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ON THE REAL ZEROS OF SOTUTIONS OF

f"+A(z)f:O WHERE A(z) IS ENTIRB

GARY G. GI.'NDERSEN*

1. Introiluction

lf A(z) is entire then it is well-known that all the solutions of the second-order

linear diferential equation

f"+A(r)f - o

are entire. In a recent paper, Hellerstein, Shen, and Williamson proved the following
result [9, Theorem 3): lf A(z) is a nonconstant polynomial, then the differential

equation (1.1) cannot posses wo linearly independent solutions each having only
real zeros. This result raises a natural question, namely to determine the frequency

ofnonreal zeros ofsolutions ofequation (l.l). Our first result addresses this question.

Weprove:

Theorem l. Let A(z) be a polynomial of degree n>1, and let f1, f2 be any two

linearly indepmdent solutions of equation (l.l). Then at least one of fr, f2 has the prop-

erty that its sequmce of nonreal zeros has exponent of conuergence equal to (n+2)12.

Throughout this paper we will assume that the reader is familiar with the funda-

mental results and standard notations m(r,.f), N(r,f), T(r,f), N(r,f, c), ö(c,f),
etc. of R. Nevanlinna's theory of meromorphic functions (see [8] and [12]).

We make two remarks concerning Theorem 1. First, it is well-known that the
order of any nontrivial solution of (1.1) is (n+2)12 (see Theorem 6 in Section 4 below).

Second, the basic idea behind the proofofTheorem 1 involvesconsideringtheprod-
nct E:f1f2 of the solutions. Bank and Laine [, Theorem 1] showed that the expo-

nent of convergen@ of the zeros of E is (n*2)12, and that [1, p. 354] d(0, E):9. 15*
it will follow from results of Edrei, Fuchs, and Hellerstein in [4] that E cannot have

most of its zeros being real.

The result presented in Theorem I suggests an investigation into those equations

(1.1) where A(z) is a polynomial of degree r>1, which possess solutions that are
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exceptional in the sense that their nonreal zero-sequence has exponent ofconvergence
less than (n+2)12. Of course, there are trivial examples where solutions have only
finitely many zeros, and such examples can occur for every even degree r by consider-
ing f:qee wherep andqare polynomialswith degreel4l:@+2)12. Leaving such

examples aside, we seek examples where the exceptional solutions have infinitely many
zeros. To the author's knowledge, the only known examples occur when n:1 (from
Airy's differential equation) and when n:4 (from an equation studied by Titch-
marsh), which we discuss in Examples I and2 in Section 8 below. Our second theo-
rem shows that such examples cannot occur in any of the degrees 2,6, 10,.... We
prove:

Theorem 2. Let A(z)be apolynomial of degreenwhere n:2+4k for somenon-
negatfue integer k. Let f*O be a solution of equation (l.l). Then either f has only

finitely many zeros, or the exponent of conuergence of the nonreal zero-sequence of
f is (n+2)12.

For the proof of Theorem 2, we assume that the conclusion does not hold, i.e.
that such an exceptional solution lfexists, and we apply the results in Section 4 to
obtain that N(r,f,O)=(l+o(l))4(n+4)-rT(r,f) as r*-. 'We then show that
this equation cannot hold by using [, Theorem l] and a precise estimate of Shea [15,
Corollary 2.ll for the Valiron deficiency (see Section 2) of the value zero for entire
functions ofcertain finite orders having only real zeros.

In the cases when the degree of a polynomial A(z) is either odd or a nonzero
multiple of four, the results in Section 4 will easily give the exact asymptotic growths
of both N(r,f,0) and T(r,f) as /+€ for any exceptional solution /'of (l.l) (see

Theorems 7 and 8 in Section 7), and it turns out that

-. I[(r. f 0) 121(n+3) if n is odd,
Irm ------i--i-i-i-- - 

{;:ä T(r,f) - lal@+g if n is a nonzero multiple of 4.

We observe that N(r,f,0):(ll2+o(l))T(r,f) as r+- for all the known excep-

tional solutions/in Examples I and2 in Section 8.

The results in Section 4 have independent interest. Theorem 5 in Section 4
(which was proved jointly by Steven B. Bank, Simon Hellerstein, John Rossi, and the
author) gives useful expressions for the growths of both T(r,f) and i[(r,/0) as

r*- when f*O is any solution of equation (1.1) where A(r)*0 is a polynomial.
It turns out that both T(r,f) and N(r,f,0) always have perfectly regular growth.
We will obtain Theorem 5 and two corollaries by combining results of Hille, F. Ne-
vanlinna, and Fuchs.

