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ASYMPTOTIC EXTREMAL GROWTH OF
QUASISYMMETRIC FUNCTIONS

A. HINKKANEN ?

1. Introduction

The purpose of this paper is to determine the asymptotic behaviour of the func-
tions M,y(x, K) and mqy(x, K), defined below, that describe the maximal and minimal
growth of K-quasisymmetric functions. The work is based on an earlier paper [5] of
the author, which can be regarded as a sequel to the papers [3, 4] of W. K. Hayman
and the author.

An increasing homeomorphism f of the real axis R onto itself is called K-quasi-
symmetric (K—gs), where 1=K<eo, if

1 _ G+
K= f()—f(x-1)

for all x¢R and #=0. The function fis quasisymmetric (gs) if it is K—gs for some
K. The condition (1.1) was formulated by Beurling and Ahlfors [1] who proved that
gs functions are precisely the boundary values of those quasiconformal maps of the
upper half-plane onto itself that fix the point at infinity.

Some results on the growth of ¢gs functions can be found in Kelingos’ paper [6],
and a more systematic study has been performed in [3, 4, 5]. Following [4], we set

N(K)={fIf is K—gs, f[(D=1, f(-1)=-1},
M, (x, K) = max {f(x)|f€ No(K)},
my(x, K) = min {f(x)|f€ No(K)}.

We note that by [1], the class N,(K) is compact.

The class N,(1) consists of the identity map only, so that My(x, D)=my(x, )=x
for all x. Let K be fixed, K=1. In [5, Theorems 1, 2] we constructed piecewise linear
odd functions fand g belonging to Ny(K), such that f'is the largest convex minorant
of My(x, K)and g is the smallest concave majorant of my(x, K) for x= —1. Further
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296 A. HINKKANEN

we found infinitely many points z, and w, tending to = as n— e such that
f(zn = MO(Zn, K)a
g(wn) = mO(wn’ K)

for all n. It was also shown that if »=r(K) is rational, i.e.

_logkK _Pr 1
(1.2) r(K) = gL ~ g’ L= 3 (K+1),

where p, g are positive relatively prime integers, then the points z,, w, occur at
bounded distances. More precisely, we have

Zn+1—Zn = 22p+p’
Wypt1— Wy = 222p+2p
by [5, Theorem 4].
By [4, Theorems 5, 6] we have
(1.3) x1E = M (x, K) = ¢, (K)x®),
(1.9 ¢ (K) x2 ) = my(x, K) = x2®

for x=1, where the constants oy, o,, ¢;, ¢, depend on K only and can be estimated.
Hayman [3, Theorem 1] showed that if »(K) is irrational, then the ratios
My(x, K)x~5%® and my(x, K)x~*® tend to some limits as x—oo, say p,(K)
and y,(K). He also proved [3, Theorem 5] that if r(K) is rational, then these
ratios are asymptotic to some periodic functions of logx (for example
M,y(x, K)~x:®g (log x) where ¢ is periodic) but left open the question whether or
not ¢ is constant.

In this paper we use the explicit formulas for the above functions fand g together
with the fact that fand M, (x, K) as well as g and m,(x, K) have the same asymptotic
behaviour, to determine the above functions ¢ and the limits y;(K) and 7,(K). This
will be done in Sections 4 and 6. In Sections 5 and 7 we study the properties of the
functions ¢, y, and 7, to describe the behaviour of M, and m, more precisely. The
proofs are based on difference equations arising from the definitions of f'and g, and
these will be considered in Sections 2 and 3. In Section 8 we study the asymptotic
oscillation properties of an individual K—gs function. In the final Section 9 we prove
a technical result used in Section 6. As stating our results precisely requires some prep-
aration, this will be done in the appropriate sections.
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2. A difference equation

If K=1, we set L=L(K)=(1/2)(K+1), A=AK)=(1/2)(1+K™),

_ _logK
.1 r=rK) = TogL’

_ _ logK™!
(2.2) S = S(K) = -—I‘Og—A—.

We have l<r<2, s=2, 1/r+1/s=1. If r€Q, say r=p/q where p, q are positive,
relatively prime integers, then s=p/(p—q), q<p<2q, 1=p—qg<p, and p=3,
g=2. The numbers r and s are rational or irrational simultaneously.

Consider pairs (m, n) of integers m=1, n=0. Following [5], we order these
pairs so that

(2.3) KmMmIm=Km]" =....

The ord=ring is unique if and only if r¢Q. If r€Q and if K™ L™ has the same value
for M=k=N, we order these pairs (i, n,) so that my=n . >...>my.

There is a unique odd piecewise linear continuous function fsuch that f(x)=x
for 0O=x=1 and such that the slope of fis K"+L" on the interval [X;_;, X;], where

my+n,—1
Ay

X=X = 2":«“[ ) for k=1, and X,=1.

