Annales Academi® Scientiarum Fennice
Series A. I. Mathematica
Volumen 11, 1986, 275—294

ON THE REAL ZEROS OF SOLUTIONS OF
f7+A(2)f=0 WHERE A(z) IS ENTIRE

GARY G. GUNDERSEN*

1. Introduction

If A(z) is entire then it is well-known that all the solutions of the second-order
linear differential equation

(1.1) fr+A@f=0

are entire. In a recent paper, Hellerstein, Shen, and Williamson proved the following
result [9, Theorem 3]: If A(z) is a nonconstant polynomial, then the differential
equation (1.1) cannot posses wo linearly independent solutions each having only
real zeros. This result raises a natural question, namely to determine the frequency
of nonreal zeros of solutions of equation (1.1). Our first result addresses this question.
We prove:

Theorem 1. Let A(z) be a polynomial of degree n=1, and let f,, f; be any two
linearly independent solutions of equation (1.1). Then at least one of f,, f, has the prop-
erty that its sequence of nonreal zeros has exponent of convergence equal to (n+2)/2.

Throughout this paper we will assume that the reader is familiar with the funda-
mental results and standard notations m(r, f), N(r,f), T(r.f), N, f;¢), 6(c,f),
etc. of R. Nevanlinna’s theory of meromorphic functions (see [8] and [12]).

We make two remarks concerning Theorem 1. First, it is well-known that the
order of any nontrivial solution of (1.1) is (n+2)/2 (see Theorem 6 in Section 4 below).
Second, the basic idea behind the proof of Theorem 1 involves considering the prod-
uct E=f, f; of the solutions. Bank and Laine [1, Theorem 1] showed that the expo-
nent of convergence of the zeros of E is (n-+2)/2, and that [1, p. 354] 6(0, E)=0. Then
it will follow from results of Edrei, Fuchs, and Hellerstein in [4] that E cannot have
most of its zeros being real.

The result presented in Theorem 1 suggests an investigation into those equations
(1.1) where A(z) is a polynomial of degree n=1, which possess solutions that are
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exceptional in the sense that their nonreal zero-sequence has exponent of convergence
less than (n+2)/2. Of course, there are trivial examples where solutions have only
finitely many zeros, and such examples can occur for every even degree n by consider-
ing f=ge” where p and q are polynomials with degree (p)=(n+2)/2. Leaving such
examples aside, we seek examples where the exceptional solutions have infinitely many
zeros. To the author’s knowledge, the only known examples occur when n=1 (from
Airy’s differential equation) and when n=4 (from an equation studied by Titch-
marsh), which we discuss in Examples 1 and 2 in Section 8 below. Our second theo-
rem shows that such examples cannot occur in any of the degrees 2, 6, 10, .... We
prove:

Theorem 2. Let A(z) be a polynomial of degree n where n=2+4k for some non-
negative integer k. Let f#0 be a solution of equation (1.1). Then either f has only
Sfinitely many zeros, or the exponent of convergence of the nonreal zero-sequence of

fis (n+2)/2.

For the proof of Theorem 2, we assume that the conclusion does not hold, i.e.
that such an exceptional solution f exists, and we apply the results in Section 4 to
obtain that N(r, f, 0)=(1+0(1))4(n+4)"T(r,f) as r—e. We then show that
this equation cannot hold by using [1, Theorem 1] and a precise estimate of Shea [15,
Corollary 2.1] for the Valiron deficiency (see Section 2) of the value zero for entire
functions of certain finite orders having only real zeros.

In the cases when the degree of a polynomial A(z) is either odd or a nonzero
multiple of four, the results in Section 4 will easily give the exact asymptotic growths
of both N(r,f,0) and T(r,f) as r—< for any exceptional solution f of (1.1) (see
Theorems 7 and 8 in Section 7), and it turns out that

i N(r, £,0) {2/(71-!—3) if nis odd,
G ,f)  l4/(n+4) if nis a nonzero multiple of 4.

We observe that N(r, f, 0)=(1/24+0(1))T(r, ) as r—<o for all the known excep-
tional solutions fin Examples 1 and 2 in Section 8.

The results in Section 4 have independent interest. Theorem 5 in Section 4
(which was proved jointly by Steven B. Bank, Simon Hellerstein, John Rossi, and the
author) gives useful expressions for the growths of both T(r, /) and N(r,f,0) as
r—~o when f#0 is any solution of equation (1.1) where A(z)# 0 is a polynomial.
It turns out that both T'(r, /) and N(r, f, 0) always have perfectly regular growth.
We will obtain Theorem 5 and two corollaries by combining results of Hille, F. Ne-
vanlinna, and Fuchs.