We now turn our attention to the problem of estimating the frequency of the real
zeros of solutions of the general equation (1.1), where A(z\is an entire function. If
A(z) is real (i.e. real on the real axis) then it is easy to see (Lemma 5 in Section 4) that
any solution /of (1.1) that possesses a real zero must be a constant multiple of a reäl
solution li of (l .1). In this case, very powerful techniques (e.g. the Sturm comparison
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theorem [10], and a formula due to Wiman tl8l - Lemma 4 in Section 4) already

exist to estimate the frequency of real zetos of fr, and hence of/(see Corollary 3 in
Section 4). In the case when A(z) is not real, we will use the classical method of the

Green's transform (see I l, pp. 508-509]) to prove the following two theorems which

address both the polynomial case and the transcendental case:

Theorem 3. Let A(z) be a nonreal polynomial of degree n, and set

F(z) = 
A('\;f@ 

'

Let p denote the number of distinct real zeros of the polynomial F(z). Then for any

solution f*0 of (l.l), the number of real zeros k of J'isfinile, andwe haue k=p+1.
In particular, we haue k<n*1.

Theorem 4. Let A(z) be an entire transcendental function of order o(A) where

0= o(A)< *, dfid assume that A(z) is not real. Let fll be a solution of (l.l), and let
1"(f) denote the exponent of conuergence of the sequence of real zeros off. Thm we

haue

(r.2) AR(f) = o(A\.

More precisely, we haue as r+@t

N*(r, Ufl € 2T(r, A)+O (log r)

where N*(r,llf) refen to only the real zeros in N(r,llf).

Theorem 3 is sharp in the sense that in the situation of Theorem 3 we can have

k=p* 1:1 because f (z):2 exp (-izz) satisfies the equation f "+(6i+42')f:0.
The estimate (1.2) in Theorem 4 is sharp in the sense that in the situation of Theorem

4we can have ).^(f):o(A) by Example 5 in Se:tion 8'

This paper is organized as follows. In Section 2 we give notation that is used in

the paper. In Section 3 we prove Theorems 3 and 4.In Section 4 we prove Theorem

5 mentioned above plus some related results. In Section 5 we prove Theorem 2, in
Section 6 we prove Theorem 1, and in Section 7 we prove Theorems 7 and 8

mentioned above. In Section 8 we give several examples concerning this theory.

Finally, in Section 9 we consider the case of equation (1.1) when A(z) is a trans-

cendental entire periodic function.
The author takes pleasure in thanking Steven B. Bank for numerous important

contributions to this paper. The author would also like to thank Robert P. Kaufman
for some valuable conversations.

(1.3)
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2. Notation

As stated in Section 1 we will assume that the reader is familiar with the usual
notations of the Nevanlinna theory. We will also use

Å(c,g):1-gffi
which denotes the Valiron deficiency of the value c for a nonconstant meromorphic
function g.

For a nonconstant meromorphic function/ we will use the following notations:
l. o(f) will denote the order ofl
2. )"( f) will denote the exponent of convergence of the sequence of zeros off
3. X^(f) will denote the exponent of convergence of the sequence of real zercs of f.
4. Ln^(f) will denote the exponent ofconvergence ofthe sequence ofnonreal zeros

of f.
5. n^(r,f,O) and N*(r,f,0) will refer only to the real zeros of/in n(r,f,O) and

N(r,f,O) respeotively. (Note: n(r,f,O) will denote the number of zeros of /in
lzl=r.)

3. Proofs of Theorems 3 and 4

We will use the Green's transform to prove these results.

Lemma l. Let A(r) be an entirefunction which is not real, and set

(3.1) r(z)- 4@;M
2i

f:Im(/ (r)) tf(x)tz dx :0.

If f*O is any solution of equation (l.l), then between any two consecutio-e real zeros of
f, there must be a real zero of F.

Proof. Suppose that xt and x, (x.=xJ are consecutive real zeros off. Then by
taking the imaginary part of the Green's transform [], p. 509] of equation (1.1) we
obtain

(3.2)

Nowif Im(Z1x):O on the segment x1=x=x2 then it follows that Im (A(x))=O
forallrealx,whichcontradictsthehypothesisthat A(z)isnonreal. Thus Im (e@))*
0 on xr=1-x2. Then from (3.2), Im (l(x)) must change sign on x1<x=xr. Since
Im (l(x)):F(x) for all real x where Fis given by (3.1), the assertion follows.

Theorem 3 follows immediately from Lemma l.
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Proof of Theorem 4. If/has k realzeros in some interval -F<x<4 then by
Lemma l, F(z)in (3.1) must have at least k- I realzeros in -r=x=r. Thus

nx(r, f,0) = na(r, 4 O)+ I < n(r,4 0)+ t.

Hence ås /+@r

(3.3) N*(r, f,0) = i[(r, F,O)+O (log r).

By using Jensen's formula, (3.1), and the observation that T(r, A(z)):T(r,V@),
we obtain

(3.4) N(r, F,0) = r(r, F)+O(l\ = 2T(r, A)+O(l)

as r+6. By combining (3.3) and (3.4) we obtain (1.2) and (1.3), and Theorem 4 is
thus proven.

4. The growth properties of solutions of (1.1)

I.et f*0 be a solution of equation (1.1) where A(z)10 is a polynomial. We
will now derive expressions for T(r,f) and N(r,f,O) as r**, which show, among
other things, that the growths of both T(r,f) and N(r,f,O) are perfectly regular
(see Theorem 5 below). These asymptotic expressions for T(r,f) and N(r,f,O) will
depend on both A(z) and on/ In contrast, the asymptotic growth of log M(r,f),
where M(r,f) is the maximum modulus function, depends only on A(z) and not on

/(see Theorem 6 below). In this section we will prove these results and some related
results.

