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1. Introduction

Let X and Y be metric spaces with distance denoted by la-bl. A mapf: X*y
is called L-bilipschitz, L>1, if

lx - yllL = lf@) -f?)l = Llx - yl

forall x,y€X. we saythat a set Acx has the bilipschitz extension property (ab-
breviated BLEP) in (X,I) if there is Zo>l such that if l<L=Lo, then every
Z-bilipschitz f: A*Y has an lr-bilipschitz extension g: X*Y, where Lt:
Lr(L, A, X, Y)*1 as Z* 1.

similarly, I has the quasisymmetric extension property (abbreviated QSEp) in
(X, Y) if there is so=9 such that if 0=s=so, then every s-quasisymmetric f: A-Y
has an sr-quasisymmetric extension g: X*Y, where sr=sr(s,A,X,f)*Q as
s*0. The definition of quasisymmetric maps will be recalled in 2.2.

We also say that I has one of these properties in X if Ahas this property in (X, X).
If I has both the BLEP and the QSEP in (x, Y) or in x, we say that Ahas the exten-
sion properlies in (X, Y) or in X, respectively.

In this paper we consider the case where X is the euclidean ,4-space R, and f is
an inner product space. Without loss of generality, we may assume that y is a linear
subspace of the Hilbert space lr.lhe main results are Theorems 5.5 and 6.2. These
give suffi.cient conditions for a set AcN to have the extension properties, the first
one in R', the second one in (R', f). Both conditions are somewhat implicit, but
we show that the first one applies to all compact DIFF and PL (n- 1)-manifolds, the
second one to all compact convex sets and to all quasisymmetric n-cells.

In a joint paper [TVo] with Pekka Tukia, we proved that RP and s, have the
extension properties in R'for p=n- 1. In Section 4 we extend these results to the
relative case (R', Y).

The basic idea of the extension proofs of the present paper is the same as in
[TVJ: We choose a suitable triangulation of R \1, define the extension g at the
vertices, and extend affinely to the simplexes. Thus g will be PL outside l. However,
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to define g at the vertices, we must replace the rather explicit constructions of [TVn]

by an auxiliary approximation theorem, which will be given in Section 3.

In Section 7 we give several examples of sets AcR" u'hich do not have the

extension properties in R'or in (R', Y). \t is not easy to find an example which has

only one of these properties.In fact,I conjecture thatif A has the QSEP in R" it has

also the BLEP, and that for n*4 the proof can be based on the ideas of []VJ
together with careful estimates on the bilipschitz constants. In 7.5 we give an example

of a set AcRz which has the BLEP but not the QSEP in Å2. However, I do not

know of any such example where I is connected.

I thank Jouni Luukkainen and Pekka Tukia for reading various drafts of this

paper and for several valuable remarks and corrections.

2. Preliminaries

In this section we give the basic notation and terminology used in this paper,

some propelties of quasisymmetric maps, and elementary results on afiflne and PL

maps.

2.1. Notation. We let /, denote the Hilbert space of all square summable se-

quences of real numbers. Let (e1,e2,...) be its natural basis. We identify the

euclidean rz-space R'with the linear subspace of /, spanned by e1, -..,eo. 'Ihen

RpcR' for p=n. Open balls in Ro are written as B(x,r) and spheres as 5"-1(x, r);
the superscript may be dropped. We also set

B'(r): B'(0,r), B: Bn(l\, S'-t(r) : Sn-l(0, r), §n-l : §'-t(1),

Å! : {x€"R': x, > 0}, B\ : B" n R+ .

lf Aclr, we let 7(l) denote the affine subspace spanned by A. ln each metric

space, la-bl denotes the distance between a and b.lf f and g are maps into /2,

defined on a set X, we set

il"f-gll, : suP {l,f(x)-g(x)l: x€x}.

Iflis a bounded linear map between normed spaces, we let l/'l denote its sup-norm.

2.2. Quasisymmetric maps.These maps were introduced in [IVr]. We recall the

definition. Let X and Y be metric spaces. An embedding f: X*Y is quasisyrumetric

(abbreviated QS) if there is a homeomorphism 4: R'+*Rl such that if a,b,x(X
with fa-xl=tlb-xl, then lf(a)-f(x)l=q?)lf(b)-f(x)1. We also say thatlis
f-QS. If s>0, we say that/is s-QS iflis QS and satisfies the following condi-

tion: If t=l/s and if a,b,xCX with la-x1=tlb-xl, then lf(a)-f(x)l=
(r+s)l/(b)-/(x)1.
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In [T%] we used a slightly different definition of s-quasisymmetry. We said that

/is s- QS if it is 4- QS for some 4 in

ff(id,s) : {a: laO-tl= s for 0 = r= 1/s}.

Clearly this condition implies that f is s-QS in the sense given above. Con-
versely,if/is s-QS,thenforevery s'>s thereis t€N(id,s') suchthat f is 4-QS.

We say that/is a similarity or 0*QS if there is I>0 such that l"f @)-f 0)l=
Llx-yl for all x,y€X.In other words,/is 4-QS with {:id. Every Z-bilipschitz
map is s-QS with s=(22-l)rrz. lf lf(x\-f0)l:lx-yl for all x,y(X, /is an
isometry. An isometry need not be surjective

If G is open in N, n>-2, an 4-QS map /: G*N is K-quasiconformal
(abbreviated K-QC) with K:ry(l)'-l. The converse is not in general true but a
/(-QC mapf: R'*Rn iss-QS where s:s(K,n)*6 as K*1, see[fVn,2.6].

It is often a laborious task to prove that a given embedding f: X*Y is QS,
since one must consider all triples a, b, x€X. However, it is often possible to exclude
triples where the ratio l:la-xlllb-xl is small or large. See, for example [TVr,
2.16,3.10). For connected spaces, we prove the following useful result:

2.3. Lemma. Let X and Y be metric spaces with X connected. Suppose that
0<s= ll4 and that f: X*Y is a nonconstant continuous map such that

(2.4) lf@)-f(x)l = 
(r+s)l/(b)-/(x)l

whmeuer la-x1:116-xl and ll2=t=2. Thenf is ,f-QS with auniuersal q, and
a/sosr-QS, where sr:sr(s)*Q 4J s*0.

Proof.Let a,b, x be distinct points in Xwith lb-xl:7, la-xl:1v. Suppose

first that O<t<112. We show that (2.4) is also valid in this case. Choose an integer
m>2 suchthat 2-^=t*2-^tl, and set to:1rln. then ll2=to<2'r12. Since X
is connected, we can choose points b:*o, xt, ..., xm=a such that lxi-xl:1|.
Since fx;+r- xl:tolxi-xl, we have

and hence

Here

lf@ i+ J -/(x)l = (/, * s)lf@) -f(x)|,

lf@) -f (x)l = (/o * s)'l,f (b) -f (x)1.

(ro+s)'- t = (2-ttz*s)* -Z-ttz 5 §,

sine 2-u2+s=2-rt2+ll4=1. Hence (2.4) is true.
From [TV1, 2.20]it follows that/is an embedding. It is easy to verify that /

satisfies the conditions of [TVr, 3.10] with 11:12:3f4, h:413, and H:2. Hence

.f is 4-QS with a universal q. Indeed, by [TVr, 3.11] we can choose
q(t):4max(ftE, ftal.
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Toshowthat/iss.(s)-QS with sr(s)*O, let e>0. Supposethat t=lle. lt
suffices to show that there is ö: ä (e) > 0 such that if s= ä, then

t =\4!!-r-!:!l = t+e.' l"f(b)-f(x)l -- '-'

lf t=2, this is true for s<e. Suppose that 2<t< 1/e. Choose an integer n>2
such that 2!-r*t<?!. Setting tr:lln we have l<tr42. Since Xis connected, we

can choose points b:y1,...,!n:a such that lyt-xl:ttr. then

which implies
lfUi+)-f(x)l € U,*s) lfU) ./(x)l'

lf@)-f(x)l = (rr+ s)"lf(b)-/(x)1.
Thus t'=r+s' with

5' : (/r*s)'-ri = (2+s)'-2 : sr(s, n).

Since ?-1= t=lle, n has an upper bound of the form n=<rr(e). Hence §'=;

s1(s,n1(e))*0 as s*0, andthus s'=e forsmalls. tr

2.5. Remark. It follows from the proof of 2.3 that for a connected X,/is s- QS
if it satisfies (2.4) for t <11 I 2, l/sl and if s = I I 4. This is an improvement of l7\r n,2.41.

2.6. Simplexes and afine maps.Let /c=l and let Å:ao...d* be a /c-simplex in
t, with vertices ao, ...,a1,. We let ä, denote the distance of a, from the (k- l)-plane
spanned by the opposite face, and we set

b(/) : min (bs, "'' b*)'

The diameter d(Å) of Å is the largest edge lar-arl. The nurnber

o(4: d(/)lb(Å) > t

is called thelatness of /. We let ^/0 denote the set of vertices of /.
l*t Tcl, be a finite-dimensional plane (affine subspace), and let f: T*1, be

affine. We let Lr:L(f) and lt:l(f) denote the smallest and the largest number,

respectively, such that

ttlx - tl = lf@ -f(y)l = Lylx - tl
for all x,y€.7. Thus/is a similarity if and only if 11.: Lt>Q, and an isometry if and

only if lt:Lt: l. Moreover,lfis injective if and only if l1>0. In this case, the num-

ber H1:L//, isthe meticdilatationof f.
Recall that an origin-preserving isometry of an inner product space into an inner

product space is linear and preserves the inner product. Such a map is called an

orthogonal map. A sense-preserving orthogonal map Å.'*.ff is called a rotation.

2.7, Lemma, Suppose that /cl, is an n-simplex, that f: /*lz is ffine and

that h: Å*lz is a similarity such that

lh(u) -f(r)l = dLnb (Å) l(n + t)
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for euery uertex a of Å, where 0< a=112. Thm

Lt = Lh(l*2a), lt = Lhl$*2a), H1.<- (I+2a)2.

If ÅcN and f,h: /*N, thenhissense-preseruingifandonlyiffissense-preseruing.

Proof.Extend h to a bijective similarity h1: l2*lr. Replacing/by h;tf we may
assumethatå:id. Theproofof[TVn,3.3]isthenvalidalsointhepresentsituation.E

2.8. Lemma. Let /:a0...a1, be a k-simplex in N with ao:O. Suppose that
g: T(/)*p isanorthogonalmapsuchthat ga;:ai for 0=i=11-l and lgao-aol=

=ö. Then there is an orthogonal map u: .P*.P such that uglÅ:id and lu-idl<
ölb(Å). If k<n, u can be chosen to be a rotation.

Proof.lf k:n, either g:id orgisthereflection in T(an,...,d*-r). Inthe
first case we choose z:id. In the second case we have ö>lgao-axl:2b*=2b(/).
Since lg-idl:2=ölb(Å), we can choose er:g.