We now turn our attention to the problem of estimating the frequency of the real
zeros of solutions of the general equation (1.1), where A(z) is an entire function. If
A(z) is real (i.e. real on the real axis) then it is easy to see (Lemma 5 in Section 4) that
any solution f of (1.1) that possesses a real zero must be a constant multiple of a real
solution f; of (1.1). In this case, very powerful techniques (e.g. the Sturm comparison
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theorem [10], and a formula due to Wiman [18] — Lemma 4 in Section 4) already
exist to estimate the frequency of real zeros of f;, and hence of f (see Corollary 3 in
Section 4). In the case when A(z) is not real, we will use the classical method of the
Green'’s transform (see [11, pp. 508—509]) to prove the following two theorems which
address both the polynomial case and the transcendental case:

Theorem 3. Let A(z) be a nonreal polynomial of degree n, and set

_A@-40)

F@) 2i

Let p denote the number of distinct real zeros of the polynomial F(z). Then for any
solution fZ0 of (1.1), the number of real zeros k of f is finite, and we have k=p+1.
In particular, we have k=n+1.

Theorem 4. Let A(z) be an entire transcendental function of order o(A) where
0=0(A4)= =, and assume that A(z) is not real. Let f#0 be a solution of (1.1), and let
Ax(f) denote the exponent of convergence of the sequence of real zeros of f. Then we
have

(1.2) Ir(f) = a(A).
More precisely, we have as r— o,
(L.3) Ng(@, 1) =2T(r, A)+0 (logr)

where Ng(r, 1/f) refers to only the real zeros in N(r, 1/f).

Theorem 3 is sharp in the sense that in the situation of Theorem 3 we can have
k=p+1=1 because f(z)=zexp (—iz?) satisfies the equation f”+(6i+4z?) f=0.
The estimate (1.2) in Theorem 4 is sharp in the sense that in the situation of Theorem
4 we can have Az(f)=0c(4) by Example 5 in Section 8.

This paper is organized as follows. In Section 2 we give notation that is used in
the paper. In Section 3 we prove Theorems 3 and 4. In Section 4 we prove Theorem
5 mentioned above plus some related results. In Section 5 we prove Theorem 2, in
Section 6 we prove Theorem 1, and in Section 7 we prove Theorems 7 and 8
mentioned above. In Section 8 we give several examples concerning this theory.
Finally, in Section 9 we consider the case of equation (1.1) when A(z) is a trans-
cendental entire periodic function.

The author takes pleasure in thanking Steven B. Bank for numerous important
contributions to this paper. The author would also like to thank Robert P. Kaufman
for some valuable conversations.
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2. Notation

As stated in Section 1 we will assume that the reader is familiar with the usual
notations of the Nevanlinna theory. We will also use

. N(r,g,0
A4 c, =1]—-lim —>_

which denotes the Valiron deficiency of the value ¢ for a nonconstant meromorphic
function g.
For a nonconstant meromorphic function f, we will use the following notations:
. a(f) will denote the order of f.
. A(f) will denote the exponent of convergence of the sequence of zeros of f.
. Ag(f) will denote the exponent of convergence of the sequence of real zeros of f.
. Ayr(f) will denote the exponent of convergence of the sequence of nonreal zeros
of f.
5. ng(r,£,0) and Ng(r, f; 0) will refer only to the real zeros of fin n(r, f, 0) and
N(r, f, 0) respectively. (Note: n(r, f, 0) will denote the number of zeros of fin
lz|=r.)

HWN -

3. Proofs of Theorems 3 and 4

We will use the Green’s transform to prove these results.

Lemma 1. Let A(z) be an entire function which is not real, and set

G.1) F(z) = i(i);__AT_z:l.

If f#0 is any solution of equation (1.1), then between any two consecutive real zeros of
[, there must be a real zero of F.

Proof. Suppose that x; and x, (x;<Xx,) are consecutive real zeros of . Then by
taking the imaginary part of the Green’s transform [11, p. 509] of equation (1.1) we
obtain

(3.2) S " Im(4(x)| f()|?dx = 0.

Now if Im (4(x))=0 on the segment x;=x=x, then it follows that Im (4(x))=0

for all real x, which contradicts the hypothesis that 4(z) is nonreal. Thus Im (4(x))z

Oon x;=x=x,. Then from (3.2), Im (4(x)) must change sign on x;<x<ux,. Since

Im (A4(x))=F(x) for all real x where F is given by (3.1), the assertion follows.
Theorem 3 follows immediately from Lemma 1.
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Proof of Theorem 4. If f has k real zeros in some interval —r=x=r, then by
Lemma 1, F(z) in (3.1) must have at least k— 1 real zerosin —r<x<r. Thus

ng(r, f,0) = ng(r, F,0)+1 = n(r, F, 0)+1.
Hence as r— oo,
3.3) Ng(s £,0) = N(r, F,0)+0 (log r).

By using Jensen’s formula, (3.1), and the observation that T(r, A(z))=T(r, 4(2)),
we obtain

(3.4) N(r, F,0) = T(r, F)+0(1) = 2T(r, A)+0(1)

as r—oo. By combining (3.3) and (3.4) we obtain (1.2) and (1.3), and Theorem 4 is
thus proven.

4. The growth properties of solutions of (1.1)

Let f#0 be a solution of equation (1.1) where A(z)#0 is a polynomial. We
will now derive expressions for T'(r, /) and N(r, f, 0) as r—<, which show, among
other things, that the growths of both T'(r, f) and N(r,f, 0) are perfectly regular
(see Theorem 5 below). These asymptotic expressions for T'(r, f) and N(r, f; 0) will
depend on both A(z) and on f. In contrast, the asymptotic growth of log M (r, f),
where M(r, ) is the maximum modulus function, depends only on A(z) and not on
f (see Theorem 6 below). In this section we will prove these results and some related
results.