Hille applied his theory of asymptotic integration together with the Liouville
transformation to obtain many basic asymptotic properties of the nontrivial solutions

f of the equation f"+91217:0 where Q@)*0 is a polynomial (see Chapter 7.4

of [0]). One of these properties is the following result.

Lemma 2. (U0,pp.340-342)) Consider the equation

(4.1) f" +Qk)f - 0

where Q(z):qnz"* ...*qs is a polynomial of degree n and q,>0 is a positiue number.
§s1 q:(n*2)12. For 0<ö=nl2a and j:0,1,...,n*1, let Si(ä) dmote the

§ector

(4.2) jnla+ä = arg s = U+ Z)nla-ö.

If f*O is a solution of equation (4.1) that has infinitely many zeros in some sector

St(ö), thenforany e>0, allbutfinitelymanyofthesezerosmustlieinthesectorWi(e)
giuen by

(4.3) U+ L)nlu-e < arg z < U+ L)nla*e,
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and furthermor€, 0s t+ a,

(4.4\ n;(r, f,0) : (l +oO1)G-r',

where ni(r,f,0) refers only to those zeros off inWi@).

Now suppose that flo is a solution of the more general equation (1.1) where
A(z)=ao2n.; ...*ao is any polynomial of degree n with an#O. If c is any constant
that satisfies

(4.5)

(4.7)

(4.9)

(4.9)

Cn+2 : Au

and F(z):f (zlc), then F satisfies an equation of the form (4.1) with 4,: l. Hence
we can easily transform the result in Lemma 2tothe more general equation (1.1). It
will be convenient to make the following definition.

Definition.lat f#0 be a solution of equation (1.1) where A(z):a,sn1...*
ao is a polynomial of degree n with an*O, and for e>0 and j:0, 1,...,n*1, let
Yi@) denote the sector

(4.6)

LetJ(f) denotethesetof all T€{0, 1,...,nt 1} withthepropertythatforsomee>0,
/has only finitely many zeros in YiG). We will call the cardinal number of J(f) the
shortage ofl and denote itby p(f). Hence g=p(f)=n*2.

Remark. The collection of sectors lloG), Wr(e),...,Wn*r(e) given by (4.3)

are in a one-to-one correspondence with the collection of sectors Vs(e), V«e),...,
Y,*r(e) given by (4.6) under the transformation z*zlc where c is a constant that
satisfies (4.5).

We will now prove the following theorem which (as mentioned in Section l) was
proved jointly by Bank, Hellerstein, Rossi, and the author.

Theorem 5. Let fl0 be any solution of equation (l.l) where A(z):anr"a ...*
a, is a polynomial of degree n with a,*0, and ss1 q:(n*2)12. Then p(f) is an euen

number and as 7**, thefollowing threeformulas hold:

1.,* 
z -

n(r,,[ o) - ( t*o(1)) '*:!-.(f) /la)r.,
TEC

N(r,,f, o) : (r+o(1)) 2.;!,.9-/la)r*,
Tta'

r(r, f) :(r +o(t)) Wl la)r*.
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Hence

ä(0, f) : Å(0, f) : p(f)
4a - p(f)

For the proof of Theorem 5, we shall use Lemma 2 and the following lemma

which comes from work of Hille, F. Nevanlinna, and Fuchs.

Lemma 3. Let f and g be linearly independent solutions of equation (l.l) where

A(z)=s,2"1...*ao is a polynomial of degree n with an*O. Set h:Slf and a:
(n+2)12. Then the following hold:

l. r(r,h)- ( t*o(t)) 'U# " as r +*.

2. There exists at most nl2 distinct aalues b1, br, ...,b* in the extended complex

plane with the following properties:
(i) For each k, ö(bk,h):/(bo,h), and ö(bk,h) is a positiue integral multiple

of lla.

(iD Zi:,a1Uo, h) = 2.

(iii) If b*be for k:1, ...,m, then as F+@, N(r,h, å):(l+o(l))T(r,h).

Proof. From formula (2.8) on page 9 of [5], we have that äs /+ @r

T(r, h): (t 1o(1)) ! ro,

where the constant B can be determined to be equal to /1a,11a from pages 6 and 7 of
[5]. Thus part I holds. Part2can be found on pages 8-10 of [5].

Proof of Theorem 5. Suppose first that an=O. From Lemma 2, if some sector

,Sr(ä) in (4.2) contains infinitely many zeros ofl then for any e=0, all but finitely
many of these zeros will lie in the sector W ;(e) given by (4.3), and the contribution to
n(r,f,0) from these zeros will be

tt-
(t+o1rYl!-t- "

as r+ -, from (4.4). Since there are exactly n+ 2- p(f ) such contributions, and the

sectors S;(ö) (7:a,...,fl*l) h @.2) cover the punctured plane, we see that (4.7)

holds.
Now supposethat a,#0 is arbitrary. If we set F(z):f(zlc) where c satisfies

(4.5), then Fsatisf;es an equation of the form (a.1) with qn:|, and p(f):p(F).
Hence by using the above result on 4 we will obtain that (4.7) holds forl. I hen (4.8)

follows from (4.7).