Suppose that k<n. Let E be the linear subspace of .P spannedby ay ..., ak-!.
Let qr: N*E and qr: N*EL be the orthogonal projections. I.et T be a two-
dimensional linear subspacre of EL containing the vectors xr:7zga* and xr:qrao,
Sine,e ga1,:gqLak+gqzak andsince glE:id, wehave EXz:xr, andthus lx, l:lx, l.
Consequently, there is a rotation u of T with ux1: x2. Extend u to a rotation u: Ro *
Å' with ulTt:id. Since lxr-xrl=ä, lz-idl=öllxrl. Hete lxrl:fl(ao,E)>b(Å),
and the lemma follows. tr

2.9, Lemma. Let Å:ao...ao be a p-simplex in N with do:O. Suppose that
h: T(/)-p is an orthogonal map such that lhat-atl=ö for all j. Then there is an

orthogonal msp ui -P*.P such that

uhlÅ: id, lh-idl = la-idl =b(Å)-Lp(l+a(/))e-lä.
If p=n, u can be chosen to be a rotalion,

Proof.We define inductively orthogonal rnaps uki Rn */(', O= k= p, as follows :

Let uo:if,. Assume that we have constructed uo,...,Ltk-L such that setting gr-
ui-t...Lto, we have Sihai:a, for i=i= k. Apply 2.8 with the substitution

k*k,/-/*- ao.. arr,g* g1,hlT(/1),6 -ö1,: muu( {lgohar-a1l: I =i = p}.

We obtain an orthogonal map uk:

ånlb(Åo). Thus

8t+1hlÅ1, -
We show by induction that

R* * R' such that uxgxhlÅrr:td and lux- idl =

id, luk-idl=-b(l)-'ä*.

(2.10) ä. = (1+8)o-'ä,

where g-e(/). This is clearly true for k:1. Suppose that (2.10) holds for k=s.
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Since fa,f =d(Ä)=gb(Å), we obtain

I g 
"ha 

1 - a 1l = lu 
" 
_, g 

" 
_ rha i - g 

" 
_ rha 1l { | g 

" 
_ tha i - a il

<- b (/)-L ö 
" 
-. la;l * ä"-1

= 
(s+ l)ä,-. = (q* 1)"-1ä,

which gives (2.10) for /c:s.
Since

I gr *, -idl s lu*s*- g*l+ 
I ck - idl = luo - idl+ lc& - idl

and
luv-idl = b(11-t5o = b(Å)-t(l* 8)P-1ä,

we obtain

lgp+r -idl = lar-idl + ... +lup-idl = t1t1-rp(l+ o)e-lä.

Since å:g#rlT(Å), the lemma is true with u=go*r. n

2.11. Lemma. I*t /cl2 be a p-simplex. Suppose that h,k: T(/)*1, avs

similarities such that lh(z)- k(z)l=ö for all z</o. Then

lLo-Lol = 2öld(/),

lft (x) * k(x)l = ö (t + d (/)-t Mlx - ol)

for all xCT(/) and u€Ao, where

M : 4+6e(t1p(t+ e(4)e-r.
Proof.Observing that

Lhd(A): d(hÅ) = d(kÅ)+2ö : L*d(Å)*2ö

and interchanging the roles of å and k, we obtain the first inequality.
To prove the second inequality, we may assume that ÅcR!, that a:0 and

that h,k: R!*N, n:2p* l. Assume first that å(0):Q: /c(0). Extend å to a sim-

lf z€Å0, we have

lgz - zl = l(L^l Lo)h;t k z - hyr k zl * lhl t kz - zl

= lLol Lo- tl L*lzl I Lt + lkz - hzl I L1 = 36 I Lh.

Hence 2'9 implies that 
lg-idl = b(Å)-tL;rMr6

with Mr: Jp (t + eU))'-'. Consequently

lh-kl = L^lhltk-idl

= Lolh;lk-gl+4lg-idl

= lLn-Lol+b(/)-lM$

= d(/)-rMö12.



is

of

Bilipschitz and quasisymmetric extension properties 245

In the general case, set h'(x):h111-1r191, k'(x):k1*'1-7r1}r, and apply the
inequality above to the linear maps h',lc' with ä replaced by 2ä. We obtain

lå(r)-lc(x)l = lh(o)-k(0)l+1,,'(r)-k' (x)l = 6(t+d(Å\-lMlxl). tr

2.12. Lemma. Let lcN be an (n-l)-simplex. Sttppose that h, k: K*N are

sense-preseruingsimilaritiessuchthat lh(z)-k(z)l=ö forall z</o. Thentheinequal-
itiesof2.llaretruewith p:n-l farall x€/c and aQlo.

Proof. We repeat the proof of 2.ll with a slight modification. When applying
2.9 we first obtain a rotation u: N*N satisfying the inequality of 2.9. Since rzg is

a rotation with uglÅ:id, we have u:g-l, which implies lu-idl:lg-idl. The

rest ofthe proofis unchanged. tr

2.13. Suppose that K is a simplicial complex. We say that a map f: lKltlz
§mplicial if/is affine on every simplex of K. We let K0 denote the set of vertices
K.

The proof of the following lemma is based on an idea of J. Luukkainen.

2.l4.Lemma. Let Kbe afinite simpliciol complex in lr. Then there is a6: as(K)>
0 such that if 0<d<0r6, f: lKl*12 is simplicial, h: Ko*lz is a similarity and

llf-hll""=aLo, then

Lolx-yllÄ =lf@)-fU)l = ttLolx-yl

forall x,y(lKl, where tl:1(a,K)*1 ds a*0.
If u : lKl * l, is a si milarity, one can choose us(uK): Luao(K) and A(u, uK):

l(alL,, K).

Proof. The last statement of the lemma is clear. Replacing/ and h by f/L^ and
hf Lo, we may assume that /z is an isometry.

We say that a pair /r, Åzof simplexes is a proper simplex pair if Åt*/z and
Åz+ År. If K has no proper simplex pairs, the lemma follows from 2.7 . T he lemma is

clearly true if dim K:0. Let O<p=q>1 be integers. We make the inductive hypo-
thesis that the lemma holds for all K such lhat if (/r, År) is a proper simplex pair of K
with dim/r=dim^/r, then either dim/r<q or dim År:q and dim/r<p. It
suffices to prove the lemma in the case where K has exactly two principal simplexes

At, Å, with dim /t:p, dim /r:q. Extending h to a bijective isometry h, of l, and
replacing/by hr'f, we may assume that å:id. Since /-id is simplicial, we have

ll,f-idlllKt=d.
Set Å:/tnÅl. I-et x€lr\1,/€lN/. We must find an upper and a lower

bound for lf@)-f0)lllx-yl.
Casel. /:0. Now d(/r,År1=5>0, and

lf@) -fU)l = lx - vl * 2a = 
(1 +2al »lx - vl,

lf@) -fU)l = lx-yl -2a > (t -2al Dlx - yl.
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Hence we can choose

:'Tä::J;:i,',?;?f,,!'^10,"),.r';'
Case 2. /#0. By the inductive hypothesis, the lemma holds for the complexes

K\?r) and K\{/r}. Choose ao>O and a function l:l},aof*ll, -) with the
properties given by the lemma for these complexes. Let 0=a<qo. Choose a€l.
'{hen x€ab and y€ac for some å€älN/ and c(å/N/. We may assume that

lb-ol =!"-ol:i..lx-al - ly-al
Then there is z€xb such that lz-al:)1y-al, and thas z-c:)"(x-y). Since/
is affine on ab and on ac, we have f (z)-f (c) : ),(f (x)-f (y)), and hence

lf@)-f0)l: ).-'lfQ)-.f(c)l = il'-llz-cl : Alx-yl,
and similarly

lf@)-fQ)l= A-tlx-vl.
Hence one can choose ae(K):ao and A(u, K): A(a). tl

We next give an estimate for the flatness of a simplex. This will be needed in the
proof of 5.19.

2.15. Lemma. Suppose that ÅcRP is a p-simplex vtith q(Å)<M. Suppose
that u is a point in fti+t such that uo+r=öd(/), ä=0, and d(u, Ä)=cd(Å). ThenuÅ
is a (p*l)-simplex with g(uÅ)=Mr(M, ö, c, p).

Proof.Let ao,...,a, bethe vertices of /, andset År:p71. We first derive a
lower bound for the numbers bi=bi(/) (see 2.6). Clearly bo+r:up+r>-6d(/). For
O=j=p we may assume ,r:0. Writing /o:ar..a,u we have bo:(pll)me+{Å)l
mn(Å), where mo is thep-measure. For anyp-simplex o we have

pt.mr(o) 
= b(o)c-t 71o1,

which can easily be proved by induction on p. This implies

Since

we obtain

nxp+JÅr) - m e(4"ö4 U) - öb lÅ)e-.1.d (.Å)z- p+L (p+r)pl

mr(Å) = d(t)o = (r * c)P d(/)o,

ba ? =,=öd\4)= -= , .= PI(L * c)P MP-L '

Since d(ÅJ= (l + c)d(Å), the lemma is true with

ML* p! (1 +c)o+LMp-L fö. D
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3. Approximation by similarities and by isometries

Intuitively, an Z-bilipschitz map with small I is close to an isometry, and an
§-QS map with small s is close to a similarity. We shall give a precise meaning for
this in this section.

3.1. Theorem. Let Ac.R! be compact, let Y be a linear subspace of 12 with
dimY>p, and let J': A*Y äe s-QS. Then there is a similarity h: R!*Y such

that

(3.2) llh-fllo=- xG, flLud(a),

where s*x(s, p) ,§ an increasing function and x(s, p)*0 as s*0.
Iff is L-bilipschitz and s-(l,z-l)1t2, thmh canbe chosen to be anisometry.

Proof. Suppose that the first part of the theorem is false. Then there exist .i>0
and a sequence fi: Ai*Yi of 4;-QS maps such that each l, is compact in
R!,1tQN(id,tlj), and

(3.3) llfi-h\ln,= )"Lnd(Ai)

for every similarity h: RP*Yi. Passing to a subsequence we may assume that
dimT(At):ft does not depend on7'. For each positive integerT we choose points
a],...,fie.et as follows: Let aoj€Ai be arbitrary, and let a)+L be a point x(A, at
which the distance d(x,T(ao,, ...,"j)) is maximal.

Using auxiliary similarities of Rp and lr, we may assume that RlcYi and that

aj :0, a} : er, aj€intRt* for Z < i = k,

f(ao) :0, fibj) : e1, fib)eR'* for 2 = i = k.

