1)-simplexes
4,. We show that the conditions of 5.5 are satisfied with b;=2, b,=3.

Let M, be the maximum of all numbers ¢(g;) and ¢(4,), and let ¢, and ¢, be the
minimum and the maximum, respectively, of the diameters of the simplexes. Choose
«>0 such that if H is a component of R"™\T(4;) and if 4, meets H, then 4, has a
vertex v in H with d(v, T(4,))=a. Set ry=min (cy/3, %/4).

Let x€ R™\A4 with d(x, A)=r=r,. We divide the proof into three cases:

Case 1. E(x, 2) is contained in some (n— 1)-plane 7. Now the condition (a;) of
5.5 is trivially true for all 2. Choose y€A with |y—x|=r. Then y€4; for some ;.
There is an (n— 1)-simplex 4 which is similar to 4; and satisfies the conditions

y€d4 < 4;nB(x,2r), d(4) =r.
Hence (a) is true with M=M,.

Case 2. E(x, 2) meets o; for some j. Now there is an n-simplex ¢ which is similar
to o; and satisfies the conditions

6co;nB(x,3r), di®) =r.

Obviously o is M,-related to ¢; in ¢; and hence in A. Thus (b) is true with M=
max (M, 1/c;).

Case 3. The cases 1 and 2 do not occur. Now E(x, 2) meets two (n— 1)-simplexes
4; and 4, which are not contained in an (n— 1)-plane. Choose y€A4 with |x—y|=r.
We may assume that y€4;. To simplify notation, we assume that y=0 and that
T(4,)=R""*. Choose z,€4,nB(x,2r). We may assume that zy€ R’ and that
4ynint R, #0. Let P: R"—R' be the projection P(x)=x,, and choose a point
v€4, at which P attains its maximum. Then P(¥)=«. Since |v—zy|=a—3r=r,
there is a point z on the segment vz, with |z—z|=r. Choose u€(0, 1] such that
the (n—1)-simplex 4,=pu4; is contained in B(r) and meets S(r). Then r=d(4y)=
2r and thus r/c,=p=2r/c;. Furthermore, oc=z4, is an n-simplex of E(x, 3). It
suffices to show that ¢ is M-related to v4; in 4,04, for some M depending only
on A. This is done by deforming z4,to v4; by a parameter 7€[0, 1] so that an inter-
mediate simplex is ¢,=z,4, where

zz=1-0z+tw, 4,=wdy, = 1—t+t/pu.
By 2.15, it suffices to find an upper bound for the numbers

_ d(z, 4, _ d(4,)
h==aay - P=2cy
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We have
Izl _ (A=0lz|+1]vl
=L =2 =9(0.
b= = a=rgr =10
Since y, is monotone and since

Izl _ |z—2o| +|z0l
= — = — = 4’
71(0) ;= " =

() =2 = 20—z +izDfer = derfe.

we obtain f,=4c,/c;. To estimate S, observe first that

2=zl _ PG)=P(z) _ P() _ P@)
=zl ~ PG)—PG) ~ PG) ~ «

which implies P(z)=ar/c,. Since

B, = ped(do) _ 2r(1—t+1/w)
2T P) T (1-nP()+tP)’

we can argue as above and obtain f,=2c,/a. O

5.20. Corollary. Let n=2, and let ACR" be a compact PL manifold of
dimension n or n—1, with or without boundary. Then A has the extension properties
inR". 0O

5.21. Remarks. It is not possible to extend 5.17 and 5.20 to LIP manifolds. For
example, a LIP circle in R? need not have the extension properties in R?, see 7.10.

One can also consider bilipschitz and QS extension without the condition that
the bilipschitz constants or the dilatations are small. For example, Gehring [Ge,,
Corollary 2, p. 218] proved that if 4 is a QS circle in R?, every L-bilipcshitz f/: 4—~R?
can be extended to an L,-bilipschitz g: R®—~R?, L,=L,(L, A). In higher dimensions
n#4, similar extension is possible if, for example, 4 and f4 are QC spheres, see
[TV, 2.19].