Now let g be a solution of the same equation (1.1) as/ such that f and g are

linearly independent, and set h:Slf. Then from Lemma 3, the sum of the Nevan-
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linna deficiencies of å is 2, and so by formulaQ.$ on page 4 of [5],

(4.10) T(r,h'): (t+o(t))(2-ä(-, g)rQ,h)

as F+ @. From Abel's identity, h':dlfz where d*0 is a constant. Thus

(4.11) T(r, h') : 2T(r,f)+O(l)

as r+@. From (4.8) we obtain

(4.12) N(r, h) : 1r+o1t71\$lfir'
ä.s F+€r since .lf(r, h):N(r,f,0). Combining(4.12) and Lemma 3 gives

(4.13) ö(*,h): p9 
.

2a

From (4.13) and Lemma 3(2.) we obtain that p(f) must be an even number. By
combining (4.13), (4.11), (4.10), and Lemma 3(1.) we will obtain (a.9). The proof of
theorem 5 is now complete.

We will now prove two corollaries of Theorem 5 and Lemma 3.

C o ro lla ry l. With the hy pothesis and notation of Lemma 3, if b # b k for k = 1,...,
m, then the following hold:

(, T(r, s-bf\:7t+o111@r' as r +€.

(ii) N(r, g-bf,0) : (1 +o(l))M-r" as r +@.

(iir) pk-bf):0.
Proof. From Lemma 3 we obtain (ii). From (4.8) and (ii) we obtain p(S-bf):0.

Then (i) follows from (iii) and (4.9).

Corollary 2. Let f and g be linearly independent solutions of equation (1.1)

where A(z)10 is apolynomialof degreen,suchthat p(71:0 and p(g)=O (there

exist such f and g from Corollary l). Let br, ..., b^ be the deficient aalues of h:S|f,
as in Lemma 3. Then the following hold:

(i) m:2 if A(z) is a constant and m>3 if A(z) is nonconstant.
(ii) år, ...,b- areallfinite.
(iii) p(g-bpf):@+2)6(bo, h)=2 for k: l, ...; m, and

Zi=,PG-t*f) : 2(n+2).

(iv) If FlO is any solution of the same equation (l.l) as f and g but is not a con-
§tantmultipleof g-bj forany k:1, ...,n1, then p(F)=Q.
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Remark. From Corollary 2 (iv) we see that most nontrivial solutions of (1.1)

where A(z)70 is a polynomial, will have shortage zero.

Proof. Set q:(n*2)12 and A(z):a,2'a...*ao. Since p(f):Q and
N(r,h):ltJ7v,/ 0), we will obtain from (4.8) that

N(r,h): (t+o(t)) "# "
as /+6. Thus ä(-, h):0 from Lemma 3. This proves (ii).

Since iV(r, h,by)=N(r,S-b*f,O), we will obtain from (4.8) that

N(r, h,bo) : (1 +o(l)) U#@lfr ,,

as r+6. Combining this with Lemma 3 gives 6(bk,h):p(g-hf)(n+2)-t=0,
and so p(S-bkf)=2 for k:1, ..., m from Theorem 5. Since )i=rö(b1,,h):2
from Lemma 3, part (iii) follows.

We have m>2 from (iii). It is obvious that m=2 when A(z) is a nonzero
constant. Suppose now that m:2 and A(z) is nonconstant. then frorn (iii) it fol-
lows that p(S-brf):pk-brf):n*2. thtts C-bJ and g-brf are linearly
independent solutions of (1.1), and each has only finitely many zeros. This is impos-
sible from [1, Theorem l]. This proves (i).

To prove (iv), we write F: crg I crf for constants cr, cr. lf cr : 0 then p ( F): 0.

lf cr+O, then F:cr(C-bf) where å *bsfor k:1,...,m. Hence p(F):O from
Corollary 1 (iii). This proves (iv), and the proof of Corollary 2 is now complete.

Remarks. Corollary 2 shows that for any given equation (1.1) where A(z)*0
is a polynomial, there must exist two nontrivial solutionsf, andfr such that p(fr)#
p(fr) (we mention that for some nonconstant polynomials A(z), we can explicitly
calculate the number p(f) for every solution -f*O of equation (l.l) - see Examples
I and 6 in Section 8). t hus from (4.9), we see that the growth of T(r, f ) will depend on
both/and A(z).ln contrast, the growth of log M(r,f) depends only on A(z)by
the following result, which is essentially due to Valiron.

Theorem 6. If f*O is any solution of equation (1.1) where A(z):s,z"a ...*ao
is a polynomial of degree n with an*O, then as r* *,

(4.t4)

where a- (n*2)12.

los M(r,f):(r +o(l)) /W ,.