Then ArcBft and 1=d(A,)<2. Applying [TV1,2.5] with the substitution l-
{0,e1}, B*Aj, f*ft, yields

d(fiAj) =2ai(d(A)) =zq,(21=2Q+Uil = s

for j>2. Applying (3.3) with å:id we find xi(A1 such that

l.fi@)-xil =- i
for all 7>2. Passing to a subsequence and performing an auxiliary isometry E of l,
with ElRk:id, we may assume that the following sequences converge as j* -;

aj*ailBi*, 0=i=k,
fi(ai1* bt€E'+(5), o < i < k'

x.* Xo(.8k,

fi(x) * '/o€Bk+1(5)'

Moreover, ao:bo:O ar,d ar:br:et.
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Put T:T(a0,...,d), s:dim7. Then s<ft and a'€intR'* for i<s. Since

rl;€N(id, lf), we have

tri(a))t : ffd+ffi* jf+ : b'1.

Hence lbzl:lazl. Changing the roles of 0 and e1, a similar argument shows that
lb2-erl:la,-erl. Since a2, b'CR'+, we obtain a2:b2. Proceeding inductively, we
similarly obtain at:bt for O<i<s. Since

}I1*ä d(x'r):o'
we have xo(T. lf i and I are distinct integers on [0, s],

lvo-o'l ,,* lfi@)-fi@)l .,,* lxi-ajl lxo-a'l
1Ml: jI'": EWX@: i'I'i IAr-aX: T7-;l'

Thus fys-at1:1xo-atl for 0=i<s. Since a0, ...,d are affinelyindependentin 7
and xs€T, this implies xo:!o. Since lxr-yol >,2,, this is a contradiction.

The bilipschitz case could be proved in a similar manner, but it also follows from
the QS case. Assume that f:A*Y is Z-bilipschitz. Then/is s-QS with s:
(Lz-l)rtL. Choose a similarity h: Rp*Y satisfying (3.2). We may assume that
0€,4 and that å(0):0. Then hr:hlLn is an isometry. For each x€A we have

lf(x) - h,(x)l = | f(x) - h(x)l + Iå (x) - h, (x)l

= x (s, p)Lo d (A) + lt _ I I Lollh(x)l

where 
< x'(§' P)d(A)'

(3.4) xr(s, p) : L1,x(s, p)+ll -Lnl.
On the other hand,

(3.5) Lhd(A): d(hA) = dQfA)+2x(s, p)L1d(A).

This implies

-LLn= TjzxE, il
as soon as L-l is so smallthat 2x(s, p)-.1. Similarly, we obtain a lower boundfor
Ln, ard (3.4) yields

xt(s, P) : ö(L,P) * 0
as L*1. D

3.6. Remarks. 1. Theorem 3.1 is true with (3.2) replaced by the inequality

(3.7) llf-nlln = x(s, p) dUA),

replacing r by another function with the same properties. This follows easily from
(3.5).
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2. In the QS case of (3.2) and (3.7) one can always choose x(s,p)=2. By
auxiliary similarities we can normalize the situation so that 0eA, f(0):0, and
d(A):6171):1. Then

I"r-idlL = dUA)+d(A) =2.
This observation is due to J. Luukkainen.

We next prove converse results of 3.1. These are not needed in the rest of the
paper.

3.8. Theorem. Let 0<6< ll2, Iet XcR!, and let f : X*1, be a map such
that for euery bounded AcX there is an isometry h: R!*lz such that llh-fll6
öd(A). Then f is L-bilipschitz with L: (l-2ö)-t.

Proof.Let a,b€X with a*b. Set l: {a,bl, and choose the corresponding
isometryå. Now

lf @)-f (u)l=_lh(a)-h(b)l+lh(a)-f (a)l+lh(b)-f (b)l

= 
(1 + 2ä) 14 -bl = Q -2ö)-Lla -bl,

and similarly
lf@)-f(b)l > 0-26)la-bl. tr

3.9. Theorem. Let 0<x<1125, let XcR! be connected, and let f : X*1,
be a map such that for euery bounded AcX there is a similarity h: R!*lz such that

llh-fllo=xLnd(A). Thenfr's s-QS, where s:s(x)*Q qs la*Q.

Proof. We first show that/is injective. Let a, å€X rvith a*b, Set a: {a,b}
and choose the corresponding similarity å. Ihen

I f @) -f (b\l > Q - Zx)l h (a) - h (b)l > 0.

Now assume that a, b, x are distinct points in X with la- x1:116-xl. Set ,4:
{a,b,xl and choose the corresponding similarity h: Rp*/2. Since

lf(b) -f(x)l = lh(b) -h(x)l -2xL1, d(A) - Lhlb -xl - ZxL1,d(A),

we obtain

Since

we obtain

Assume t=x-1t2. Since %=1125, we have 2(l*t)x<.112, and thus

lf@) -f(x)l = I h(o) -h(x)l *2xLo d(A)

= tlf (b) -f (x)l +2(l + r) xln d(A).

d(A) = la -xl +lb -xl - (1 + /) lb - xl,

Lo d(A) = (1 + r) lh(b) -h(x)l

= (r + t)lf (b) -f (x)l+z(l + t)xLo d(A).

Lrd(A) = 2(1+ t)lf(b)-f(x)l.
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Consequently, I f @)-f (x)l: t'l f (b)-f(x)l with

(3.10) { = t+4%(l+t)2.

Assuming t<x-lta this implies
t' = t+9xll2.

Hence, iflis QS, it is s-QS with

s: s(z) - max(xUL,9xrl1.

To show thatf is QS, we verify thatf satisfies the conditions (l) and (2) of
[TVl,3.10] with )'r:1r:112, h=2,,F1:4. Since Xis connected, it is 2-HD. If
t=2, then t=x-'ln, and hence t'=t+9xtt2=4. lf t=1f4, then (3.10) implies

t'=112. The quasisymmetry of/follows then from the proof of [TV1, 3.10] and from

uY1,2.211. fI

4. Planes anil spheres

In [TVn] we proved that RP and Sp have the extension properties in N for p<n.
In this section we show that .P can be replaced by (P, I) where Y is any linear sub-

space of /, with dim Y>n. The result will be needed in Section 6.

4.1. Theorem. Let Y be a linear subspace of 12with dimY>-n, and let l=p=
n-1. Then Rp has the extension properties in (N,Y). The numbers in the definition

of the extension properties do not depend on Y, thus Ls: Ls(n), L1: L1(L, r), Jo:
so(n), s1:s1(s, n).

Proof.The proof can be carried out by rewriting the proof of [TVo, 5.3, 5.4] in

this more general setting. However, some modifications have to be made. We shall

only give these modifications.
the lemmas of [TVn, Section 3] are easily generalized to the new setting and

partly given in Section 2 of the present paper. T he results of [T Vn , Section 4] concern-

ing frames are still valid in the general case but in the proofs one cannot make use of
the compactness of the spaceVl(Y) of all orthonormal r-frames of Y. However, the

uniform differentiability formulas [1V4, @.2), (4.3)] of the Gram-Schmidt map

G: Y,(Y)*lto(I) are still valid in some neighborhood N of V:(Y) in V,(Y), as

easily follows from the definition of G. Hence we obtain the interpolation lemma

['tYa,4.47with R'replaced by Y. The crucial extension lemma l'LY4,4.g]also remains

valid with P replaced by f. Although Vlq) is not necessarily compact, G is still
uniformly continuous in a neighborhood of it. On the other hand, we cannot use the

diagonal process to conclude that it suffices to define the map u: "/ (p)*yo(Y) onty

ot ,./(p,ft). Instead, we give a direct construction of u on the whole "f (p).

We again start with the cube Qo:Jp and define ueo:Lto. Next we inductively

define urrfor Qr:l1o directly by ,a,-rfot all positive integers j. For eachT we

consider ihe family of the 3P- 1 cube§ R€9i@) with Ä-Q.; , R*Qi, and define
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u* directly by uar. Next we define zr* for the principal subcubes P^ of these cubes R
directly by un. f hen we apply the generalized version of [IVo, 4.4] to define ao for
every Q(9j-r(p) in the convex hull E;-r of the union of these principal subcubes,

exc€pt for those Q for which ushas already been defined directly by ,e,_,. Proceed-
ing in this manner, it is easy to see that we obtain a map u: "f (p)*yo(Y) with the
desired properties provided that q<2-0-4.

The extension g: R'*f of the given Z-bilipschitz or §-QS mapf: RP*Y
can now be constructed and its continuity proved as in the proofs of theorems 5.3

and 5.4 of [fvo]. However, we must give a new proof for the fact that g is Zr-bilip-
schitz or sr-QS, because the old one was based on the convexity of gR'in the
bilipschitz case and on the theory of QC maps in the QS case. We shall prove the QS
case. The proof for the bilipschitz case is similar but easier; observe that the convexity
of Re implies that g is lipschitz.

To show that g is sr- QS we use 2.3. Thus assume that a, b, x are distinct points
in R' with lb- xl:v, la- xl:1v, t=2. We must find an estimate

ls@) - s(x)l = U*s,)lg(b) - s(x)!,(4.2)

where §1: st(Q, n)*0 as q*0.
Using the notation of [IVn] we again obtain the estimate

(4.3) Il S-hallzo€Mqsa, M -24n2
[TV4, (5.9». Here Q is an arbitrary cube in g(p), hs: Re*Y is a similarity, and

Qe: L(hB)).s, where,to is the length of the side of Q. For Q(9(p) set

Yö: u lYo: Y*nYs * 0\.

We may assume that x€R'\Rp. Then there is Qe "f1p1such that x€Ya.We divide
the rest of the proof into two cases:

Case l. r<2p/4. Now

la-xl = 1al2: d(fo,.R'\fä).

Hence {x,a,b\cY$. Let W{ be the subcomplexof W with lW;l:Y$. Let ao:
ur(Wa) and tl:A(a,W{) be the numbers given by 2.14. One can choose

us: ysAs, l(x,fii) : Åo(tf ),s, n),

for some ?o=70(n)=0 and for some function z1o with lim*-e Ao(a,n): l. Let R be

the unique cube in .f(p) with )"p:2).s and QcR. then Y$cZ*. Hence (4.3)

implies

ll1-h"llrä 5 MqQn: aL(hx)

vath a:2MqÄe. We give the new restriction

q = ?ol2M.
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Then oc<ao: ys)",, and Lemma 2.14 implies (4.2) with

sL: 2(Ao(zMq, n)'-l).

Case2. r=)"s14. Let Q:poq&c... betheuniquesequenceofcubes of 9(p)
such that ft(R";*J:k(Rj)+ l. Let mbe the smallest integer for which Z^^contains

{a,b\, and set R:R.. Since d(Z^r,R'\Z"r*r):1^r, we have r>).*f8. From
(4.3) we obtain

Hence
llg - h*ll z* s M qL(h*) 1*.

lg(a) -s(x)l = L(h*)(tr*ZMfi"p),

lg(b) - s(x)l > L(h")(, -2Mq2*).