Hille applied his theory of asymptotic integration together with the Liouville
transformation to obtain many basic asymptotic properties of the nontrivial solutions
f of the equation f”+ Q(z) /=0 where Q(z)#0 is a polynomial (see Chapter 7.4
of [10]). One of these properties is the following result.

Lemma 2. ([10, pp. 340—342]) Consider the equation
“.1n ff+0@)f=0

where Q(z2)=q,z"+ ...+q, is a polynomial of degree n and q,>0 is a positive number.
Set a=(n+2)/2. For 0<dé<n/20 and j=0,1,...,n+1, let S;(5) denote the
sector

4.2 jrja+d = arg z = (j+2)wja—0.

If f£0 is a solution of equation (4.1) that has infinitely many zeros in some sector
S;(0), then for any =0, all but finitely many of these zeros must lie in the sector W ;(e)
given by

4.3) (j+Drjao—e <argz < (+1)n/a+te,
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and furthermore, as r— oo,

4.4 n;(r, £,0) = (1+0(1)) —2 V-q—"— e,

where n;(r, f, 0) refers only to those zeros of f in W ;(e).

Now suppose that /0 is a solution of the more general equation (1.1) where
A(z2)=a,z"+...+a, is any polynomial of degree n with a,>0. If ¢ is any constant
that satisfies

4.5 =g,

and F(z)=f(z/c), then F satisfies an equation of the form (4.1) with g,=1. Hence
we can easily transform the result in Lemma 2 to the more general equation (1.1). It
will be convenient to make the following definition.

Definition. Let fz20 be a solution of equation (1.1) where A4(z)=a,z"+ ...+
a, is a polynomial of degree n with a,>0, and for ¢>0 and j=0,1, ...,n+1, let
V;(e) denote the sector

2n(j+1)—arg(a,)
(4.6) argz p—) | <e.

Let J( 1) denote the set of all j€{0, 1,..., n+ 1} with the property that for some >0,
S has only finitely many zeros in ¥;(¢). We will call the cardinal number of J(f) the
shortage of f, and denote it by p(f). Hence 0=p(f)=n+2.

Remark. The collection of sectors W,(e), Wy(e), ..., W,.1(e) given by (4.3)
are in a one-to-one correspondence with the collection of sectors V,(e), V,(e), ...,
V,+1(€) given by (4.6) under the transformation z—z/c where ¢ is a constant that
satisfies (4.5).

We will now prove the following theorem which (as mentioned in Section 1) was
proved jointly by Bank, Hellerstein, Rossi, and the author.

Theorem 5. Let {0 be any solution of equation (1.1) where A(z)=a,z"+ ...+
a, is a polynomial of degree n with a,0, and set o=(n+2)/2. Then p(f) is an even
number and as r— oo, the following three formulas hold:

@.7) ne £,0) = (1+0) 22D yia e
4.8) NG, £,0) = (1+0(0) 222D yig s
@.9) 1(, 1) = (1+o(n) 2220 Viadr
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Hence

2(f)
do—p(f)~

For the proof of Theorem 5, we shall use Lemma 2 and the following lemma
which comes from work of Hille, F. Nevanlinna, and Fuchs.

30, ) =40, )=

Lemma 3. Let f and g be linearly independent solutions of equation (1.1) where
A()=a,z"+...+a, is a polynomial of degree n with a,#0. Set h=g|f and o=
(n+2)/2. Then the following hold:

1. T(r,h) =(1+o (1))‘7"/|"l " as r-oo.

2. There exists at most n+2 distinct values by, by, ..., b, in the extended complex
plane with the following properties:
(i) For each k, 6(b,, h)=A4(by, h), and 5(by, h) is a positive integral multiple
of 1/a.

(i) 2,0, h) =2
(ii) If b=b, for k=1, ..., m, then as r—os, N(r, h, b)=(1+0(1))T(r, h).

Proof. From formula (2.8) on page 9 of [5], we have that as r— <o,
T(r,h) =(1 -l—o(l))zn—B %,

where the constant B can be determined to be equal to }]a,| /o from pages 6 and 7 of
[5]. Thus part 1 holds. Part 2 can be found on pages 8—10 of [5].

Proof of Theorem 5. Suppose first that a,>0. From Lemma 2, if some sector
S;(6) in (4.2) contains infinitely many zeros of f, then for any ¢>0, all but finitely
many of these zeros will lie in the sector W ;(¢) given by (4.3), and the contribution to
n(r, f, 0) from these zeros will be

(1+o(1))%— r

as r—oo, from (4.4). Since there are exactly n+2—p(f) such contributions, and the
sectors S;(0) (j=0, ..., n+1) in (4.2) cover the punctured plane, we see that (4.7)
holds.

Now suppose that a,0 is arbitrary. If we set F(z)=f(z/c) where c satisfies
(4.5), then F satisfies an equation of the form (4.1) with ¢,=1, and p(f)=p(F).
Hence by using the above result on F, we will obtain that (4.7) holds for 7. Then (4.8)
follows from (4.7).