5.22. Open problems. 1. Are 5.17 and 5.20 true for p-dimensional manifolds,
p=n—-27

2. Does A in 5.17 and in 5.20 have the extension properties in (R", Y) for
dim Y>n?

3. Does every compact polyhedron in R" have the extension properties in R"?

5.23. Example. Let ACR? be the well-known snow-flake curve see e.g.
[Ma, p. 42]. There is a family of equilateral triangles associated with A4 in a natural
way. It is easy to see that these are mutually AM-related in A with some M. It follows
from 5.5 that A4 has the extension properties in R2. A stronger result will be given in
6.13.2.
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6. Thick sets

6.1. In this section we give a sufficient condition for a set ACR? to have the
extension properties in (R", Y) for p=n=dim Y. The condition is somewhat simi-
lar to the condition (b) of Theorem 5.5, but it does not involve the notion of M-relat-
edness. On the other hand, it must be valid at all boundary points and there is no
choice between two conditions as in 5.5. We show that the condition applies, for
example, to all compact convex sets and to QS p-cells.

We say that a set ACR? is thick in R? if there are ry>0 and f>0 such that if
y€dA and if O<r=r,, then there is a p-simplex 4 such that 4°cAnB(y, r) and
m,(4)=prP. This implies that ¢(4)=M and d(4)=r/M for some M=M(B, p).
Conversely, these inequalities imply that m,(4)= fr? with f= (M, p)>0. Examples
of thick sets are given in 6.13.

6.2. Theorem. Suppose that A is closed and thick in RP and that either A or RP\ A
is bounded. Then A has the extension properties in (R", Y) whenever Y is a linear
subspace of I, and p=n=dim Y.

Proof. By 4.4 it suffices to show that 4 has the extension properties in (R?, Y).
We again choose an auxiliary parameter g€(0, 1]. To prove the QSEP it suffices
to find g,€(0, 1] and for every ¢€(0, g] a number s=s(q, A)>0 such that every
s—QS map f: A—~Y has an s5;—QS extension g:RP—Y where s,=s,(q, 4)~0
as g—0. In the bilipschitz case, we find L=L(g, A)>1 such that every L-bilipschitz
f: A=Y has an L,-bilipschitz extension g: RP—Y where L,=1L;(q, 4)~1 as
q—0.

The basic idea of the proof is the same as in 5.5. However, the number b corre-
sponding to the constant b, of 5.5 will depend on ¢. In fact, b—>< as g—0. No use
will be made of sense-preservation.

Let r,>0 and B=>0 be the numbers given in the definition of thickness, and
let M=M(B, p)=1 be asin 6.1. Set

c=q Y8, b=2+3c

and choose R=0 such that d4cBP(R/b). Choose s=s(q, A)€(0, g] such that
(6.3) (s, p) = min (¢*ro/2R, g/2b),
where » is given by 3.1. We show that s is the required number provided that g is
sufficiently small. In the bilipschitz case we set L=(s2+1)"2

We may assume that R’C Y. Suppose that f: A-Y is s—QS By 3.1, there
is a similarity h: RP—~Y such that setting B=B?(R) we have

Ih—=flans = x(s, )L, d(AN B) = ¢°ro L.

Extending h to a bijective similarity &, of ¥ and replacing fby h{'f we may assume
that
6.4) |f—id|4ns = g%7¢-
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Set G=R\A. For every xcR? we set r,=d(x, A) and choose a., €4 with
la,—x|=r,. We also set E,.=AnB(x, br,). Then clearly E,cB for all x¢G.
We first show that

6.5) r,=(+0r,, AnB(a,,r) CE.NE,

whenever x, y€G with |y—x|=cr,. The first inequality is obvicus. If z€A4n
B(a,, r,), then

[z—x| = |z—ay)|+|ay,—y|+|y—x| = ry+r,+cr, = br,.
Hence z€E,. Furthermore, since b=5, we have
lz—y| = |z—a,|+|a,—y| = br,,

which implies z€E, and proves (6.5).
We associate to every x€G a similarity h,: RP-Y as follows: If r,=gr,, we
set h,=id. If r.<gqr,, we apply 3.1 and choose k, such that

Ih.—f g, = =(s, p)L(h,) d(E,) = 2br, L(h)x(s, p).
By (6.3) this yields
(66) ”hx _f”Ex = qrxL(hx)‘

By (6.4), this is valid for all x€G. In the bilipschitz case h, is chosen to be an iso-
metry.