Assuming q<.lll6M we obtain

lg(a)-g(x)l _ t+t6Mq
ls(b)-e@)l - l-t6Mq'

which implies (4.2). D

4.4. Corollary. Let Y be a linear subspace of 12, and let p=n=dimY. Then

a set Ac Rp has the BLEP or the QSEP in (Re, Y) if and only if it has the same prop-

erty in (R', f ). In particular, the extension properties in N and in (R!, K) are equiu'

alentfor Ac.R!. D
It is natural to ask whether Ro has the extension properties in lr. I do not know

the answer. However, the following result in this direction can be established:

4.5. Theorem. Euery L-bilipschitz f: Ro*N can be extended to an L'bilip'
schilzhomeomorphism g: lr*12, andeuery r-QS f: R'*N can be extended to an

sr-QS homeomorphism g: lz*lz such that sr:sr(s,n)*Q as s*0. Moreoter,
gY:Y for euery linear subspace Y of 12containing N,

Proof. Let.E be the orthogonal complement of R' in lr. The bilipschitz case is

easy;wedefine g(x*r1:7@)+l for x(R', y€E.
Suppose that f: R'*^R1 is s-QS. Then /is K-QC with K:K(s,n). By

[TYrl,f can be extended to a homeomorphism F: Ri+1*p!+1 such that Flint R'+r
is ä-bilipschitz in the hyperbolic metric with H:H(s,n). The required homeo-

morphism g is then the rotation of F around Ro. More precisely, let eQE be a unit
vector. If x( R' and l>0, we define g(x* te): x' + t'e, where (x', r') is determined

by x'*t'en*r:p116atuo+r). lf a,b,x are points in /r, there is a linear subspace

Y of l, with dim Y:n*3 containing these points and R. Arguing as in [lVr,
3.131, we see that g defines a &- QC map 8r : Y*Y with Kr:6r(s, n). Hence 91

is sr-QS with sr:sr(s,ru). Herc:gis s1-QS.
If s is small, the extension F of f can also be obtained from the fact that R' has

the QSEP in P+r. Then f is sr- QS with small sr. However, we need the fact that the
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hyperbolic bilipschitz constant ä of Flint Ro+l is close to I . This follows rather easily
from the proof of [TVa, 5.4]. This implies that sr(s, rz)*0 3s s*Q. tr

4.6. Theorem. If Y is a linear supspace of lrandif p<.n=dim I, then Se, R\+r
and Bp+L hat;e the extmsion properties in (R', f).

Proof. The case p-0 needs a separate argument, which is omitted. Assume
p>1. the case A=Sp follows from 4.1 by means of auxiliary inversions as in

l'LY4,5.231. The awkward proof of [IVo, 5.22]can beessentiallysimplifiedbymeans
of quasimöbius maps, see [Vär, 3.11].

T he case A: R\+' can be proved by modifying the proof of 4.1 . By 4.4, we may
assume n:pIl. lf f: N+-Y is l-bilipschitz or s-QS with small I or r, we
define an extension gr: N_*Y of f lR! as in the proof of 4.1 . However, when defin-
ing the orthogonal frames us€V)(Y), we do not make use of the results of [1V0,
Section 4l.Instead, we can now define win:f @s+)"se)-f(a) also for .i:n, and
weleturbe the Gram-schmidt orthogonalization of wo:(tvro, ..,,*b), We obtain
an extension g: N *Y ofl We still have to showthat g is lr-bilipschitz or sr-QS.
It follows from the proof of 4.1 that it suff.ces to show that

llf -hallra = 24n2 qQa

for sufficiently small Z or s, where Z[:Za^4. This follows rather easily from a

slightly modified version of [1Vn, 3.10]. We omit the details.
Finally, the case A:Bo**' follows from the preceding case by auxiliary inver-

sions. Alternatively, it is a special case of 6.13.1. tr

5. The first condition

In Theorem 5.5 we shall give a sufficient condition for a set AcRn to have the
extension properties in Ro. We then show that this condition holds for all compact
(n- l)-dimensional DIFF and PL manifolds and for certain other sets in P.

5.1. The Whitney triangulation Let GcR' be an open set, U€G*R". The
relatiue size of a compact set AcG is defined as

rc(A) -
cl (A)

d.(A, gG)

Let Kbe the Whitney decomposition of G into closed n-cubes such that

),r=ro(Q)=).,

for all Q(K, where )"rand 1, are positive constants. See e.g. [St, p. 167] or [TVr,
7.21. One can choose 1t:ll7 and ).r:/iP,aat these constants can obviously be

chosen to be arbitrarily small.
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We define a subdivision of Kto a simplicial complex 7Il as follows: Suppose that

we have defined a simplicial subdivision WP of the p-skeleton Kp of K. Let Q be a

(p * l)-cube of K, and let un be the center of Q. Since 0Q is the underlying space of a

subcomplex Lgof We,the cone construction urLngives a simplicial subdivision of Q,

and we obtain Wp+L.'lhe complex IZ is crlled aWhitney triangulation of G.

If o is an n-simplex of W,we can write

(5.2) S(o) =- Qn, ar€ rc(o) =- ar,

where the numbers Qn, ch, a, depend only on n. Indeed, since the simplexes of W be'
long to a finite number of similarity classes, the first inequality of (5.2) is true. In the

second one, we can choose at:LJ3y'i and ar: 7112.

5.3. Terminology. Let AcR". We say that a simplex / is a simplex of A it
locA. If / is a an n-simplexof A and if f: A'N is a map, we say that flÅo is

sense-preserving if the unique affine extension g: R'*.P of flÅo is sense-preserving.

Two p-simplexes /, /' of A are said to be M'related in A, M= l, if there is a finite

sequence Å= Åo, ..., lt = /' of p-simplexes of I such that

(l) e(/r\=M for 0=i=k,
(2) tlM = d(Åj)ld(/j-r) = M for t = i < k,

(3) d(Åi-u /) = Mmin(d,(/1-t),d(/» for t =i =k.
5.4. Lemma. Let n be a positfue integer, let M=1, and let s:s(M,n) be such

that x(s,n)<lll0Ms(nil), where x is the function of 3.1. Suppose that AcN,
that f: A-R" l's s-QS and that the n'simplexes Å1, Å2 of A are M'related in A.

Thenfl/!andf l(g are either both sense-preseruing or both sense-reuersing.

Proof. We may assume that the sequence /o, ..., Åo of 5,3 is the pair (/r, /r).
Suppose that fl4lis sense-preserving. Set

P = {x€A: d(x,/r) = 2M d(/)1.

Then d(F)=sMd(/). Forevery z€Az wehave

d(2, /) = d(/r)+d(/r, /) =2M d(/L).

Hence Å!cF. Applying 3.1 we choose a similarity h: N*R" such that

llh-fllr='(" n)Lrd(F\ = =!nd(!')=- '' ' : 2(n*l1l4z'
Since g(/)=M<Mz, we have

tf(z)_h(z)t=_#mJ
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for every zil?. By 2.7, h is sense-preserving. Furthermore, since d(/r)=Md(År),
we have for every ycA\,

lf?)-h(y)l =
Lu d(Är)

2(n+ l)q (Ar)

Again by 2.7, flÅg is sense-preserving. tr

5.5. Theorem. Suppose that n=2, that Ais closedin N, that 0Aisbounded
and that int A has afinite number of components. For .x€R" .\,4 and b>l we set

E(x, b) : AnB(x,bd(x, A)).

Suppose that there exist numbers br=br=|, M=1, and that for euery )t>O there
rs 16>0 such that l/ x(R\l and d(x,A):r=ro, then one of the following two
conditions is satisfied :

(a) There is an (n-l)-simplex / of E(x,br) and an (n-l)-plane TcN such
that

(aJ p(/) 
= M,

(aJ d(Å)=rlM,
(aJ E(x,b) c T+)'rBo.

(b) There is an n-simplex / of E(x, b") such that

(bJ d(/) = rlM,

(br) / is M-relatel to an n-simplex Å' in A with d(Å')>UM.
Then A has the extmsion properties in N.

Proof. Choose an auxiliary parameter q>0. To prove the QSEP, it suffices to
show that there are qo>0 and for every q((0, qol a number §:s(4, l, n)>-0 such
that every r- QS embedding f: A* R' has an extension to a K- QC map g: R'*
R', where K= K(q, A, n)- I as q*9. In the bilipschitz case, we find L: L(q, A, n)
such that every Z-bilipschitz mapf:A*N has an extension to an lr-bilipschitz
g: R'*R' with Lr:1r(q,A,n)*l as q*Q.

To begin with, we only assume O=Qa l. In the course of the proof, we shall
give more restrictions on 4 of the form q=qo(A,n).

Choose R>4 such that |AcB'(Rl2b), and set B=B'(R). Next choose

rr>0 such that every component of intA contains aball B(x,r)cB. Set 1=cll4
and choose the corresponding ro. We may assume ro= l. Let z be the function given
by 3.1. Choose s=s(4, A,n)€(0,41 such that x(s,n) is smaller than the numbers

Qro q
(5.5)

We show that s is the

ft
llRM'br(n+ 1) ' 2R' 4br ' 5.R '

required number provided that q is sufficiently small. In the
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bilipschitz case, we set L=L(Q,A,n):(sz* 1)'/'. Then every Z-bilipschitz map is

s-QS.
Suppose that f: A*N is s-QS. By 3.1, there is a similarity h of N such that

ilh-fllnnu = x(s, n)Lvd(anB) = 2HLox(s,n)'

Replacing/by h-tJ'we may assume that

(5.7)

Set

ilf-idllrnu < 2Rx(t, ru)"

G : Å\1, G(ro) : {x(G: d(x, A) = ro}.

Let Glbe the set of all points x(G(rr) which satisfy the condition (a), and set Gr:
G(rJ\Gr. For x(G we define

E*: E(x, b1) if x(Gt,

E":E(x,br) if x€OtGr.

We associate to every x€G a similarity h* of R'as follows: If x€G\G(r)'
we choose h,:id. Assume x(G(rs). then d(x,A):7<vo. If x€Gr, we apply

3.1 to find a similarity ft, such that

(5.8) tÅk.-fll r. = x(s, n)L(k-) d(E) * 2b,,rL(k.)x(s, n).

If /c, is sense-preserving, we choose h*:k,, Otherwise, we set h":k*{t, where ry' is

the reflection in the (n- l)-plane 7 given by (a). Finally, if x(Gz, we again apply

3.1 and choose å, so that

(5.9) llh.-filr* = x(s, n)L(h.) d(8.) = 2bzrL(h.)x(s, n).

Now le* is defined for all x€G. In the bilipschilz case, å, is chosen to be an isometry.