Now let g be a solution of the same equation (1.1) as f, such that fand g are
linearly independent, and set h=g/f. Then from Lemma 3, the sum of the Nevan-
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linna deficiencies of A is 2, and so by formula (1.4) on page 4 of [5],

(4.10) T(r, ) = (1+0(1))(2—6(, b)) T(r, h)
as r—o. From Abel’s identity, h’=d[f? where d>0 is a constant. Thus
.11 TG, h)=2TF, H)+0()

as r—o. From (4.8) we obtain
Qo — S
(4.12) N B)=(1 +o(1))—°‘-7£2-(f—)- Vian r
as r—oo, since N(r, h)=N(r, f, 0). Combining (4.12) and Lemma 3 gives
Ny 10))
(4.13) d(oe, b)) = T

From (4.13) and Lemma 3(2.) we obtain that p(f) must be an even number. By
combining (4.13), (4.11), (4.10), and Lemma 3(1.) we will obtain (4.9). The proof of
Theorem 5 is now complete.

We will now prove two corollaries of Theorem 5 and Lemma 3.

Corollary 1. With the hypothesis and notation of Lemma 3, if b=b, for k=1,...,
m, then the following hold:

O 70, -t = (o)L e 4 4o

(i) N(g—bf0) =(1+0 (1))2‘/"”"I as 1o

(i) p(g—bf) =

Proof. From Lemma 3 we obtain (ii). From (4.8) and (ii) we obtain p(g—bf)=0.
Then (i) follows from (iii) and (4.9).

Corollary 2. Let f and g be linearly independent solutions of equation (1.1)
where A(z)Z0 is a polynomial of degree n, such that p(f)=0 and p(g)=0 (there
exist such f and g from Corollary 1). Let by, ..., b,, be the deficient values of h=g|f,
as in Lemma 3. Then the following hold:

(i) m=2 if A(z)isa constant and m=3 if A(z) is nonconstant.

(ii) by, ..., b,, are all finite.

(iii) p(g—b . f)=(+2)6(b;, =2 for k=1,...,m, and

21 P(8—bif) = 2(n+2).

@iv) If Fz0 is any solution of the same equation (1.1) as f and g but is not a con-
stant multiple of g—by f for any k=1, ..., m, then p(F)=0.
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Remark. From Corollary 2 (iv) we see that most nontrivial solutions of (1.1)
where A(z)#0 is a polynomial, will have shortage zero.

Proof. Set a=(n+2)/2 and A(z)=a,z"+...+a,. Since p(f)=0 and
N(r, )= N(r, f, 0), we will obtain from (4.8) that

NGB = (1+0() 2%L =

as r—oo, Thus (e, h)=0 from Lemma 3. This proves (ii).
Since N(r, h, b)=N(r,g—b, f, 0), we will obtain from (4.8) that

NG by b = (1+0(0) ZZLEZ0D a7 e
as r—oo. Combining this with Lemma 3 gives &(b, h)=p(g—b, f)(n+2)~'=>0,
and so p(g—b,f)=2 for k=1, ...,m from Theorem 5. Since 2J_, 6(b;, h)=2
from Lemma 3, part (iii) follows.

We have m=2 from (iii). It is obvious that m=2 when A(z) is a nonzero
constant. Suppose now that m=2 and A(z) is nonconstant. Then from (iii) it fol-
lows that p(g—b, f)=p(g—b,f)=n+2. Thus g—b,f and g—b,f are linearly
independent solutions of (1.1), and each has only finitely many zeros. This is impos-
sible from [1, Theorem 1]. This proves (i).

To prove (iv), we write F=c,g+c,f for constants ¢;, ¢,. If ¢,=0 then p(F)=0.
If ¢;#0, then F=c,(g—bf) where b=b, for k=1, ...,m. Hence p(F)=0 from
Corollary 1 (iii). This proves (iv), and the proof of Corollary 2 is now complete.

Remarks. Corollary 2 shows that for any given equation (1.1) where A(z)#0
is a polynomial, there must exist two nontrivial solutions f; and f; such that p(f})#
p(f>) (we mention that for some nonconstant polynomials A4(z), we can explicitly
calculate the number p(f) for every solution f0 of equation (1.1) — see Examples
1 and 6 in Section 8). Thus from (4.9), we see that the growth of T'(r, ) will depend on
both fand A(z). In contrast, the growth of log AM(r, /) depends only on A(z) by
the following result, which is essentially due to Valiron.

Theorem 6. If f£0 is any solution of equation (1.1) where A(z)=a,z"+...+a,
is a polynomial of degree n with a,0, then as r— o,
- Viad
4.14) log M(r,f) = (1+o(1))——a—-r“
where o=(n+2)/2.

Proof. We will denote by V(r) the central index of f. From results of Valiron
[17, p. 108], there exist constants B=>0 and /=0 such that

(4.15) V() = (1+0(1)) Br¢
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as r--o, and
(4.16) log M(r, f) = (1 +o(1))§rf

as r—-o. On the other hand, by applying the Wiman—Valiron theory [17, p. 105]
to equation (1.1) we obtain that

4.17) V() = (1+o()Vla,l

as r—oo outside a possible exceptional set of finite logarithmic measure. From
(4.17) and (4.15) we obtain B=V]|a,] and /=a. Now (4.14) follows from (4.16),
and Theorem 6 is proven.