In what follows, we let M, M,, ... denote numbers M;=1 depending only
on A. We next show that

(6.7 L(hy)ry = SMbL(h)ry, b () —h,(W| = M1g**r,L(h,),

whenever x,y€G, |y—x|=cr, and r,=r/(1+c).

By (6.5), we have r,=(1+c)r,=r,. Hence thereis a p-simplex 4 of AnB(a,, r,)
such that d(4)=r,/M and g(4)=M. By (6.5) we have A°CEmey. We give the
restriction

q=1/4M.
Now (6.6) implies
L(h)r, = ML(h)) d(4) = Md(h, 4)

= M(d(f4°+2gr,L(h,))
= Md(f4°%+r,L(h))/2.
Hence

L(h)r, = 2M d(f4°) = 2M(L(h,) d(4)+2qr, L(h,)).

Since d(4)=d(E,)=2br, and since q=1=b/4, we obtain the first inequality of
6.7).
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To prove the second inequality, we first obtain
1he—hyl a0 = [he=fle A+ 1/ =hlz,
= gr L(h)+qr,L(h)
= (14+5Mb)gqr,L(h,).
Since
14+5Mb = 6Mb = 3CMc = 30Mq~53,
and since g(4)=M, 2.11 yields
lhx(y) - hy(y)] = 30Mq2/3 rxL(hx) (1 + d(A)—lely _le)s
where z; is an arbitrary vertex of 4. Since d(4)=r/M and |y—z|=|y—a)|+
la,— z,|=2r,, we obtain the second inequality of (6.7).
Choose a Whitney triangulation W of G as in 5.1. Thus the p-simplexes o of W
satisfy the conditions (5.2):
(@ =g, a1 =716(0) =a,,
where @,, a;, a, depend only on p. We may assume that a,=1. As in the proof of
5.5, we define g(v)=h,(v) for every vertex v of I¥, extend affinely to all simplexes of
W, and set g|A=f. We shall show that g is the desired extension of f provided that g
is sufficiently small.
Since a,=1, we see that g(x)=x whenever r,=2gr,.
We omit the proof for the continuity of g, since it is similar to the corresponding

proof in 5.5.
We first show that

(6.3) |, (x)—g ()| = Myq**r L(h,)
whenever x€G and r,=r,/(1+c¢). Choose a p-simplex ¢€W containing x. For
every vertex v of o we have

lv—x| = d(06) = asr, = cry.

Hence (6.7) implies

|h(0) =g ()| = M1¢**r,L(h,).
Since h,—g is affine in o, this yields (6.8).

We next show that
(6.9) 1h. () =gl = M3q*Pr.L(h,)
whenever x€G, r.=r,/(1+¢)? and |y—x|=cr,. If y€A4, then y€E,, and (6.9)
follows from (6.6) with M,=1. Suppose that y€G. Since r,=(1+c)r,=r/(1+0),
(6.7) and (6.8) imply
|h. () =gl = b () =h, W +17,0)— g W)
= M,q*Pr.L(h)+M,q*3r,L(h,).

Since b=5c=5q""73, (6.9) follows from the first inequality of (6.7) with M;=26MM,.
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We must show that gis s;—QS, where s,=s5,(q, 4)~0 as g—0. In the bilip-
schitz case, we must show that g is L;-bilipschitz, where L,=L, (g, A)—~1 as g—0.
We omit the proof of the QS case, since it would take several pages of elementary
and dull reasoning, where one would consider several cases and subcases according
to the situation of a triple (a, b, x) of points in RP. We give in detail the proof for the
bilipschitz case, which is simpler. Assume that f: A—Y is L-bilipschitz satisfying
(6.3) with s=(L2—1)"2. Now each F, is an isometry, and thus L(h,)=1.