We next show that /e* is sense-preserving for every x(G. For x(G\Gr, this

follows directly from the construction. Suppose x€Gr. Let Å and Å' be the n-sim-

plexes of A g\ven by (b), and let Å:Å0,...,/*:A' be the sequence given by the

definition 5.3 of M-relatedness, We first show that one can choose Å' to be a simplex

of AnB. lf Ais bounded, AcB, and this is trivial. Assume that A is unbounded.

then Acontains R\S'(R/2)' Ifall vertices of Å' atein R'\B'(R/2), we can con-

tinuously deform /'in R'\,8'(Rl2) to a simplex /" of A-B'(R/2) with d(Å"):
Rl4>1>llM witho]ut changing its similarity class. Thus Å is M-relatedto /" in A.

If /'has vertices both in B'(Rl2) and R'\,8, we choose a translation g of R'such

that EÅ'nB'(Rl2):gsrÅ'aÅ'. Then the sequence År,...,Å,,,EA' still satisfies

the conditions 0f5.3, and the situation reduces to the preceding case.

Since x(s,n)<ll4(n+l)KMz and since b(/'):617'1lq(Å')=llMz, (5.7)

implies

l,f(x)-xl =ffi
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for every vertex x of /'.By 2.7,fl@'), is sense-preserving. Hence, by Lemma 5.4
and by (5.6), f llo is sense-preserving. Since å(/)> rf M2,2.7, (5.6) and (5.9) imply
that h* is sense-preserving.

We next prove the inequality

(5.10) llh--fll"_= qd(x, A)L(h)

for every x(G. Set r:d(x, A). We divide the proof into four cases.

Case l. r>rs. lf I is not bounded, GcE(Rl2br). Hence r=Rl2b2, which
implies E*cAnB. This is clearly also true if Ais bounded. Since /z*:id and since
x(s, n)= qrof2R, we obtain

llh.-fll"_ = llid -/il,4n 6 < 2Rx(s, n) = qrL(h).

Case 2. r<ro, x(G1, h*:k*. Now (5.10) follows from (5.8) and from the
inequality x(s, rt)= ql 4br= ql2b1.

Case 3. r<ro, xQG1, h*:tLk*. Now I(å,):L(k*). For every y€E*, (5.8)
yields

lh,(y) -f (y)l = lk,(,l, U)) - t .(»l + lk.o) -f 0)l

= 2L (h ) ),r + 2b, r L (h ) x (s, n).

Since ),:ql4 and since x(s,n)<ql4br=qfhbr, we obtain (5.10).

Case 4. r</o, x€Gz. Since x(s, n)= ql4b2-qf2b2, this case follows from (5.9).
Thus (5.10) is proved.

Choose a Whitney triangulation W of G satisfying (5.2). Here ue choose

a2 5= min (1,(bl-t)lz).
The constants a, and a, depend only on Aandn.

For every vertex a of. W we set

gQ:): h"(o),

and extend g affinely to every simplex of IZ. Setting SIA:f we obtain a map g: Rr*
Ro. We claim that g is the desired extension of /.

We first show that g is continuous. This is clearly true in G and in int A. Suppose
that xo(|A:ilG, and let e>0. Since / is continuous, there is 6>0 such that
lf(x)-f(x)l=e whenever x€A and lx-xol<ä. Choose är=ä such that Euc
B(xo,ö) and d(u, A)4ro whenever p is a vertex of any n-simplex o€Il suchthat
d(xo,o)=ör. Suppose that x€G with lx-xol=är. Choose an n-simplex o€W
containing x. It suffices to find an estimate

(s.11) lg(r)-/(xJl = M,e

for the vertices a of o with some constant M1. ln what follows, we let Mz, Ms, ...
denote constants Mj=l depending only on A and n. Set r:d(u,A), and choose
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y€A with ly-ul:r. Since 4= l, (5.10) implies

I g (r) -/(xJ I = lh 
" 
(u) - h 

"U)l 
+ lh 

" 
(v) - f (il\ + I f U) - f (x,)l

= L(h")r*qrL(h)+t,

=2rL(h)+e.
Since r<ro, E, contains points xr, xz with lx1- x2l>rlM. We give the restriction

q<ll4M. then (5.10) imPlies

rl(h ) | M = L(h )l xt- x2l : lh 
"(x 

r) - h,(x)l

= lf(x)-f(x)l+zqrL(h)

=2e*rL(h)12M,
and hence rl(h")=414r. This implies (5.11) with Mt:8M11 and proves the con-

tinuity of g.

Let o be an n-simplex of W, and let u be the vertex of o which is closest to l. We

wanttoestimate lh"-Sl in oo. Set r:d(a,A). lt r>ro, hu:id-g in oo. Assume

that r<ro. Set

br-l4: ftiD, r' : c1r'

Then c. depends only on A,and

,o', =cr= J.
Dz-L - 2'

choose 1,qA wilh ly-ul:r. Let zbe the unique point on the segment a7 such that

lz-yl:r'. A direct computation shows

(5.12) lrs-zl+brr' : r(l*bt)|2.

Moreover, r':d.(z,A). Let x(E(z,b). lf u(oo, then

lu-ul = d(o) = a2d(o, A) = (br-l)r12.
Hence (5.12) gives

lx-ul = lx-zl-tlz-ol-flo-ul = brr = brd(u, Ä).

Thus

(5.13) E(z,b) c AaB(u,brt) c E(u,br) c Eu.

Since r'=ro, there is an (r- l)-simplex Å of E(2, åz) such that p(/)=M and

d(Å)>r'lM. lf zQGz, / is a suitable face of the r-simplex given bV (b). Since

d(u, A)=(1*a2)r=2r, (5.10) and (5'13) yield for every x(Åo:

(5.14) lh"(x)-h,(x)l = lh,(x)-f(x)l+lf(x)-h"(x)l

= qrL(h)+2qrl(h,).
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We give the new restriction q=crl8M. Since r=Md(/)lcr, (5.10) and (5.13) imply

L(h) d(/) : d(h,Å) = dUÅo)+2llh"--fllr"

= dQf a0)+ qrl(h)

= duÅo)+L(h)d(/)12.

Since ./ocE,, this yields

L(h) d(Å\ = 2dQfÅo) = 2d(h"/)*4llh,-.fllr"

= 2L(h )d (t) + 4 qr L (h ) < 3 L (h ) d (Å).

Hence (5.14) gives

llh"-h"1,.Å, = 7 qrL(h).

By (5.13), lx-ul=brr for every x€lo. Since e($=lVt and d(/)>crrlM, 2.12

yields

lh,(u) - s@)l = M, qrl(h ).
Furthermore,

r = d(o)+d(o, A) = 
(1+ar-l)e"lr(o).

We set Ms:2(l*art)p,(n*l)M, and give the new restriction q=llMr. Then
2.7 implies that glo is sense-preserving and that

L{slo) = L(k")(l + MuQ), l(slo) = L(h")l(l+ MuL),

H(slo) = 
(l+Msq)z.

In the bilipschitz ease L(h"):l, and hence glo is (l+ Mrq)-bilipschitz.
We use degree theory to show that g is a homeomorphism onto P. The topologi-

cal degree p(y,f,D) is an integer defined whenever D is a bounded domain in R',

f: fi*N is continuous, andy€R'\ f\D; see e.g. [Do, IV. 5] or [RR, II. Zl.lf GcN
isopen andif /': G*N iscontinuous,/issaidtobesense-preservingif p(y,f,D)=0
whenever D- is compact in G and y<fD\f\D.

We first show that glint A:f lint I is sense-preserving. LetV be a component
of intA. Then there is a ball By:B(xy,r)cYaB. By (5.6), x(s,n)=rrf5R, and
therefore

il"f-idllr" < 2Rx(s, n) = 1112.

Consequently, the segmental homotopy hr:f-id satisfies hr(xr){hr0Br, and thus

p(f(xi, f, Br) : trt(xy,id, Br\ : 1.

Since f lV is an embedding,/lint ,4 is sense-preserving.

We next show that g is sense-preserving. Let DcN be a bounded domain, and
let y(gD\SåD. Set Y:\AvlWn-tl, where W'-r is the (n-l)-skeleton of W.
Then int Y:0. Since sl|A is an embedding and since glG is PL, we have int gY:
0.Let U be the Jr-component of R\gåD. Then Do:Dng-lU is open and non-
empty, and so is D§I. Since glR'\I is an immersion, CIDNfI is open. Hence

we czrn choose a point z€gDNgI. Since z€ U, p(y, g, D): p(2,9, D). On the other

25e

(5.1 5)
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hand, Dng-1(z) is a finitenonempty subset of D\I, andglD\I is a sense-preserv-
ing immersion. Hence

F(2, g,D) : card (D a g-t(z)) > o,

which implies that g is sense-preserving.

Clearly each fiber g-l(y) is countable. Consequently, S! is light and sense-preserv-
ing, hence discrete and open [TY, Corollary, p. 333]. Furthermore, S.IR'\B is a
homeomorphism onto a neighborhood of -. Indeed, if A is bounded, glR\B:id.
If I is unbounded, CIR\B:"f l.U\.B is a QS embedding, and g(x)*- as x+@.
Hence there is aball Br:fi'(R) containing .B such that gBag[R'\Br]:0. Let
Y be the bounded component of R'\gå,81. then tt(y, g, Br):k is independent of
y€V. Choosing y(\gB we see fr:I. Hence we obtain for every y€V

I : p(y,8, Br): E{i(x,g): x(B1n c-'(d} > card g-'(y),

where i (x, g) is the local degree of g at x. Thus g is a homeomorphism onto R.
In the bilipschitz case, it follows from (5.15) thatg is lr-bilipschitzwith Lr:

max(I,1*Msq).In the QS case, it follows from (5.15) and from a standard remov-
abilitytheoremlväl,35.11that glG is (l*Msq)tu-'-QC. lf 0Ais of o-finite (n-l)-
measure, [Vä1, 35.1] implies that g is K- QC with

K : rnåX ((l +s),-1, (l + MBq)2"-\,

and thus I has the QSEP. Since this case is sufficient in the applications 5.17 and
5.19, and since a detailed proofofthe general case would take several pages, we only
give a sketch of it.

To show that g is QC, it suffices to find a uniform upper bound for the metric
dilatation H(x,g), see [Vär,34.1]. Once this has been done, thedesiredestimatefor
the dilatation of g is easily obtained by considering the derivative of g at points of
density of 0A.

IÅ ze\A and x€G with lx-zl=r, where r is small. Choose a suitable cr> I
and apply 3.1 to find a similarity /r such that lh(y)-f U)l=-MoqL^r for y(Ao
B(2, crr). It suffices to find Mrsuchthat

(5.16) Lorf Mu = lg(x) -f(r)l = MuLr,r.

The second inequality is fairly easy. With a small loss of generality, assume

x(Wo. Let rr:fl(v,A) and choose y(A with ly-xl:rr. We may assume that
E*cAnBQ,crr). -Ihen

I s @) - f (z)l = lh,(x) - h *(r,)l + lh -(y) - f (»l + I f U) - h (y)l

+ lh (y) - h (z)l + lh (z) -f (z)l

= L(h,)rrl L(h") qrr12Maql1,r I crLor.