Proof. We will denote by V(r) the central index ofl From results of Valiron
U7,p.1081, there exist constants -B>0 and />O such that

(4.15) v(r) - (t*o(t» Brr
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aS f+@s and

(4.t6) tos M(r, ^f) :(r +o(1)) $r'
as r+@. On the other hand, by applying the Wiman-Valiron theory [7, p. 105]

to equation (1.1) we obtain that

v(r) - (t*o(1)) {la,lr"(4.17)

as r*- outside a possible exceptional set of finite logarithmic measure. From
(4.17) and (4.15) we obtain A=lla,l and /:u. Now (4.14) follows from (4.16),

and theorem 6 is proven.
We next discuss the frequency of the real zeros of a solution ffi) of equation

(1.1) where A(z) is a real entire function. The following result is due to Wiman [B]
(see [0, p. aQ).

Lemma 4. Let A(x) be a positiue continuous function on an interual [ro, * *),
which has a continuous deriuatiue on (ru, a *), and which satisfies

A'(x)ffi-o
as x+**. Thm, any real-ualued solution f(x)*O of the equation f "+A7x17:g
on fro,l*) has infinitely many zeros, and the number q(r) of zeros of f on [ro,r)
satisfies

(4.rs) q(r) : @;9 
["Qt1x11'r' 4*

AS r+@.

Another proof of Lemma 4 is in [7].
The next result is elementary and useful.

I-emma 5. Let A(z) be a real entirefunction. If f is a solution of equation (l.l)
that possesses a real zero, then f=Cg where C is a constant and g is a real solution

of (t.t).

Proof.Since A(z)is real, it follows that f (z):cyf1Q)+crfr(z) where frandf,
are linearly independent real solutions of equation (1.1) and c1, cs are constants.

lf crcr:O then the assertion is already true.
Suppose crcr*O. trf zo is a real zero of/then we have crfr(z)*crfr(r)=O.

Sincefi andfrare realthis gives Trft(zr)+qfr(rr\:O. It follows that cr:fig, uiltsr.
å is real. Then f:crTbfr+fr) and the assertion is proved.

Corollary 3. Let A(z):a,4a...*anbe a real polynomial of degree nwhich
is not identically zero, and set q:(nl2)12. Suppose that a solution f#0 of equation

(l.l) has a real zero.
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(i) Let n be odd. Then as r* *,

(4.1g) nn(r, f,0): (l+o(1)) # r',

(4.20) N*(r, f,0) : (l+o(l)) # -
Also, if an>O then f has only finitely many negatiue zeros, while if an<O thm f has
only finitely many positiue zeros.

(ii) Let n be euen. IJ' an>O then f has an infinite nwmber of positiue zeros and also
an infinite number of negatic"e zeFos, and as r* *,

nn(r, f, o)- ( t + o(1)) 
29 

,,,
' TCd

Är* (r, f, o) - ( t + o(1)) '!, ,,..
TCA'

(4.21)

(4.22)

If an<Q thenf has onlyfinitely many real zeros.

Proof. ltfollows from Lemma 5 that f: Cg where C *0 is a constant and g is
a real solution of equation (l.l). Hence we may assume that/is real.

First suppose that n is odd. If a,>Q then it follows that (4.18) holds. Since
A(x)<O for x=xr, we can use a well-known application of the Sturm comparison
theorem to conclude thatf can have only finitely many negative zeros. Hence (4.19)
will follow from (4.18), and then (4.20) follows from (4.19), and thus (i) is proven in
the case when a,=9. By considering f(-x) we see that (i) will hold when a,=Q.

If n is even, then we can use similar reasoning both on the positive real axis and
on the negative real axis to prove (ii).

5. Proof of Theorem 2

591 a : (r? * 2) I 2. W e make the assumption that f has an infinite number of zeros
and that ),11*(f)<.a. Since p(/) is an even number (from Theorern 5), it follows
that p(71:n from Lemma 2 and the transformation described with (4.5). Then
from (4.8) and (4.9) we obtain

(5. 1) Iin, I'{(r' f' o) 
- 

4
;llå TU, f) n+ 4 '

Since ,lr^(/)=a, it follows from the result of Bank and Laine [1, Theorem l]
that )'R(f):a. Let g be the canonical product of the nonreal zeros of f, and set

f=hg. then o(g)< u and, since o(/):a from (4.14), /r is an entire function such
that o(h):a. Since å has only real zeros and o(h) is a positive even integer, it follows
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(5.2)

from a result of Shea [15, Corollary 2.|)that

From f:fug, o(g)<u, p(f):n, (4.8), and (4.9), we easily obtain that as r*-,
N(r,h,o):(l+o(l))N(r,/0) and T(r,h):(l*oQ))r@,f). Thus from (5'2)

we obtain

,,- lr(1' /i,o) : o,i** T(r,f)

which contradicts (5.1). This contradiction proves Theorem 2.

6. Proof of Theorem I

lf n:2*4k where /c is some nonnegative integer, then the conclusion follows

easily, because in the contrary case we would obtain from Theorem 2 that f, and f,
would each have only finitely many zeros which is impossible from [], Theorem 1].

Now supposethat n*2*4k fot k:0, 1,2, ....We assume that the conclusion

is false. lf QQ) is the canonical product of the nonreal zeros of f, and f2, then

o(Q)<@*2)12. From(4.14) and [, Theorem l] we obtain that

f,-frfr-PQ
where Pis an entire function whose zero\ are all real, and )'(E):o(E):)'(p):
o(P):(n*2)12. Then A(z) must be real from Theorem 3.