For every p-simplex ¢ of W, we let K, denote the subcomplex of ¥ generated by
all p-simplexes meeting o. The underlying polyhedron N(o)=|K,| is a neighborhood
of ¢ in R?. From the construction of W it follows that there are positive numbers a,
and aq, depending only on p such that

d(o, R°\N(0)) = asr,, |y—x| = a,r,,

whenever o€W is a p-simplex, x€o, and y€N(c). Moreover, the complexes K,
belong to a finite number of similarity classes. By 2.14, there exist a number o=
% (p)>0 and for every a€(0,0,] a number L,=L,(x,p) such that Ly(oe, p)—~1 as
a~0 and such that if ¢: N(¢)~1, is affine on each simplex of K(¢) and if |¢p(z)—
h(v)|=ad(c) for some isometry h: RP—I, and for every vertex v of K(o), then ¢
is L,-bilipschitz.

We give the following new restrictions on g¢:

(6.10) g=a;% q=dfaiM;?®, 2q=(1+c)72,

which are of the form g=g,(4). We show that for every p-simplex ccW, g|N (o)
is Lg-bilipschitz with Ly=Ly(q, A)=L,(M,g"*/a;, p). Choose x€o with r.=
d(o, A). If r,=ry/(1+c)? the last inequality of (6.10) implies that ry=gqr, for all
YEN(0), and hence g|N(o)=id. If r,=ry/(1+c)?, then (6.10) implies that N(o)c
B(x, cr,). Hence (6.9) yields

[ () —g )| = ad(o)

for y€N(o) with a=M;q'*/a,=a,. Thus g|N(o) is L,-bilipschitz.
It follows that g is L,-lipschitz with L,=L,(q, A)=max (L, L;). We assume
that g is so small that L,=2. It remains to find L;=L;(q, 4) such that

(6.11) lg(x) =g = [x—pl/L;

for all x, y€R? and such that L;(g, A)~1 as g—0. We may assume that =,
We consider three cases.

Case 1. r,=0. Now x,y€A, and (6.11) holds with L;=L.

Case 2. O<r,=ro/(1+c)*. Choose a p-simplex g€W containing x. If ye N(c),
(6.11) holds with L;=L,. If y€B(x, cr,)\N(o), then |x—y|=a,r,, and 6.9)
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yields
1g(x)— gl = 11, () —h ()] =7 (x) — g () = 1. () — g W
= |x—y|-2M3q"r,
= |x—y|(1-2M;q"7/ay),
which implies (6.11) for small g. Finally assume that |x—y|=cr,. Since g is 2-lip-
schitz, we obtain
lg(x) -2 = 1g(a) —g(a)l —1g(x) —g @)l —1g(») —g(a,)l
= la,—a,|/L—2r,—2r,
= (lx—yl —2rx)/L—4rx
= |x—yl(1-2¢"")/L—4q"*|x I,
which gives (6.11) for small g.
Case 3. r,=ry/(1+¢)2. Now g(x)=x.If r,=2gr,, then g(y)=y, and (6.11)
is trivial. Assume that r,=2gr,. If y€G orif |y|=R, (6.4) gives
lg(x)—gW)| = Ix—yl—=ly—a,l—la,—g(a) —Ig(a,) —g (W)
= [x—yl—2qro—q*ro—2la,—yl
= |x—y|-Tgr,.
Since |x—y|=ry/(1+¢)*—2gr,, we again obtain (6.11) for small ¢. Finally, assume
that y€4 and |y|=R. Now r,=R/b and |x—y|=R—R/b. Since g is 2-lipschitz
and since b—1=1+3c>¢"3, we obtain
lg(x)—g ) = 1g(a) — g —1g(x) —g(a,)l
= |a,—yl/L—2r,
= [x—yl(1-¢"*)/L—-2¢"*|x -y,
which again implies (6.11) for small ¢. O
6.12. Remarks. Inspection of the proof of 6.2 gives the following information
on the constants L, and L, of the BLEP: L, depends only on r,/d(d4), B and n, and
L, depends, in addition, only on L. In particular, these numbers do not depend on Y.
In the case p=n, we can choose g to be an isometry outside a given neighborhood
U of 4; then L, depends also on U.

A similar statement is true for the QSEP. Then one can choose g|R™\U to be
a similarity.

6.13. Examples. 1. Suppose that a domain DcRP is a John domain, see e.g.
[MS]. It is then easy to see that D is thick in R?, and has therefore the extension prop-
erties in (R", Y). In particular, this is true if D is a bounded uniform domain
[GM, 2.18]; in particular, if D is a QS ball [V4,, 5.6]; in particular if D is bounded
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and convex. It follows that every convex compact set in R" has the extension proper-
ties in (R, Y).