Thus it suffi.ces to show that L(h*)ry1M6L6r. For this, observe that E* contains
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a point a with r1å2Mla-yl. Then

L(h)la - yl : lh*(a) -h*(:t)l = lf@) -f (y\ + qt(tå qAb - vl.

Since we may assume that q=l/8M, this gives

L (h )|a - vI = 2l f @) -f (v)l =- 2Lt la - v| + 4 M oqLrr'
and hence 

L(h*)rr= (2*M)Lp.

The first inequality of (5.16) is harder. We first replace br by bi:
max (år, 2(2+ar)(l*a1)) and show that this is no loss of generality. Choose o with

x(o€W. Consider a vertex u of o, set ur:d(a,A), and consider separately three

cases: (1) a=ao for a suitable small ao, (2) ar=a=Ubi,G) a>llbi. D

5.17. Theor em. Let AcN be a compact (n-l)-dimensionat cr-manifuld,

with or without boundary. Then A has the extension properties in N.

Proof.lf n:1, then z4 is a finite set, and the result is obvious. Suppose n>2.
For every yCA, let T(y) be the tangent (n- l)-plane of A at y, and let Pr: R'*
T(y)be the orthogonal projection. For l>0, set

D(v, t) : T(Y) a B'(Y, t), Z(Y, t) : PirD(Y, t)'

Let A(y, r) be the y-component of AaZ(y, t). There it ,0>0 such that if t=to,
then PrlA(1, r)isinjectiveand AnBn(y,t)cA(y, t). Bycompactness,wecanchoose

/o to be independent of y. If 0A:0, we have PrA(y, t): D(y, r), but in any case,

we can choose lo so that for t=to, PrA(y,t):C(y,l) contains a regular (n-l)-
simplex / with d(/):112.

I.eL cpr:C(y,t)*A(y,t\ be the local inverse of Pp satisfying PrEr:i6' 3t
differentiability, we can write

(s.18) leru+t1-1n+h)l = lftle(lål)'

where e: [0, lo1*4r isanincreasingfunctionand e(r)*Q äs l*0. Bycompactness,

e can be chosen to be independent ofy.
We show that A satisfies the condition (a) of 5'5 with år=3. Let 0=r.=1.

Choose \, 0<t1=tr, suchthat e(tr1=1f5, ands:tro:r/5. Assumethat x€R\\"4
with d(x, A):r*ro. Choose y€A with lx-yl:r. Then, with the notation of
5.5 we have

E(x,3) c A a B(y, 5r) c A(y, 5r) c T(y)+ 1r8".

l.rt llbe a regular (rz- l)-simplex in C(y, r) with d(Ä):r12, and let / be the

simplex with /o:tp,/!. Since e(r)=115, (5.18) impliesthat d(/)=?t(/1). Sincn

b(/)>b(/L), we have

aU)=2Q(Å): Qo,

where go depends only on zl. Furthermore, for every z(A(y, r) we have

lz-xl = lz- Przl+lPrz-yl+ly-xl = ra(r)+r+ r < 3r.
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Hence A(y, r)cE(x, 3), which implies that A is a simplex of E(x,3). The theorem
follows now from 5.5. tr

5.19. Theorem. Let n>2, and let AcN be a finite union of simplexes of
dimmsions n and n-1. Then A has the extension properties in N.

Proof. Suppose that A is a finite union of n-simplexes o, and (n - l)-simplexes
lo . We show that the conditions of 5.5 are satisfied with br:), 6r- 3.

Let Mo be the maximum of all numbers q(o) and q(Åy), and let c, and c, be the
minimum and the maximum, respectively, of the diameters of the simplexes. Choose
a>0 such that if I/ is a component of R'\f(/j) andif Åo meets 11, then /* has a
vertex u in H with d(u,T(/))>a. Set ro:s1i11 (crl3,al4).

Let x(R'\24 with d(x, A)=r=ro. We divide the proof into three cases:

Case l. E(x,2) is contained in some (n- l)-plane 7. Now the condition (a) of
5.5 is trivially true for all ,1. Choose y<A with ly-xl:r. Then y€li for some Jr'.

There is an(n- l)-simplex / which is similar to /, and satisfies the conditions

!€Å c /inB(x,2r), d(Å) > r.

Hence (a) is true with M:Mo.

Case 2. E(x,2) meets oj for someT'. Now there is an n-simplex o which is similar
to o, and satisfies the conditions

o c oinB(x,3r), d(o) > r.

Obviously o is Mo-related to o, in o, and hence in l. Thus (b) is true with M:
max(Mo,llcr).

Case 3. The cases I and2 do not occur. Now E'(x, 2) meets two (n - l)-simplexes
Åt and /e which are not contained in an (n- l)-plane. Choose ycA with lx-yl:r.
We may assume that y€Ai. To simplify notation, we assume that y:g and that
T(Å):N-1. Choose zo1l*aB(x,2r). We may assume that zo(R\ and that
lraintRo+*0. Let P: Ro*Rl be the projection P(x):x,, and choose a point
u€4* at rvhich P attains its maximum. then P(u)>a. Since lu-zol=a-3r>r,
there is a point z onthe segment uzowith lz-zol:y. Choose p((0, lJ such that
the (n- l)-simplex Åo: ttÅi is contained in ,B(r) and meets §(r). then r=d(Åö<
2r andthus rfcr=p=2rlq. Furthermore, o:zls is an n-simplex of E(x,3). lt
suffices to show that o is M-related to aÅ, in lrwlo for some rl1 depending only
on l. This is done by deforming zloto aliby a parameter ,([0, U so that an inter-
mediate simplex is or:zr/, where

z, : (l-t)z+tu, Å, : lttÅo, ltt : l-t*tlp.
By 2.15, it sufrces to find an upper bound for the numbers

D d(zr, År) o d(År)Pr: 
-(t6, 

Pz- pe)
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We have

fi, = 
t'Å- 

= 
(l:')!)f 

1l'l : y,(t).rt ltr (1 -t*tl1lr 
t

Since ?r is monotone and since

yr(o) - 4 =)'-'o-l+l'ol s4,

?r(1) - + =) (lu- zal*lzol)lcr s 4crf cr,

we obtain §r=4crf cr. To estimate §, observe first that

lr_:rl - 
P(z)-P(r) - P(r) - P(r)

m: pb)-p6 =p(r)= * ,

which implies P(r)> arf cr. Since

frz:w= 2r(l -t + tl ti
(1- t)P(r)+tP(u) '

we can argue as above and obtain Br=2crfu. tr

5.20. Corollary. Let n>2, and let AcN be a compact PL manifold of
dimension n or n-1, with or without boundary. Then A has the extension properties
inR3. tr

5.21. Remarks. It is not possible to extend 5.17 and 5.20to LIP manifolds. For
example, a LIP circle in R2 need not have the extension properties in R2, see 7.10.

One can also consider bilipschitz and QS extension without the condition that
the bilipschitz constants or the dilatations are small. For example, Gehring [Ger,
Corollary 2, p.2l8l proved that if A is a QS circle in R2, every l-bilipcshitz f: A* R2

can be extended to an Ir-bilipschitz g: R2*R2, L1: L1(L, A). ln higher dimensions
n*4, similar extension is possible if, for example, A and fA are QC spheres, see

[T.Y5,2.19).

5.22. Open problems. 1. Are 5.17 and 5.20 true for p-dimensional manifolds,
p=n-2?

2. Does A in 5.17 and in 5.20 have the extension properties in (R', Y) for
dimY>n?

3. Does every compact polyhedron in Ro have the extension properties in R'?

5.23. Example. Let AcRz be the well-known snow-flake curve see e.g.

[Ma, p. 42l.There is a family of equilateral triangles associated with A in a natural
way. It is easy to see that these are mutually M-related in ,4 with some M. It follows
from 5.5 that A has the extension properties in R2. A stronger result will be given in
6.13.2.



264 Jussr VÄrsÄrÄ

6. Thick sers

6.1. In this section we give a sufficient condition for a set AcN to have the

extension properties in (R", Y) for p4n<dim I. The condition is somewhat simi-

lar to the condition (b) of Theorem 5.5, but it does not involve the notion of M-relat-
edness. On the other hand, it must be valid at all boundary points and there is no

choice between two conditions as in 5.5. We show that the condition applies, for
example, to all compact convex sets and to QSp-cells.

We say that a set AcRp is thick in Rp if there are rr>0 and p>0 such that if
y€LA and if 0<r=ro, then there is ap-simplex / such that ÅocAnB(y,r) and
mr(/)=Bre. This implies that p(11=M and d(/)>rlM for some M:M(§,P).
Conversely, these inequalities imply that mn(/)= Bre with B: B(M, p)>0. Examples

of thick sets are given in 6,13.

6.2. Theorem. Suppose that A is closed and thick in R! and that either A or R\l
is botmded. Thm A has the extension properties in (K,Y) wheneuer Y is a linear

subspace of lrand p=n=dimY.

Proof. By 4.4 it suffices to show that A has the extension properties in (Re, I).
We again choose an auxiliary parameter q<(0,11. To prove the QSEP it suffice§

to find qo€(O, 1l and for every q€(0,401 a number s:s(q,1)=0 such that every

s-QS mapf:A*Y has an s.-QS extension g:Re-I where sr:s1(q,A)*0
as q+0. In the bilipschitz case, we find L: L(q,l)= I such that every l-bilipschitz

f: A*Y has an Zr-bilipschitz extension g: R!*Y where Zr: L1(q, A)-l as

8*0'
The basic idea of the proof is the same as in 5.5. However, the number b corte-

sponding to the constant b, of 5.5 will depend on 4. In fact, b** as 4*0. No use

will be made of sense-preservation.
Let ro>0 and B>0 be the numbers given in the definition of thickness, and

let M:M(fi,p)=l be as in 6.1. Set

c: e-Lls, b :2+3c,
andchoose R>0 suchthat |AcBo(Rlb).Choose s:s(4, A)((0,q1 suchthat

(6.3) x(s, P) = min (qzrol2R, ql2b),

where z is given by 3.1. We show that s is the required number provided that q is
sufficiently small. In the bilipschitz case we set I: (s21111t2.

We may assume that RpcY. Suppose that f: A*Y is r-QS By 3.1, there

is a similarity h: R!*Y such that setting B:B?(R) we have

llh-fllen, = x(s, p)Lod(A n B) = qzroLn.

Extending å to a bijective similarity h, of Y andreplacingfby h;tf wemay assume

that
(6.4) frf-idllrn, * q'ro.
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Set G:Rp\A. For every x(RP we set r*:d(x,A) and choose a*<A with
la*-xl:v,. We also set E*-AnB(x,br*). Then clearly E*cB for all x(G.