We next discuss the frequency of the real zeros of a solution f#0 of equation
(1.1) where A(z) is a real entire function. The following result is due to Wiman [18]
(see [10, p. 472]).

Lemma 4. Let A(x) be a positive continuous function on an interval [ry, + o),
which has a continuous derivative on (ry, + <), and which satisfies

A’ (x)

(A (x))a/z -0

as x-+ oo, Then, any real-valued solution f(x)z0 of the equation "+ A(x)f=0
on [ry, + o) has infinitely many zeros, and the number q(r) of zeros of f on [r,, 1)
satisfies

@.19) a0y = L) 17 (opea
as y— oo,

Another proof of Lemma 4 is in [7].
The next result is elementary and useful.

Lemma 5. Let A(z) be a real entire function. If f is a solution of equation (1.1)
that possesses a real zero, then f=Cg where C is a constant and g is a real solution

of (L.1).

Proof. Since A(z) is real, it follows that f(z)=c, f,(z)+ ¢, fo(z) where f; and f,
are linearly independent real solutions of equation (1.1) and ¢;, ¢, are constants.
If ¢;¢,=0 then the assertion is already true.

Suppose ¢,¢,=0. If z, is a real zero of f then we have c, f;(zo)+ ¢sfa(z0)=0.
Since f; and f; are real this gives ¢ f1(zy)+ & f2(2)=0. It follows that ¢;=bc, where
b is real. Then f=c,(bf;+f;) and the assertion is proved.

Corollary 3. Let A(z)=a,z"+...+a, be a real polynomial of degree n which
is not identically zero, and set a=(n+2)/2. Suppose that a solution fZ0 of equation
(1.1) has a real zero.
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(i) Let nbe odd. Then as r— oo,
(4.19) nz(r, £,0) = (1 +0(1))Z7|:;—”| r

(4.20) Ni(r, £,0) = (1+0(1)) V"’"'

Also, if a,>0 then f has only finitely many negative zeros, while if a,<O then f has
only finitely many positive zeros.

(ii) Let nbe even. If a,=0 then f has an infinite number of positive zeros and also
an infinite number of negative zeros, and as r— <,

(4.21) ng(r £,0) = (1+0 (1))2'/"" ,

“.22) Na(rr £,0) = (1+0(1)) 24n 2‘/"

If a,<O0 then f has only finitely many real zeros.

Proof. It follows from Lemma 5 that f=Cg where C >0 is a constant and g is
a real solution of equation (1.1). Hence we may assume that fis real.

First suppose that n is odd. If a,>0 then it follows that (4.18) holds. Since
A(x)<0 for x<x;, we can use a well-known application of the Sturm comparison
theorem to conclude that f can have only finitely many negative zeros. Hence (4.19)
will follow from (4.18), and then (4.20) follows from (4.19), and thus (i) is proven in
the case when a,=0. By considering f(—x) we see that (i) will hold when a,<0.

If n is even, then we can use similar reasoning both on the positive real axis and
on the negative real axis to prove (ii).

5. Proof of Theorem 2

Set a=(n+2)/2. We make the assumption that f has an infinite number of zeros
and that Ayp(f)<oa. Since p(f) is an even number (from Theorem 5), it follows
that p(f)=n from Lemma 2 and the transformation described with (4.5). Then
from (4.8) and (4.9) we obtain

_ N(, £,0) 4
G.D lim T(r.f)  n+d-

Since Aygr(f)<ua, it follows from the result of Bank and Laine [1, Theorem 1]
that Az(f)=a. Let g be the canonical product of the nonreal zeros of £, and set
f=hg. Then o(g)<a and, since o(f)=a from (4.14), h is an entire function such
that o(h)=a. Since h has only real zeros and o (k) is a positive even integer, it follows
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from a result of Shea [15, Corollary 2.1] that

_ N(r, h,0)
-2 Im=om =

From f=hg, o(g)<a, p(f)=n, (4.8), and (4.9), we easily obtain that as r—ee,
N(r, h, 0)=(1+0())N(r,£,0) and T(r,h)=(1+0(1))T(rf). Thus from (5.2)
we obtain

. N £,0)
= )

which contradicts (5.1). This contradiction proves Theorem 2.

6. Proof of Theorem 1

If n=2+4k where k is some nonnegative integer, then the conclusion follows
easily, because in the contrary case we would obtain from Theorem 2 that f; and f;
would each have only finitely many zeros which is impossible from [1, Theorem 1].

Now suppose that n=2+4k for k=0, 1, 2, .... We assume that the conclusion
is false. If Q(z) is the canonical product of the nonreal zeros of f; and f;, then
6(Q)<(n+2)/2. From (4.14) and [1, Theorem 1] we obtain that

6.1 E=fif=PQ

where P is an entire function whose zeros are all real, and A(E)=0(E)=A(P)=
o(P)=(n+2)/2. Then A(z) must be real from Theorem 3.