2. Let A be the snow-flake curve in R2. It is easy to see that A is thick in R?, and
has thus the extension properties in (R", Y) for 2=n=dim Y. This strengthens the
result of 5.23. Since 4 is a QS circle, we see that thickness is not a QS invariant prop-
erty.

3. The Cantor middle-third set is thick in R

4. If 4, is thick in R and 4, is thick in R% then A,X A, is thick in R?*1,

5. If 4 is any closed set in RP and if ry>0, then A+r,B? is thick in R? with
constants #, and f=f(p). This observation will be used in Section 8.

7. Examples

7.1. In this section we give several examples of sets 4 R"* which have neither
of the extension properties in R" or in (R", Y) for some Y. To show this, it suffices to
construct a sequence of L-bilipschitz maps f;: A—Y such that L,—~1 and such
that there are no s5,—QS extensions g,: R"~Y of fi such that s,—~0. In 7.5, we
give an example of a set which has the BLEP but not the QSEP in R2.

7.2. Lemma. Let n=2, let 1=L<b, and let x,, y, be points in R"™\{0} such
that |x,|/L=|y,|=L|xy|. Then there is an L,-bilipschitz map h: R*—~R" such that

1) h(xo) = yo,

@ k) =x if IxI=Ixl/b or |x|=blxl,

(3) Ly=L(L,b)~1 as L—-1 and b -,
If, in addition, |y,— x,|=0|x,|, one can replace (3) by

@) L=L5,b)~1 as 6—0.

Proof. We may assume n=2. The map k can be constructed as the map fon p.
205 of [Ge,], combined with a simple radial map. The last statement is clear. [J

7.3. Let X1, X, ... be a strictly decreasing sequence of positive numbers such
that x;,,/x,~0 and thus x,—0. Then A={0}u{x;: k€ N} has neither of the
extension properties in R To see this, define f,: 4~R! by f,(x,)=—x, and by
Je(x)=x for xsx,. Then f, is L,-bilipschitz with L,~1, but f, has no extension to
a homeomorphism g: R'—~ R

7.4. Let A be as in 7.3. We show that 4 has the BLEP in R" for n=2. Suppose
that f: A—~R" is L-bilipschitz with L close to one. We may assume that f(0)=0 and
that || f~id||, is small (Theorem 3.1). Choose disjoint annuli 4 = {x€R": x;/b;<
[x|<b;x;} where bj—>co as j—-co. Then Lemma 7.2 gives easily an L,-bilipschitz
extension g: R"—R" of fsuch that L, is close to one.
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7.5. Let A be as in 7.3 and in 7.4 with x,=e~™. We show that 4 does not have
the QSEP in any connected set. In particular, 4 has the BLEP but not the QSEP in
R2. Fix a positive integer k, and define a map f;: A—~R* as follows: Set ¢(x)=
—1/log x. Then £,(0)=0,£i(x)=¢(x) for x=x,, and fi(x)=0(x)+¢"(x)(x—x)
for x=x,. An elementary but tedious proof shows that f; is s5,— QS where s5,—~0 as
k—<o. However, f, has no QS extension to any connected set, since by [TV, 3.14].
this extension would be Hélder continuous at the origin.

7.6. Let A R2 be the union of R! and the line segments J,=2¥X[0, 1], k€N.
Define f, : A~R? by f,(x, y)=(x, —y) for (x,y)€J, and by fel(ANJ)=id. Then
fi is Ly-bilipschitz where L,~1 as k—oo. Since f; has no extension to a homeo-
morphism of R2, 4 has neither of the extension properties in R®.

7.7. The preceding example can easily be modified to a compact set 4 R? with
the same property. This set consists of the horizontal segment /=[0, 1] and of the
vertical segments {1/k}X[0, 27%].