We first show that

(6.5) r, s (1*c)r*, AaB(a,r) c E*aE,

whenever x,y(Gwith ly-xl=cr*. The first inequality is obvious. If zQAn
B(a, rr), then

lz-xl =lz-arl4lar-ll+ly-xl = ry+ry+crx = br,.

Hence z€8,. Furthermore, since å>5, we have

lz - yl = lz - arlalar- ll < bry,

which implies z(E, and proves (6.5).

We associate to every x€G a similarity h*: Rp*Y as follows:lf r*>qro, we
set ft,:id. lf r,=qro, we apply 3.1 and choose å" such that

llh.-fllr, = x(s, p)L(h) d(E,) = 2br"L(h)x(s, p).

By (6.3) this yields

(6.6) llh*-.f ll"_ = qr*L(h").

By (6.4), this is valid for all x€G. ln the bilipschitz case å, is chosen to be an iso-
metry.

In what follows, we let Mt, M2,... denote numbers Mj=l depending only
on L We next show that

(6.7) L(hr)rr=sMbL(h.\r*, lh*Qt)-\r(y)l = Mrq2tsr*L(h),

whenever x,y€.G, ly-xl=cr* and r*=rol(l*c).
By (6.5), we have rr=(l* c)r*Srr. Hence there is ap-simplex / of AnB (a* rr)

such that d(/)>rJM and q(Å)=M. By (6.5) we have locE*ailr. We give the
restriction

q = rl4M.
Now (6.6) implies

L(hr)r, = ML(hr) d(Å) : Md(hy/)

= M(duÅo)+2qrrL(hr))

=- Md(f /o)+rrL(hr)|2.
Hence

L(hr)r, = 2M d1lo) = 2M(L(h) d(/)*2qr-L(h.)).

Since d(/)=d(E*)=2br* and since q=1=b14, we obtain the first inequality of
(6.7).
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To prove the second inequality, we first obtain

llh * - h yll n = llh. -f ll u -+ ll f - h ll u'

= qr*L(h)+qrrL(hy)

= (l+sMb)qr*L(h).
since 

r+sMb = 6Mb < 3cMc :3aMq-!rc,

and since q(Å)=M, 2.11 yields

lh.(y)-hrU)l = zotttq'rsr*L(h)(l+d(/)-r Mzlv - zrl),

where z, is an arbitrary vertex of /. Since d(Å)>rrlM and ly-zrl=ly-al+
lar-zrl=2r, we obtain the second inequality of (6.7).

Choose a Whitney triangulation W of G as in 5.1. Thus the p-simplexes o of W
satisfy the conditions (5.2):

p(o)= Qp, a1< 16(o)< a2,

where qo, a1, a, depend only on p. We may assume that ar< 1. As in the proof of
5.5,wedefine g(a):h"(u) foreveryvertexaof W,extendaffinelytoallsimplexesof
W, and set glA:f. We shall show that g is the desired extension of/provided that 4
is sufficiently small.

Since ar<l, weseethat g(x):I whenever r'€2qro.
We omit the proof for the continuity of g, since it is similar to the corresponding

proof in 5.5.

We first show that

(6.8) lh"(x)-g(x)l= Mrq't'r*L(h)

whenever x€G and r*=rol(l+c). choose a p-simplex ocw containing r. For
every vertex p of o we have

la-xl=d(o)=a2r,<ct*.
Hence (6.7) implies

lh"(u)- s@)l # Mrqzttv*7175.

Since å**g is affine in o, this yields (6.8)'

We next show that
(6.9) lh.(»-e(»l = Mrqttsr*L(h)

whenever x(G, r,=rol\+c)z and ly-xl-- q'. lf y(A, then y(E*, and (6.9)

follows from (6.6) with Mr:l. Suppose that y€G. Since rr=(l *c)r,=rol(l+c),
(6.7) and (6.8) imply

lh,u)- su)l = lh"(J/)-h,(y)l + lh,(»- so)l

= M r qzts r'L(h ) + M, qzts r, L(h ).
Since ä=<5c:Sq-'t',(6.9)followsfromthefirstinequalityof(6.7)with Mr:261414r.
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We must show that g is sr- QS, where sr:5, (q, A)*O as q+0. In the bilip-
schitz case, we must show that g is Zr-bilipschitz, where Zr:l,r(q, A)*l as q+0.
We omit the proof of the QS case, since it would take several pages of elementary
and dull reasoning, where one would consider several cases and subcases according
to the situation of a triple (a, å, x) of points in Rp. We give in detail the proof for the
bilipschitz case, which is simpler. Assume that f: A*y is z-bilipschitz satisfying
(6.3) with t:(Lr- l)t/r. Now eachh*is an isometry, and thus I(å,): t.

For every p-simplex o of w, we let K, denote the subcomplex of w generated by
allp-simplexes meeting o. The underlying polyhedron N(o): lK"l is a neighborhood
of o in R". From the construction of ,y it follows that there are positive numbers a,
and au depending only onp such that

d(o, rR\N(o)) = arr*, ly-xl = aor,,

whenever ocw is ap-simplex, x(o, and y€N(o). Moreover, the comprexes K,
belong to a finite number of similarity classes. By 2.14, there exist a number ao:
do(p)=O and for every a((0, aol a number Lr:Lr(u,p) such that Lr(a,p)*l as
a*0 and such that if cp: N(o)*/, is affine on each simplex of K(o) and if lE@)-
h(a)l=q41r7 for some isometry h: N*lz and for every vertex u of K(o), then 9
is Zr-bilipschitz.

We give the following new restrictions on q:

(6.10) q=aq,3, q=afiafM;3, 2q=(1 +c)-r,

which are of the form S=qo(A). We show that for every p-simplex o(W, glN(o)
is Zr-bilipschitz with Ls:Ls(Q,A):L2(Mrq't'la,.,p). Choose x€o with Fx-
d(o,A). lf r,>rol(l*c)2, the last inequality of (6.10) implies that rr>Qro for all
y(N(o), and hence gJN(o):ia. lf r,=rol(l*c)2, then (6.10) implies that t{(o)c
B(x, cr*). Hence (6.9) yields

lh,(»-sb)l = ad(o)

for y€N(o) with a:M,q't'lar=oo. Thus glff(o) is lr-bilipschitz.
It follows that g is lo-lipschitz with Le:La,(q, A):max(L, Lr). We assume

that q is so small that LL=2. It remains to find Ls: La(q,l) such that

lg(x) -sU)l = lx -yllLu
forall x,y(R! andsuchthat Lr(q,A)*l as q*0. Wemayassume that rr=,r*.
We consider three cases.

Case 1. r,:0. Now x,y€A, and (6.11) holds with Ls:L.

Case 2. 0=r*=rol(l*c)2. Choose a p-simplex o(W containing x. lf y€N(o),
(6.11) holds with Lu:Lu. lf y(B(x,cr*)\.l/(o), then lx-yl=arr*, and (6.9)

(6.1 l)
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yields

I 
g (x) - g 0)l > lh *(x) - h,(y) I - I h- (x) - e @)l - lh.U) - g (y) I

=- lx-yl-2Mgqttsr"

= lx-yl(l -2Mrqttsf ar),

which implies (6.11) for small q. Finally assume that lx-yl>cr,. Since g is 2-lip-
schitz, we obtain

I 
g (x) - g 0) I = I s (4") - g ( a,)l - I t @) - s @ )l - I s O) - g (,J 

I

> la*-arllL-2r*-2r,

= 
(lx-yl -2r)lL-4r,

=- lx - yl Q - 2 qtts) | L - 4 q' t t lx - yl,

which gives (6.11) for small q.

Case 3. r,>rol(l+c)2. Now g(x):x.lf rr>2qro, then g(y):y, and (6.11)

is trivial. Assume that rr42qro. lf y€G or if lyl< R, (6.4) gives

I 
g (x) - g 0)l = lx -vl - lv - a,l - la, - s@ )l - lsb ) - c O)l

= lx - yl -2qro- qz ro-21a, - ll

= lx-yl-7 qro.

Since lx-yl=-rol(1+c)'-2qro, we again obtain (6.11) for small q. Finally, assume

that y(A and lyl=R. Now r*=R/b and lx-yl=R-R/b. Since gis2-lipschitz
and since b-l:l+3c=qrlt, we obtain

lg(x)- g0)l = ls@) - sU)l - ls(x) -g(4.)l
> la*-ylf L-2r*

= lx-yl (l - rrrz11 t, -21't'lx - Yl,

which again implies (6.11) for small4. tr

6.12. Rem a rk s. Inspection of the proof of 6.2 gives the following informatiorr

on the constants Io and I, of the BLEP: Zo depends only on rold(\A), fi and n, ar,d

.L, depends, in addition, only on I. In particular, these numbers do not depend on I.
ln the case p:n, we can choose g to be an isometry outside a given neighborhood

U of A;then Zo depends also on U.

A similar statement is true for the QSEP. Then one can choose glR\U to be

a similarity.

6.13. Examples. l. Suppose that a domain DcRp is a John domain, see e.g.

[MS]. It is then easy to see that D is thick in Re, and has therefore the extension prop-

erties in (R', f). In particular, this is true if D is a bounded uniform domain

[GM,2.18]; in particular, if D is a QS ball [Vä2, 5.6]; in particulat rf D is bounded
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and convex. It follows that every convex compact set in .P has the extension proper-
ties in (R', Y).

2. Let Abethe snow-flake curve in R2. It is easy to see that I is thick in R2, and
has thus the extension properties in (R', Y) for 2=n=dim r. This strengthens the
result of 5.23. Since I is a QS circle, we see that thickness is not a QS invariant prop-
erty.

3. The Cantor middle-third set is thick in Rl.
4. lf Atis thick in RP and l, is thick in Ra, then ALXA, is thick in R +4.

5. lf A is any closed set in RP and if ro>0, then A*roBe is thick in Rp with
constants ro and §:§(p). this observation will be usedin Section 8.

7. Examples

7.1, ln this section we give several examples of sets AcN which have neither
of the extension properties in R' or in (R', r) for some r. To show this, it suffices to
construct a sequence of Zo-bilipschitz maps fy: A*y such that Zr*l and such
that there are no sr-QS extensions g1,: Ro*Y of 1[ such that s**Q. In 7.5, we
give an example of a set which has the BLEp but not the eSEp in Rr.

7.2, Lemma. Let n>2, let l=L<b, andlet xs,yrbepoinrslra R\{0} such
that lxollL<lyrl=Llxol. Then there is an L1-bilipschitz maph: N*N such rhat

h(*J : !0,
h(x) - x if lxl = lxollb or lxl > blxol,

Lt:Lr(L,b)*1 as f,*1 ond S**.
If, in addition, lyo- xol=6lxol, one can replace (3) by

(3) L1: L1(ö, b) * L as ä * 0.