Now for n=3 we have 2<Ai(P)< oo, and so by Corollary 1.2 of [4] we obtain
that (0, P)>0. If n=1 then A(P)=3/2, and so from Corollary 3(i) and [4, Cor-
ollary 1.1] we deduce that §(0, P)>0. Therefore, 6(0, P)>0 in all cases. Hence
there exists a constant b=0 such that for r=r,,

m(r, P, 0)

T(r, P) b.

6.2)

v

Now we consider the following identity due to Bank and Laine [1, p. 354]:
6.3) —4A4 = (c/E*—(E’|E)*+2(E"|E)

where ¢0 is a constant. Since E has finite order, it follows from (6.3) and Nevan-
linna’s fundamental estimate of the logarithmic derivative that

(6.4 m(r, E, 0) = O (log 1)

as r—o. (We mention that it was noted on page 354 of [1] that 6(d, E)=0 for all
d#.)
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Choose f such that ¢(Q)<pf<(n+2)/2. From (6.4), (6.2), and (6.1) we obtain
that as r— oo,

T(r, P) = O(m(r, P,0)) = O(m(r, E, 0)+m(r, Q) = o(r?),
which contradicts that P has order (n+2)/2. This proves Theorem 1.

Remark. We mention that it was not necessary to use Theorem 2 in the above
proof, because alternatively we could have used Corollary 3(ii) and [4, Corollary 1.2]
to obtain in the above argument that §(0, P)>0 when n=2.

7. When A(z) is a polynomial with degree =244k

We will now prove the following two analogous theorems to Theorem 2 for the
cases when A(z) is a nonconstant polynomial with degree %2, 6, 10, ....

Theorem 7. Let f#0 be a solution of equation (1.1) where A(z)=a,z"+...+a,

is a polynomial of odd degree n, and set a=(n+2)/2. Then exactly one of the following
two cases must occur:

@ Anr(f)=o.
(i) Ayr(f)<a and 6(0,f)=4(0,f)=(m+1)/(n+3), and furthermore as r— oo,

NG, £,0) = (1+o(1))%gl_,a,
TG, ) = (1+0() LEVL o

Theorem 8. Let f£0 be a solution of equation (1.1) where A(z)=a,z"+...+a,
is a polynomial of degree n=4k where k is some positive integer, and set a=(n+2)/2.
Then exactly one of the following three cases must occur:

(i) f has only finitely many zeros.
(i) Zyr(f)=0.
(iii) Ayg(f)=<a and 6(0,f)=4(0,f)=n/(n+4), and furthermore as r- o,

N, £,0) = (1 +o(1)) 2%l 2' "’"'

_ (n+4) VI_a:I' ]
T(I‘, f) = (l +0(1))'—'W—~ 14
Remark. All of the cases in Theorems 7 and 8 can occur. Regarding Theorem
7(ii), there are examples when n=1 where a solution fhas all real zeros (see Example
1in Section 8). Regarding Theorem 8(iii), there are examples when n=4 where a so-
lution fhas an infinite number of zeros and all of the zeros are real (see Example 2 in
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Section 8). From Corollary 2 we have that p(f)=0 for most fin the situations of
Theorems 7 and 8, and such solutions ftelong to the cases Theorem 7(i) and Theorem
8 (ii).

Proof of Theorem 7. We will assume that Ayp(f)<a. Since p(f) is an even
number (from Theorem 5), it follows that p(f)=n+1 from Lemma 2 and the trans-
formation described with (4.5). Then we have the case (ii) from (4.8) and (4.9). This
proves Theorem 7.

Proof of Theorem 8. We will assume that f has an infinity of zeros and that
Jng(f)<oa. From Theorem 5, Lemma 2, and the transformation described with
(4.5), we find that p(f)=n. Then we have the case (iii) from (4.8) and (4.9). This
proves Theorem 8.

8. Examples

We will now give several examrlzs which will both complement the theory and
also exhibit the sharpness of our results.

Example 1. The well-known Airy differential equation

8.1 f’—zf=0

possesses a solution f; such that the zeros of f; are all real and negative (see [13, pp.
413—415] where fy(z)=A4i(z)). From Theorem 7 we obtain 6(0, f5)=4(0, f;)=1/2,
and furthermore as r— oo,

NG, £, 0) = (140(1) 5 75,

T(r, fo) = (1+o(1))§—nr3’z.

We mention that for the function f;, the inequality (2.12) in [15, Theorem 2] is
an equality with lim replaced by lim.
We also have

log M (r, fo) = (1+0(1))-—§-r3/2

as r-o, from (4.14).

Clearly, p(f;)=2. If ¢; and c, are the two nonreal cube roots of unity, and
f1(@)=fo(c,z) and f.(2)=fy(c,2), then f; and f; are both solutions of equation (8.1),
p(f)=p(f;)=2, and the three functions f;, f;, f» are pairwise linearly independent
(the last statement follows from the initial conditions on f,=4i (see [13, p. 392]).
From Corollary 2 it follows that if 0 is a solution of (8.1) such that fis not a
constant multiple of either f;, f;, or f3, then p(f)=0.
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We mention that it follows from the above and a suitable linear change of inde-
pendent variable that there exists a solution F, of the equation

S7+(a1z+ag)f =0

where a,#0 and a, are real constants, such that all the zeros of F, are real and
0(0, Fp)=4(0, Fy)=1/2.
This example shows that case (ii) in Theorem 7 can occur.