Now for rz>3 we have 2<l(P)<-, änd so by Corollaty 1.2 of [4] we obtain

that ä(0, P)=0. lf n:l then,t(P):312, andso from Corollary 3(i) and [4, Cor-

ollary 1.ll we deduce that ä(0, P)=0. Therefore, ä(0, P)>0 in all cases. Hence

there exists a constant å>0 such that for r3ro,

(6.1)

(6.2)

(6.3)

*w,a_- 
h

{r,4 = u'

Now we consider the following identity due to Bank and Laine [1, P. 354]:

-4A - (clE)z - (E' lE )'+ 2(E " lE)

where clO is a constant. Since .E has finite order, it follows from (6.3) and Nevan-

linna's fundamental estimate of the logarithmic derivative that

(6.4) m(r, E,0) : O (log r)

as r+ @. (We mention that it was noted on page 354 of [1] that 6(d, E):O for all
d*-.)
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Choose B such that o(2)=p<.(n*2)12. From (6.4), (6.2), and (6.1) we obtain
that as r* -,

T(r, P) = O(m(r,P,0)) = O(m(r, E,0){m(r,Q)): o(r0),

which contradicts that Phas order (n+2)12, This proves Theorem 1.

Remark. We mention that it was not necessary to use Theorem 2 in the above
proof, because alternatively we could have used Corollary 3(ii) and 14, Corollary 1.2)

to obtain in the above argument that ä(0, P)>0 when n-2.

7. When A(z) is a polynomial with degree #2+4k

We will now prove the following two analogous theorems to Theorem 2 for the
cases when A(z) is a nonconstant polynomial with degree *2, 6, 10, ... .

Theorem 7. Let fl0 be a solution of equation(l.l)where A(z):anl* ...*ao
is a polynomial of odd degree n, and set q:(nf2)12. Then exactly one of thefollowing
two cases must occur:

(i) Ln*(f)= u.
(ii) r.jvs (l')< a and ö (0, f)= 7 19, f): (n* l) I @ + 3), and furthermore ds r + @ t

N(r, f,0) : (1 +oQ))$ *,

r(r, f): (t +o(t)) 9+{-r.Å-,"

Theorem 8. Let fll be a solution of equation (l.l') where A(z):sn2tq ...*ao
is a polynomial of degree n:4k where k is some positiue integer, and set q:(n*2)12.
Then exactly one of the following three cases must occur:

(i) f has only finitely many zeros.
(ii) 2ivR(/):d.
(ii, ,trrv1(/)<a and ö(0,f):719,f):nl@+4), and furthermore as r+@t

N(r, f,0) : (l +ogy)4 r,,

@ey'w-,.T(r, f): (1+o(t) I 
2raz

Remark. All of the cases in Theorems 7 and 8 can occur. Regarding Theorem
7(ii), there are examples when n: I where a solution/has all real zeros (see Example
I in Section 8). Regarding theorem 8(iii), there are examples when r=4 where a so-
lution/has an infinite number of zeros and all of the zeros are real (see Example 2 in

287
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Section 8). From Corollary 2 we have that p171:0 for most./in the situations of
Theorems 7 and 8, and such solutions/belong to the cases Theorem 7(i) and Theorem
8(ii).

Proof of Theorem 7. We will assume that ,ir^(/)=c. Since p(f) is an even

number (from Theorem 5), it follows that p(1'1:n* I from Lemma 2 and the trans-
formation described with (4.5). Then we have the case (ii) from (4.8) and (4.9). This
proves Theorem 7.

Proof of Theorem B. We will assume that f has an irrfinity of zeros and that
).11*(f)=a. From Theorem 5, Lemma 2, and the transformation described with
(4.5), we find that p(f):n. Then we have the case (iii) from (4.8) and (4.9). This
proves Theorem 8.

8. Examples

We will now give several exampl:s which will both complement the theory and
also exhibit the sharpness ofour results.

Example 1. The well-known Airy differential equation

(8. 1) f"-zf:o
possesses a solution fr such that the zeros of fo are all real and negative (see [3, pp.

413-4l5lwhere fr(z)=Ai(z)). From Theorem 7 we obtain 6(O,f):71g,fi:712,
and furthermor€ äs /+ @r

N(r, fo,o) : (1+o(l)) * ,u,,,

r(r, fo): (t +o1t1) fr r,r,.

we mention that for the function fo, the inequality (2.12) in [15, Theorem 2] is

an equality with lim replaced by lim.
We also have

togM(r,fi) : (l +oQ))]rstt

äS /+@r from (4.14).