Proof. We may assume n:2. The map h can be constructed as the map ,f on p.
205 of [Ger], combined with a simple radial map. The last statement is clear. D

7.3. Let x\,x2,... be a strictly decreasing sequence of positive numbers such
that xo*rf xo*0 and thus xo*Q. lhen l={0}u{x.: ft€I{} has neither of the
extension properties in Rl. To see this, define fo: A*Rt by .fo(xo):-x1 and by
fo@):x for x*x1,. Thenfois lo-bilipschitz with L**1, butfr has no extension to
a homeomorphism g: Rr*^Rl.

7.4. l-et Abe as in 7.3. We show that A has the BLEP in p for n >2. Suppose
that f: A* N is Z-bilipschitz with Z close to one. We may assume that ./(0)= Q snd
that ll/-idll, is small (lheorem 3.1). Choose disjoint annuli A,:lxCN: xilb,-
lxl=bixi\ where br*- as j*-. then Lemma 7.2 gives easily an f.-Uilipichitz
extension g: R'*Rn of/such that Lris close to one.

(1)

(2)

(3)
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7.5.Let Abe as in 7'3 and in 7.4 with xn:e-nt. We show that A does not have

the QSEP in any connected set. In particular, I has the BLEP but not the QSEP in

R2. Fix a positive integer k, and define a map fi,: A*RL as follows: Set E(x)--

- lilog x. Then fo(0):0, fo(x): rp(x) for x=xr, and .f*(x): E@)+ E' @)(x- x*)

for x>x1,, An elementary but tedious proof shows that fi,is so-QS where so*g 35

k**. However,.li has no QS extension to any connected set, since by [IVr, 3.14J.

this extension would be Hölder continuous at the origin.

7.6. Let AcRz be the union of R1 and the line segments Jr,:*X[0, 1], k€N.
Definefo: A*Rz by lL@,y):(x, -y) for (x,y)(11, and by ,l(lvk):id. Then

f1,is Le-bilipschitz where L**l as k**. Sincefr has no extension to a homeo-

morphism of R2, Ahas neither of the extension properties in R2.

7 .7 . The preceding example can easily be modified to a compact set I c R2 with
the same property. This set consists of the horizontal segment 7:[0, 1] and of the

vertical segments {Uk}X10,2-k1.

7.8. We modify the preceding example so that ,4 will be an arc. Set

E: {(x, y)(.Rz: lxl = 1, Y :t-lxl't'}.

The intervals Åo:lllk-2-k, llk+2-&l are disjoint for k>7. Let A be the arc

obtained from / by replacing each /1,, k>7, by En:2-kA+ 1/k. Define again

f1,: A*Rz by fo(x,y):(x,-y) for (x,y)(E* and by "41(,a\4):id. Thenf is

Io-bilipschitz with I&* 1. Nowfr has an extension to a homeomorphism g: R2*R2,

but g cannot be QC and hence not bilipschitz.
.A. related example has recently been given by Gehring [GeJ'

7.9.We replace the arc E of 7.8 by the PL arc E'with consecutive vertices

-€11 -€1*€2,€1*€21e1 . We obtain an arc A'cRz, Definef i A'*Rz as before.

Again fois Zo-bilipschitz with L**1. Nowfr has an extension to a bilipschitz homeo-

morphism 91 : R2*R2, but 91 cannot bechosen to be s*-QS with lr*0, since

g.& maps an angle rf2onto anangle3xf2.
Observe thatA' is a LIP arc,thal is, abilipschitzimage of L By 5.17and 5.10,

all DIFF and PL arcs in R2 have the extension properties.

7.10. lt is easy to enlarge the arc A' of the preceding example to a LIP circle A"
which has neither of the extension properties in R2. On the other hand, if D is the

bounded component of R2\,4", then D is a bilipschitz disc, and hence D has the

extension properties in R2 by 6.13.1.

7.11. similar exam2les can be given in higher dimensions. For example, a LIP
arc in RB without the extension properties can be obtained from the preceding example

by replacing the arc E'by the PL arc with vertices -€1, -€11€2, -€1*€sl€s,
e1*€2*es, €1i€2, €1.
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7.12. We next give an example of a set AcRs without the extension properties
such that I is the closure of a domain. I do not know whether such an example
exists in R2. Set

Dr : R2X(1, -),
D, : .R2Y(- -,0),
Z*: Bz(ket, Uk)xI,
G : DtvDzvZrvZrv....

Now G is a domain in R3. We shall prove that A:G has neither of the extension
properties in RB.

For k>2 define a homeomorphism fr: A*A as follows: Outside Z*, f*
is the identity map. In Zo,fois the twist

fo(k+ret*, t) : (klrei{q+2ntr, t).

Since the cylinders Zpbecome very thin for large k, it is easy to see that fo is Io-bilip-
schitz with L**1.

We show that f1, has no extension to a homeomorphism g: R3*Ra. Suppose
thatg issuchanextension,andassume k>3. Defineapath a:.I*R3 by a(s):
?cr+ser. Next choose a natural path homotopy Ht:1*R3 of a such that H, is a
PL path with vertices 2e1, x1, xri es, k1* es, where

x, : (2(t - t) + t (k - | | k)) ey

I-et P: R3*R2 be the orthogonal projection. Now Pgllr: 1*R2 is a path homo-
topy in R\{/ceJ. Hence PgH, is null-homotopic in R\{ke.}, which is clearly
a contradiction.

7.13. We can easily modify the preceding example to a compact set I which
consists of a closed 3-ball B together with a sequence of handles Zo which are very
thin for large k. We can choose these handles so that d(Z)*0. Now remove a thin
slice.Eo from each handle Zo.ln the situation of 7.12 Er could correspond to the set

B2(ker,llk)X(0,2-r). We obtain a set Q, which is a locally flat TOP 3-cell. If
f*: Q*Q is defined as in 7.12, focan be extended to a homeomorphism g: R3*Ra.
However, one can show that g cannot be QC. Hence Q has neither of the extension
properties in R3. Remember that by 6.13.1, every QS n-cell has the extension prop-
erties in Rn.

7.14. We give an example of a set AcRz which has the extension properties in
R2 but not in (R',Rt), or equivalently, in R3. Let Qobethe square 1X1, and set

inductively Qt:fa*,a*+l]X/ where ao:O, ct1,:a1,-1*l+11k. Removing the
squares Qo, Qr.,... from Rs we obtain a domain G. We show that A:G has the
BLEP in R2; the QSEP can be proved in a similar manner. Suppose that f: A-Rz
is l,-bilipschitz with I close to one. By 5.19, 09, has the BLEP in R2. Hence f l\Qi
can be extended to an "Lr-bilipschitz Ei: Qt*pz where lu-Lr(I)*l as Z*1.

271
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Since each Qt is a square, Z, does not depend on 7'. These maps give an extension
g: Rz*Rt of/ which is lr-bilipschitz with Lz:tnax(L, Lr).

To show tbat A does not have the extension properties in (R2, RB) define ft: At
RB as follows. Let R1 be the rectangle fay*1, ao*rfxI. Let fobe the identity outside

R1, and let folRo be a twist, see 7 .12. Then fo is Zo -bilipschitz with Lt* 1 . As in 7 .12,
one can show thatfi has no extension to a homeomorphism of R3.

7.15. Suppose that X and Y are linear subspaces of /, with ->dim X=dimY,
and let Ac X. It is natural to ask how the extension properties of Ain (X, Y) depend

on X and Y. By 4.4, they are independent of X. However, the examples 7 .3, 7 .4 and
7.14 show that they depend essentially on I. More precisely, if I, c Iz with dim Ir=
dim Yr, the extension properties of A in (X, Yr) do not imply and are not implied by
the extension properties of A in (X,Yr).

7.16. Suppose that A is an infinite-dimensional linear subspace of /, with
Ä*lr. Then there is an isometry f: A*12 suchthatfA is dense in /r. Hence I has

neither of the extension properties in /r, It seems to the author that the notions BLEP
and QSEP are only useful for finite-dimensional sets .,4.

8. Supplementary results

In this section we give some general remarks on the extension properties. We
first show that if I is compact, the extensions can be chosen to be very elementary

outside a given neighborhood of A.

8.1. Theorem. Suppose that AcN is compact and has the BLEP in (R", Y),
where Y is a linear subspace of 12. Let U be a neighborhood of A. Then there is Lr>l
suchthatif l=L=Lo, theneuery L-bilipschitz f: A*Y hasan Lr-bilipschitzexten-
sion g: N*Y suchthat L1:L1(L,A,U,n,Y)-| as Ltl andsuchthat CIR'\U
is an isometry.

A similar statement is true for låe QSEP; then glR'\U is a similarity.

Proof. We prove the first part of the theorem ; the proof for the QS case is simi-
lar. Let Ii> I and LaL(L, A, n, Y)bethe numbers given by the BLEP of Ait (R', Y).
Set rr:411, 0U)12 and E: Ai roBn. By 6.2and 6.13.5, E has the BLEP in (P, I).
More precisely, it follows from 6.12 that there is Ll{: tl;(rold(E), r)= I such that if
l=L=f[, then every Z-bilipschitz f: E*Y has an Zi-bil.ipschitz extension g: R'*
Y such that l1i:ti(L,rold(E),n)*1 as L*l and such that clR\u is an iso-
metry. Choose .Lo>l such that Lo=LL and such that Li(L,A,n,y)=Ild for
l<L<-La. Suppose that 1=I= Lo andthat f: A*Y is l-bilipschitz. Then/has
an Li(L,A,n,Y)-bilipschitz extension h: N*Y. Now there is an extension
g: N*Y of hlE such that glR'\U is an isometry and g is Zr-bilipschitz with

Lt : L{(L;(L, A, n, Y), rrld(E), n). tr
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Observe that the proof of 8.1 made use only of the fact that A has the BLEP in
(U, Y). Hence we obtain:

8.2. Theorem. Suppose that AcN is compact, that U is a neighborhood of A,
that Y is a linear subspace of lr, and that A has the BLEP or the QSEP in (U, Y). Then

A has the same property in (K,Y). tr

8.3. Remark. On the other hand, there seems to be genuine problems if we
consider local exlension properties. Suppose, for example, that A is compact in Rn

and that I is a linear subspace of /, . Suppose also that each point in A has a neigh-
borhood U such that AaU has the BLEP in (R', f). I do not know whether this
implies that A has the BLEP in (R', f).

8.4. Addendum.ln a recent paper [Tr], D. A. Trotsenko announces results re-
lated to our results on the QSEP. He uses the notion of å-similarity, which for small
å is close to s-quasisymmetry with small s, cf . 3,9. However, the examples of Section
7 (e.g.7.6) seem to contradict Theorem I of [Tr], unless [fr] tacitly assumes that all
similarities are sense-preserving.
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