It was shown in [5, Theorem 1] that f€ Ny(K) and that f(z)=M,(z, K) whenever

1, -+ —
z=&q+ﬁwﬂ,0§j§V*£k1L k=1
Similarly, there is a unique odd function g such that g(x)=x for 0=x=1 and
such that the slope of g is K™« ANk on [Y},_;, ¥, ], where M, =1, N, =0,
Mk + Nk - 1
Ny

K—M]ANl = K—MzANg =..., y;c_'Yk—l - 2Nk+1( fOT

k=1, and Y,=1.
By [5, Theorem 1], we have g€ Ny (K), and g(w)=m,(w, K) for
Mk-i—Nk—l] ok

N, =1

w=nﬂ+ﬂMH,0§j§( =

Suppose now that r(K) is rational, say »(K)=p/q as before. Then every slope of
f can be written as K™L"'=L™*"/*since K?=L”. So the distinct values of the
slope of f are given by L™, where m runs through all positive integers of the form
m=ap+bq where a=1 and b=0, and in particular through all integers m=>

(p—1)q. Let the interval of the positive axis where f has the slope L™ be (x,,_1, x,,)
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where m=1 (so x,_;=x, for finitely many small values of m). We set 4,=
Xp—X,-1. By the definition of £, we have

b-1
A” = Z(a,b)EFn (a+b )2b+1’

F,={@a,bla=1,b=0, ap+bg = n).

where

Clearly 4,=2, A4,,,=4, and 4,=0 if 1=n=2p—1 and p=n=p+q. We
shall show that
.49 A, = A,_,+24,_,n>p.
If (a,b)EF,, then (a—1,b)EF,_, if a=2, and (a, b— 1)¢F,_, if b=1. Further,

(a+Z—-1] b1 ( a——l)b+b—1] 2b+1+2(a+(lg:%)—l] 2-D+1 while

(%Y =0 it a=1 ana (FGZPTY) =0 it b=0,

Also if (a, b)¢ F,_,, then (a+1,b)CF,, and if (a,b)¢F,_,, then (4, b+1)¢F,.
These results imply (2.4).

The equation (2.4) and the values of 4, for 1=n=p, determine the numbers 4,
uniquely. By the standard results on difference equations, we can write
@.5) Ay= 30, By
for some complex numbers f;, where the ; are the zeros of the polynomial
(2.6) P(z) = zP—2zP—1-1.

We shall prove that these zeros are simple.

Before studying the polynomial P more closely, we list the corresponding results
for the function g. Roughly speaking, the role of ¢ is taken by u=p—gq¢€[l, p/2).
The slopes of g are of the form A™* where n=p. If g has the slope A"* on (y,_1, y.),
and A4,=y,—y,_,, then

, a+b—1
A= 2 b)¢F,, ( b J 2+,
where
F,={@bla=1, b=0, ap+bu=n)}.

We have

2.7 n=Ar 24, ,.

Hence

(2.8) A),t = Z:;]_ ﬁl’()"l,)"’

where the A] are the zeros of
0(2) = 22 —22P"F—1 = 2P -229—1,

all of them simple zeros.
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3. On the polynomials P and Q

We study the polynomial
3.1 P(z) = zP-2z"—1,

where p and m are relatively prime (in particular, p and m cannot both be even) and
1=m=p. We shall apply the results to m=p—g and to m=gq.

Lemma 1. The polynomial P has p simple zeros Ay, ..., ,. One of them, say 4y,
is the unique positive zero of P and

IA“I<A.1, 2§i§p.

Further, 1<l,<3, 22""<3, and J,<V3 if p—m=2, while 2<);<2+2'7? if
m=p—1.
We have
P'(2) = pzP71=2mz""1 =0

if z=0 (which is not a zero of P) or if zP~"=2m/p. Hence if P(z)=P’(z)=0
(so z#0), we have z"=—(2(1—m/p))™ and z’=—m/(p—m). This implies that
with g=m/p€ (0, 1), we have

2¢°(1—¢)'2 =1

This is satisfied only if ¢=1/2, i.e. p=2m, which is against our assumption. Hence
all the zeros of P are simple.

We have P(0)=—1<0. Forreal z, P(z) is real, and for z=0, we have P’(z)<0
for 0O<z<Q@2m/p)®~™=4, and P’(z)>0 for z=>A4,. Hence P has a unique posi-
tive zero ;. We have 4,>1 since P(1)=—2<0. If 27=34}, then P(1)=A7'—1=0.
Hence 2,=)?""<3, and consequently 4,<}3 if p—m=2. If m=p—1, then
P(2)=(2—2)2°~'—1<0, so that A,>2, while P(2+2'7#)=2'"P2P"1_1=0, so
that A, <2+2'"P.