Example 2. It is well-known [16] that equation (1.1) with A(z)=pf—z*,
BER, has a complete orthonormal set of real eigenfunctions {y,(z)}>>, for L2(R) as
a real space, with corresponding distinct eigenvalues {f,};~,, such that 0<By<p,<
B:=<..., and f,—~+ <o as n—eo. Also, ¥, is even or odd as n is even or odd, and v,
has exactly n real zeros. Titchmarsh [16, pp. 172—173] showed that all the nonreal
zeros of y, are purely imaginary and that A(f,)=3. Thus v, and ¥/, each have only
purely imaginary zeros. If f,(z)=y,(iz), then for each n, f, satisfies the equation

f”+(Z4 _ﬁn)f = 09

J» has only real zeros except possibly for finitely many, and A(f))=0(f,)=3. In
particular, f; and £; have only real zeros.

From Theorem 8 we obtain (for all ) that (0, f,)=4(0, f,)=1/2, and further-
more as r— oo,

N(r, £,,0) = (1—!—0(1))9%1*3,

T, f) = (1+o(1))9in-r3.

We mention that for the functions f; and £;, the inequality (2.15) in [15, Corollary
2.1] is an equality with lim replaced by lim.
We also have (for each n)

logM(r, f,) = (1+0(1))3i r3

as r—oo, from (4.14).
This example shows that case (iii) in Theorem 8 can occur.

Remark. Some further properties of each ¥, (z) (and each B,) can be found in
Chapter III of [6].

Example 3. Given any sequence z,, z,, z3, ... of distinct complex numbers such
that z,—co, there exist entire functions f(z) and A(z) that satisfy f”+ A(z) f=0
such that f has precisely the zeros z,, z,, .... (In particular we can choose each z, to
be real.)

To prove this statement let Q(z) be a Weierstrass product with exactly the zeros



290 GARY G. GUNDERSEN

Z1, Zs, .... By the interpolation theorem [14, p. 298] there exists an entire function
g such that

g(z,) = ——2%,—((2;—")7 for each n.
Let & be a primitive of g. Then f=Q¢" satisfies the equation f”+A4(z) f=0 where

, 0"+20°g
§ 0

A=—g*—

is entire.

We next will illustrate how Theorem 1 is sharp. Theorem 1 is not true for n=0
since if a,#0 is a real constant then the equation f”+4a,f=0 possesses of course
two linearly independent solutions f;, f; neither of which has any nonreal zeros. There
are examples (Examples 1 and 2) when A(z) is a polynomial of degree n=1 or n=4,
where equation (1.1) possesses a solution f such that the zeros of f are all real and
A(f)=(n+2)/2. Forany even n=0, there exists a polynomial 4(z) of degree n such
that equation (1.1) possesses a solution with no zeros.

Concerning the results in Theorems 1 and 3, when A4(z) is transcendental we give
some possibilities that can occur in the following

Example 4. Let k be a positive integer or oo. Then there exists an entire function
A(z) of order k such that equation (1.1) possesses two linearly independent solutions
fi- f» which each have only real zeros and A(f))=A(f;)=1. When k is a positive
integer we will construct an A(z) that is nonreal, while when k= we will construct
an A(z) that is real and also an A4(z) that is nonreal. We will make these constructions
by applying the following result of Bank and Laine (see Lemmas B and C of [3]).

Lemma 6. Suppose that E(z) is an entire function and ¢#0 is a constant such
that E'(z)=tc whenever E(zy)=0. Then the function A(z) defined by [1, p. 354]

_ (E'Y—c*—2EE"

(8.2) A e

is entire, and there exist two linearly independent solutions fi, f, of equation (1.1) such
that () E=fify, () c=fify—ffes (iiD) fi(z0)=0 exacily when E(z0)=0 and
E'(zy)=—c, and (iv) f3(z,)=0 exactly when E(z,)=0 and E’(zy)=c.

We will now make the above mentioned constructions.

First let k be a positive integer. Set

. 2iz*
E(z) = sinz-exp pray B
Noticing that E’(z,)==+1 whenever E(z,)=0, we see that the function A(z) in

(8.2) (with ¢=1) is entire and is of order k. From Lemma 6, it follows that there
exist two linearly independent solutions f;, f; of equation (1.1) such that f; and f; each
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have only real zeros and A(f))=2A(f)=1. A calculation will show that A(z) is
nonreal; for example, A4 (n/4) is not real when k=1 and A(n/2) is not real when k= 2.
Now let k=co. If we set E(z)=sinz-exp (isin z), then A(z) in (8.2) (with
¢=1) is entire with infinite order. The asserted statement then follows by the above
reasoning, and A(z) is nonreal (e.g. A(n/2) is not real).
When k=<, if we set E(z)=sin z-exp (sin z), then the asserted statement
follows by the above reasoning, and in this case A(z) is real.