Clearly, p(f):Z, If c, and c, are the two nonreal cube roots of unity, and

fr(z):fo@rz) and fr(z):fo(crz), then f, andf, are both solutions of equation (8.1),

p(rt):pU):2, and the three functionsfi, fr, Jä are pairwise linearly independent

(the last statement follows from the initial conditions on .fo=Ai (see [3, p.392D.
From Corollary 2 itfollows that if fl) is a solution of (8.1) such that /is not a
constant multiple of either .fo,ft,orfr,then p(/):9.
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We mention that it follovrs from the above and a suitable linear change of inde-
pendent variable that there exists a solution Fo ofthe equation

f" +(arz+ao)"f :0
wherc ar*0 and ao are real constants, such that all the zeros of Fo are real and
ö(0, F):7(0, F):112.

this example shows that case (ii) in TheoremT c,an occur.

Example 2. It is well-known [6] that equation (l.l) with A(z):B-za,
f€R, has a complete orthonormal set of real eigenfunctions $lt,(z)jio for Iz(R) as
a real space, with corresponding distinct eigenvalues {§,}Lo, such that 0= fro= Fr<
frz=,.., and B,* * - äs n *-. Also, ry', is even or odd as r is even or odd, and ry',

has exactly n real zeros. Titchmarsh [6, pp. 172-1731showed that all the nonreal
zeros of rlo are purely imaginary and that 1(t):3. thus ry'o and rtt, each have only
purely imaginary zeros. If f^(z)=rlt,(iz), then for each n, fn satisfies the equation

f"+124-B,y:g,
l, has only real zeros except possibly for finitely many, and ),(f,):o(f,):3. tn
particular, f) andfr have only real zeros.

From theorem 8 we obtain (for all n) that ö(0,1):779,.f)=U2, and further-
more as r+€,

N(r, fn,0) : (l+o(l)) *r',

T(r, f,): (t+o1t1)firr.

We mention that for the function sfoandfr, the inequality Q.ls)in [15, Corollary
2.ll is an equality with lim replaced by lim.

We also have (for each n)

logM(r, f,): (l+o(r))f r'

äs /+€r from(4.14).
This example shows that case (iii) in Theorem 8 can occur.

Remark. Some further propefties of each rlr,(z) (and each B) can be found in
Chapter III of [6].

Example 3. Given any sequenca 21, Z21zr, ... of distinct complex numbers such
that zn**, there exist entire functions f(z) and A(z) that satisfy f "+A1217:g
such that/has precisely the zeros zr, Zz, .... (In particular we can choose each znto
be real.)

To prove this statementlet QQ) be a Weierstrass product with exactly the zeros
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zL, 22,.... By the interpolation theorem U4, p. 2981 there exists an entire function
g such that

/ \ Q"Q)s(2,): -fiiä for each r.

Let h be a primitive of g. Then f: Q"u satisfies the equation f " + .L121 7:0 where

Å : -c2-o'-9:i3O 
g-

o
is entire.

We next will illustrate how Theorem I is sharp. Theorem I is not true for r:0
since if an#O is a real constant then the equation f "laof:g possesses of course

two linearly independent solutions/,I neither of which has any nonreal zeros. There

are examples (Examples I aod2)when A(z) is a polynomial of degree n:l or n:4,
where equation (1.1) possesses a solution/'such that the zeros of f are all real and

),(./'):(n+2)12. For any even n >0, there exists a polynomial A(z) of degree r such

that equation (1.1) possesses a solution with no zeros.

Concerning the results in Theorems 1 and 3, when A(z) is transcendental we give

some possibilities that can occur in the following

Example 4.Let k be a positive integer or -. Then there exists an entire function
A(z) of order k such that equation (1.1) possesses two linearly independent solutions

fl..frwhich each have only real zeros and 1(fr):1(/):1. When ft is a positive

integer we will construct an A(z) that is nonreal, while when k: - we will construct

an A(z) that is real and also an A(z)that is nonreal. We will make these constructions
by applf ing the following result of Bank and Laine (see Lemmas B and C of [3])'

Lemma 6. Suppose that E(z) is an entire function and c#0 is a constant such

that E' (zo) : t c wheneaer E (z ): 9. Then the function A(z) defined by ll, p. 3541

(8.2)

is entire, and there exist two linearly independent solutions f1, fz of equation (l.l) such

that (i) E:.frfr, (ii) c:1;7'-7'7r, Gil) fitzo):O exactly when E(zo):O and

E'(zu):-c, and (iv) fr(z):Q exactly when E(zo):O and E'(zo):c.

We will now make the above mentioned constructions.
First let k be a positive integer. Set

E(z): sinz.exp (#)
Noticing that E'(zo):tl whenever E(zo):Q, we see that the function A(z) in
(8.2) (with c:1) is entire and is of order k. From Lemma 6, it follows that there

exist two linearly independent solutions fr,f, of equation (1.1) such thatfrandfreach
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have only real zeros and 1(fr):1(fr):1. A calculation will show that A(z)is
nonreal; for example, A(rl$ is not real when k: I and A(nl2) is not real when k>2.

Now let k:*. If we set ä(z):sin z.exp (i sinz), then A(z) in (8.2) (with
c: l) is entire with infinite order. The asserted statement then follows by the above
reasoning, and A(z) is nonreal (e.g. A(nl2) is not real).

When k:-, if we set E(z):sinz.exp(sinz), then the asserted statement
follows by the above reasoning, and in this case A(z) is real.