7.8. We modify the preceding example so that 4 will be an arc. Set
E={(x,y)ER% |x|=1,y= 1—|x[12).

The intervals 4,=[1/k—27%, 1/k+27*] are disjoint for k=7. Let A be the arc
obtained from I by replacing each 4,, k=7, by E,=2"%4+1/k. Define again
fi: A=R® by fi(x,p)=(x, —y) for (x,y)€E, and by fil(A\E)=id. Then f; is
L,-bilipschitz with L,—~1. Now f; has an extension to a homeomorphism g: R*~R?,
but g cannot be QC and hence not bilipschitz.

A related example has recently been given by Gehring [Ge,].

7.9. We replace the arc E of 7.8 by the PL arc E’ with consecutive vertices
—e,, —e,+e,, e,+e,,e;. We obtain an arc 4’CR?. Define f;: A’>R® as before.
Again £, is L,-bilipschitz with L,—~1. Now f; has an extension to a bilipschitz homeo-
morphism g,: R*—~R?, but g, cannot be chosen to be 5,—QS with 5,0, since
g, maps an angle /2 onto an angle 3r/2.

Observe that A’ is a LIP arc, that is, a bilipschitz image of 7. By 5.17 and 5.10,
all DIFF and PL arcs in R? have the extension properties.

7.10. It is easy to enlarge the arc 4’ of the preceding example to a LIP circle 4”
which has neither of the extension properties in R®. On the other hand, if D is the
bounded component of R?*\ A4”, then D is a bilipschitz disc, and hence D has the
extension properties in R* by 6.13.1.

7.11. Similar exambles can be given in higher dimensions. For example, a LIP
arcin R® without the extension properties can be obtained from the preceding example
by replacing the arc E’ by the PL arc with vertices —e;, —e;+e;, —ej+exte;,
e;+e,te;, etey, e.
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7.12. We next give an example of a set 4 R® without the extension properties
such that A is the closure of a domain. I do not know whether such an example
exists in R% Set

D, = R*X(1, =),

D, = R*X(~ =, 0),

Z, = B%*(key, 1]k)X I,
G=D,uD,uZ,uZ;uU....

Now G is a domain in R3. We shall prove that A=G has neither of the extension
properties in R®. ‘

For k=2 define a homeomorphism f,: A-~A4 as follows: Outside Z, f,
is the identity map. In Z,, f, is the twist

filk+re®, 1) = (k+relet2m ),

Since the cylinders Z, become very thin for large k, it is easy to see that f; is L,-bilip-
schitz with L,—1.

We show that f; has no extension to a homeomorphism g: R®*—R3 Suppose
that g is such an extension, and assume k=3. Define a path «: I-R? by o(s)=
2e;+se;. Next choose a natural path homotopy H,: I-R?® of « such that H, is a
PL path with vertices 2ey, x,, x,+e3, 2¢,+¢e;, where

x = (21 =0+1t(k—1/k))e;.

Let P: R®—~R? be the orthogonal projection. Now PgH,: I-R? is a path homo-
topy in R®\{ke;}. Hence PgH, is null-homotopic in R>\ {ke,}, which is clearly
a contradiction.

7.13. We can easily modify the preceding example to a compact set 4 which
consists of a closed 3-ball B together with a sequence of handles Z, which are very
thin for large k. We can choose these handles so that d(Z,)—0. Now remove a thin
slice E; from each handle Z,. In the situation of 7.12 E, could correspond to the set
B?(key, 1/k)X(0,27%). We obtain a set Q, which is a locally flat TOP 3-cell. If
fi: @0 is defined as in 7.12, f; can be extended to a homeomorphism g: R3-— R3,
However, one can show that g cannot be QC. Hence Q has neither of the extension
properties in R3. Remember that by 6.13.1, every QS n-cell has the extension prop-
erties in R".

7.14. We give an example of a set 4 < R? which has the extension properties in
R? but not in (R? R3), or equivalently, in R3. Let Q, be the square IXI, and set
inductively Q,=la,, a,+11XI where a,=0, a,=a,_,+1+1/k. Removing the
squares Qy, 0y, ... from R® we obtain a domain G. We show that 4=G has the
BLEP in RZ; the QSEP can be proved in a similar manner. Suppose that f: 4— R?
is L-bilipschitz with L close to one. By 5.19, 0Q; has the BLEP in R Hence f]0Q;
can be extended to an L,-bilipschitz g;: Q;~R?* where L,=L,(L)~1 as L-1.