Example 5. In the situation of Theorem 4 we can have A (f)=c(4)=1 in
(1.2) because f(z)=exp (—iz/2)-sin (ne) satisfies equation (1.1) where A(z)=
1/4—n%e*=. Regarding the estimate (1.3) we have

2
Ng(r, £,0) = T(r, )+0(1) = %+0(1)
as r—oo, in this particular case.

Example 6. Let g=2 be an integer, and consider the equation
8.9 f+4,f=0,

where A,(2)=—(¢%4)z*""2—(q(q—1)/2)z""2. We will now explicitly calculate the
number p( f) for every solution f30 of equation (8.4). Equation (8.4) possesses the
solution f;(z)=exp (z°/2). If we define fy=hf, where h(z)= [ exp (—w") dw, then
it follows from the reduction of order method that f; is a solution of (8.4) that is lin-
early independent with f;. From [12, p. 21}, if zy, zy, ..., z,_ are defined by

Zk=

exp (ﬁ:;i) f : exp (—x9) dx,

then as r— oo,

3.5 T(r, h) = (1+o(1))17:.,
and (for k=0,1,...,9—1)
(8.6) N(rs by z) = (14+0(1)A—1/g) T(r, h).

Hence from (8.6) and (8.5) we can deduce that as 7— oo,

1
(3.7 N(r, fo=2./1,0) = (1+0 (D)) (1 - g)—r
for each k. By comparing (8.7), (8.4), and (4.8) we obtain that

(8.8) p(a—zf) =2

for k=0, 1,...,q—1. Since the functions fi,f;~2f1, fimzifis ..., fimZs1fi
are pairwise linearly independent, it follows from (8.8), p (f;)=2g, and Corollary 2
that if /0 is any solution of equation (8.4) that is not a multiple of one of f;,

ﬁ—zoﬁ’ "'aﬁ_zq—lﬁ, then P(f)=0-
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Example 7. It is well-known that for n=0, the Hermite polynomial H,(z) of
degree n has exactly n real zeros and the Hermite function ¢,(z)=H,(z) exp (—z%/2)
satisfies the Hermite—Weber differential equation f”+(2n+1—2z?) f=0.

9. When A(z) is transcendental periodic

We now give some results and examples that concern the frequency of the real
zeros of solutions fZ0 of equation (1.1) where A(z) is a transcendental entire
periodic function. Since we use Theorem 4 to prove our results, we will state them
as corollaries.

Corollary 4. Let A(z) be a nonconstant entire periodic function with a period
that is not purely imaginary, and let {20 be a solution of equation (1.1).
(i) If the period is real, then Ap(f)=1.
(ii) If the period is not real, then as r— o,

0.1 Ni(r, f,0) = 2T(r, A)+O(logr).

Proof. If the period is real then A(z) is bounded on the real axis. Let x, be a real
zero of f,and set F(2)=£(z)(f"(x,))~". Then F satisfies equation (1.1) and F(x,)=0,
F’(x,)=1. By a theorem of Hille [10, Theorem 11.1.1, p. 579] it follows that f cannot
have a zero on the open real segment x,<x<x,-+7, where r,is the least positive zero
of the solution v(r) of the equation

0.2 v"(N+[ACGo+n)v() =0

that satisfies ©(0)=0, v’(0)=1. Since |A4(x)|<C for some C=0, for all real x, it
follows from the Sturm comparison theorem applied to (9.2) and the equation
g’+Cg=0, that ry>n/JC. Clearly this means that 2z(f)=1.

Now suppose that the period of A(z) is not real and not purely imaginary. It
follows from Lemma 7 (which follows this proof) that A4(z) is not real. Then (9.1)
follows from Theorem 4.

The proof of Corollary 4 is complete (once we prove Lemma 7).

Lemma 7. Let A(z) be a nonconstant entire function with a period w that is neither
real nor purely imaginary. Then A(z) is not real.

Proof. Suppose A(z) is real. Then we have

A(z+B) = AG+w) = A(2) = A(2).

Since a nonconstant entire function can have only one linearly independent period
over R, it follows that @=cw for some c€R. Thus w is either real or purely imagi-
nary which contradicts the hypothesis. This proves Lemma 7.



On the real zeros of solutions of f”+A4(z) f=0 where A(z) is entire 293

Example 8. It follows from formula (4.18) that any real solution f#0 of the
equation f”+e°f=0 satisfies Ag(f)=+ . Thus in the hypothesis of Corollary 4,
the condition that the period not be purely imaginary is necessary.

Remark. Example 5 in Section 8 shows that we can have Az(f)=1 in the
situation of Corollary 4(i).

Corollary 5. Let B({) be a rational function which is analytic on 0<|{|< e,
and which has poles of odd order at both {=0 and {=es. Let u be a nonreal
number and set A(z)=B(e"*). Then every solution f#0 of equation (1.1) satisfies
Anr(f)=+oo.

Proof. From a result of Bank and Laine [2, Theorem 3] we have that A(f)= -+ .
Thus Corollary 5 follows from Corollary 4.

Example 9. It follows from Corollaries 4 and 5 that any solution f#0 of
Mathieu’s equation f”+(a+bcos2z)f=0 where a and b0 are constants,
satisfies Ag(f)=1 and Ayz(f)=ce.
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