Example 5. In the situation of Theorem 4 we can have l*(f):o(l):1 in
(1.2) because f(z):sap(-izlz).sin(ret') satisfies equation (1.1) where A(z):
lf 4- nzszi'. Regarding the estimate (1.3) we have

Nn?, f,0) :7(r, A)+O(l) : L+O0)
äS r+ @r in this particular case.

Example 6.Let q>2 be an integer, and consider the equation

(8.4) f"+AnQ)f-0,
where Ar(z):-(q214)z2q-'-(q(q-l)12)zq-2. We will now explicitly calculate the
numberp(/) for every solution fll of equation (8.4). Equation (8.4) possesses the
solution Jr@):exp(zql2). lf we define fr:16, where h(z): I'o"rp(-wq) dw, then
it follows from the reduction of order method thatfris a solution of (B.a) that is lin-
early independent with f . From 172, p. 2ll, if zs, 21, ..,, z q_L are defined by

then as F -> @,

(9.5)

and (for k- 0, I , ..., q-1)

N(r, h, zr) - (t*o(t»(l - UdT(r, tr).

Hence from (8.6) and (8.5) we can deduce that as r+ *,

21,-exp ("*) f exp(-xn) dx,

T(r, h): (r + o(1)) +,

N(r, fr- z*fr, 0) - ( t + o(1» (1 - Uq) | *

(8.6)

(8.7)

(8.8)

for each k. By comparing (8.7), (8.4), and (4.8) we obtain that

PUz- z*ft) - 2

for fr:0, 1,...,Q-1. Since the functions ft,fz-zo7r, .fr-2rrt, ...;f2-zq_tfr
are pairwise linearly independent, it follows from (8.8), p (.fr):2q, and Corollary 2
that if fll is any solution of equation (8.4) that is not a multiple of one of .fr,
fz- zort, ...,7r-zrafr, then p(J')=O.
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Example 7. It is well-known that for n =0, the Hermite polynomial H"(z) of
degree n has exactly n real zeros and the Hermite function E,Q): H,(z) exp (- zzl2)

satisfies the Hermite-Weber differential equation f "+(2n+1-2217:9.

9. When A(z) is transcendental periodic

We now give some results and examples that concern the frequency of the real

zeros of solutions f*0 of equation (l.l) where A(z) is a transcendental entire

periodic function. Since we use Theorem 4 to prove our results, we will state them

as corollaries,

Corollary 4. Let A(z) bi a nonconstant entire perioCic function with a period

that is not purely imaginary, and let fl 0 be a solution of equation (l.l).
(i) IJ'the period is real, then ).*(f)= 1.

(ii) If the period is not real, then 4s t+@t

(9.1) N*(r, f,0) = 2T(r, A)+O(loer).

Proof.lf the period is real then A(z)is bounded on the real axis. Let xo be a real

zero of f,and set F(z):f (z)(f'(ro))-t. Then F satisfies equation (1.1) and F(x6):0,
F'(xo):1. By a theorem of Hille [10, Theorem 11.1.1, p.579]it foliows thatf cannot

have a zero on the open real segment xo< x< xrl r, where ro is the least positive zero

of the solution u(r) of the equation

(g.2) o"(r)+lA(xn*r)lu(r):6

thatsatisfies z-.(0):9, a'(0):1. Since lA(x)1=C forsome C>0, forallreal x, it
follows from the Sturm comparison theorem applied to (9.2) and the equation

g" *Cg:O, that ro>rly'-. Clearly this means that /,*(/)= 1.

Now suppose that the period of A(z) is not real and not purely imaginary. It
follows from Lemma 7 (which follows this proof) that A(z) is not real. then (9.1)

follows from Theorem 4.

The proof of Corollary 4 is complete (once we prove Lemma 7).

Lemma 7. Let A(z) be a nonconstant entire function with a period a that is neither

real nor purely imaginary. Then A(z) is not real.

Proof. Snppose A(z) is real. Then we have

A(z+d) :712-+a) =@ = A(z).

Since a nonconstant entire function can have only one linearly independent period

over ft, it follows that ö:ca for some c€R. Thus ar is either real or purely imagi-

nary which contradicts the hypothesis. This proves Lemma 7.
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Example 8. It follows from formula (4.18) that any real solution fl| of the
equation .f "+e"1=g satisfies 1"(.f)= * -. thus in the hypothesis of Corollary 4,
the condition that the period not be purely imaginary is necessary.

Remark. Example 5 in Section 8 shows that we can have X"(f):l in the
situation of Corollary 4(i).

Corollary 5. Let B(O be a rational function which is anab,tic on 0<l(l=-,
and which has poles of odd order at both (:g and (:*. Let p be a nonreal
number and set A(z):fi(suz). Then euery solution f*O of equation (l.l) satisfies
,tiya(./): f -.

Proof.From a result of Bank and Laine [2, Theorem 3] we have that ),(f)= a *.
Thus Corollary 5 follows from Corollary 4.

Example 9. It follows from Corollaries 4 and 5 that any solution f*0 of
Mathieu's equation f"+(a+bcos2z)f:g where a and b*O are constants,
satisfies l*(f)=l and ).NR(f): -.
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