=1
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Since each Q; is a square, L, does not depend on j. These maps give an extension
g: R*->R® of f, which is L,-bilipschitz with L,=max (L, L,).

To show that 4 does not have the extension properties in (R?, R3) define f;: A—
R3 as follows. Let R, be the rectangle [a,+1, a;.,1]X 1. Let f; be the identity outside
R,, and let f;| R, be a twist, see 7.12. Then f; is L,-bilipschitz with L,~1. Asin 7.12,
one can show that f; has no extension to a homeomorphism of R.

7.15. Suppose that X and Y are linear subspaces of /, with co>dim X=dim Y,
andlet Ac X. It is natural to ask how the extension properties of 4 in (X, Y') depend
on X and Y. By 4.4, they are independent of X. However, the examples 7.3, 7.4 and
7.14 show that they depend essentially on Y. More precisely, if Y; Y, with dim Y, <
dim Y,, the extension properties of 4 in (X, ¥;) do not imply and are not implied by
the extension properties of A4 in (X, Y,).

7.16. Suppose that A is an infinite-dimensional linear subspace of /, with
A#1l,. Then there is an isometry f: 4—[, such that f4 is dense in /,. Hence A4 has
neither of the extension properties in /,. It seems to the author that the notions BLEP
and QSEP are only useful for finite-dimensional sets 4.

8. Supplementary results

In this section we give some general remarks on the extension properties. We
first show that if 4 is compact, the extensions can be chosen to be very elementary
outside a given neighborhood of A.

8.1. Theorem. Suppose that AC R" is compact and has the BLEP in (R*, Y),
where Y is a linear subspace of l,. Let U be a neighborhood of A. Then there is L,>1
such that if 1=L=L,, then every L-bilipschitz f: A—Y has an L,-bilipschitz exten-
sion g: R*—>Y such that Li=L,(L,A,U,n, Y)~1 as L-1 and such that g|R"™\U
is an isometry.

A similar statement is true for the QSEP; then g|R™\U is a similarity.

Proof. We prove the first part of the theorem; the proof for the QS case is simi-
lar.Let Ly>1 and Lj(L, 4, n, Y) be the numbers given by the BLEP of 4 in (R, Y).
Set ry=d(4,0U)/2 and E=A+r,B". By 6.2 and 6.13.5, E has the BLEP in (R", Y).
More precisely, it follows from 6.12 that there is Lj= Lj(ry/d(E), n)>1 such that if
1=L= Ly, then every L-bilipschitz f: E—~Y hasan L}-bilipschitz extension g: R"—~
Y such that L{=L](L,ro/d(E),n)~1 as L—1 and such that g|R™\\U is an iso-
metry. Choose L,>1 such that L,=Lj and such that Lj(L,A4,n,y)=L; for
1=L=L,. Suppose that 1=L=L, and that f: A—Y is L-bilipschitz. Then f has
an L(L,A,n, Y)-bilipschitz extension h: R"—-Y. Now there is an extension
g: R"->Y of h|E suchthat g|R™\U is an isometry and g is L, -bilipschitz with

L, =L{(L{(L, 4, n,Y), ro/d(E), n). O
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Observe that the proof of 8.1 made use only of the fact that 4 has the BLEP in
(U, Y). Hence we obtain:

8.2. Theorem. Suppose that AC R" is compact, that U is a neighborhood of A,
that Y is a linear subspace of Iy, and that A has the BLEP or the QSEP in (U, Y). Then
A has the same property in (R*,Y). 0O

8.3. Remark. On the other hand, there seems to be genuine problems if we
consider local extension properties. Suppose, for example, that 4 is compact in R”
and that Y is a linear subspace of /,. Suppose also that each point in A has a neigh-
borhood U such that AnU has the BLEP in (R", Y). I do not know whether this
implies that 4 has the BLEP in (R", Y).

8.4. Addendum. In a recent paper [Tr], D. A. Trotsenko announces results re-
lated to our results on the QSEP. He uses the notion of A-similarity, which for small
h is close to s-quasisymmetry with small s, cf. 3.9. However, the examples of Section
7 (e.g. 7.6) seem to contradict Theorem 1 of [Tr], unless [Ir] tacitly assumes that all
similarities are sense-preserving.
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