Suppose that 2=i=p. Then |1|P=|2A7'+1|<2|2]|™"+1 unless A'>0. So
P(|2))<0 and hence |4;]<4;. If |A4]=1, then [4]<A;. Suppose then that |4;]=>1
and that A7'>0. Then A!=2"+1=0 and (2n)~!arg A;=k/m=I/p for some inte-
gers k,I with 0=k<m, 0=I/<p. Since kp=Im, we have ml|k, so k/m=0 and
A;=0. But then A;=J/,, which is impossible. Hence |};]<A, for 2=i=p. Lemma 1
is proved.

3.1. We make a few remarks concerning the case m=p—gq, where g<p<2q.
Remark 1. A more careful analysis shows that for 2=i=p, we have
[ = 4 (1-A4p~9),

where A is a positive absolute constant. This seems to be best possible apart from the
best value of 4.
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Remark 2. Applying Rouche’s theorem to z# and 2z™-+1 on the unit circle we
see that P has m zeros in the unit disk. The other p—m zeros liein {|z|>1}, except
if p and m are odd, in which case P(—1)=0. Also all zeros z, of P satisfy |zy|=B,
where B¢€(0, 1) is the unique positive zero of zP42z"—1.

Remark 3. In Section 5 we will consider what happens to various quantities as
K,—~K, r(K,)=p,/a,, ¥(K,)>rc(l, 2), where r is irrational. It might be of interest to
study what happens to the zeros of

Pn(Z) = Zp_zzm_l’ P=DPy, M=p,—{qy

as n— oo, It seems plausible that for a portion 1/r of the zeros (whose number - <o),
the g,-th powers of the zeros cluster towards the circle {|z]=C}, where C>1 is
the unique positive zero of x"—2x"~'—1, while for a portion 1—r~1 of the zeros,
the g,-th powers cluster towards the circle {|z|=B}, where 0<B<1 and B is the
unique positive zero of x"+2x"~'—1. However, any useful information would have
to be more precise.

3.2. Now we can determine the numbers f; in (2.5) and f; in (2.8).

Lemma 2. Let ;, 1=i=p, be the zeros of P given by (3.1) with m=p—q.
Then
2 2

b= = prag 70

3.2)

in(2.5). Let 2], 1=i=p, be the zeros of P given by (3.1) with m=q. Then

1

(3.3) - 2

=T T rt—gm 0

in(2.8).

It suffices to prove that with p; given by (3.2), (2.5) is true for 1=n=p. Recall
that 4,=2 and 4,=0 for 1=n<p. Let R be so large that the disk {|z|]<R}
contains all zeros of P. Then the residue theorem gives

1 f z"dz » ?
|

2nidE=rZP() L=t PGy ' 1,

while for all large R we also have, with z=Re',

1 f[ 2" ldz 1 f?ft Z"Pdo

2nid =R P(z)  2ndo 1-Q"+ 1)z 7?

1 pon -
== [, 02" 37 Q2P

1 2 oo _
=, d02 (142" P +27P+ 37 L a2
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for some numbers a,. Hence this integral is equal to 1 if n=p, and equal to zero if
I=n=<p. This proves the claim concerning the f;, and for the B the proof is the
same. It is routine to verify that the second equality holds in (3.2) and (3.3). Lemma
2 is proved.

Remark. Since |4;|?~9=2]=27""<3, we have |p+2¢/?~%<p+6qg<Tp, hence
|6:/=2/(7p). Since A;>1, we have f;<1/p. One can show that |B;|=4,(r)/p,
where 4,(r) depends only on the ratio r=p/q, A,(r) remains bounded as r—1
(i.e. as K—<o), but 4, (r) might tend to = as r—2 (i.e.as K—1).

Further, one can show that 0<A4,(r)=p|B;|= A;(r), where the function 4,(r)—~
oo only when r—1 and A;(r)—< only when r—2.

4. Asymptotic behaviour of M, and 1, for rational »(K)

Let r(K) be rational, say »(K)=p/q, where p, ¢ are positive and coprime. As
mentioned in Section 1, the asymptotic behaviour of M (x, K) and m,(x, K) is the
same as that of fand g, respectively. The piecewise linear functions fand g are deter-
mined by their slopes L"? and A™*, where p=p—g, and by the numbers 4,, 4.,
which by Lemmas 1 and 2 are asymptotically given by $,4% and f8;(2;)". This allows
us to determine the asymptotic behaviour of M, and m,. Furthermore, we shall show
how B, 4;, B1, A; are connected to quantities studied in [4].

Let us recall [4, Theorems 5, 6] that if K=1, then we have

x" = My(x, K) = ¢, (K)x™,
¢ (K)x™ = my(x, K) = x*

for x=1, where o;=0;(K) and a,=0a,(K) are obtained as follows (see [1] or
[4, Lemma 1]).

Lemma A. If a=0, then the function
8.(x) = |x|* signx

is K,—qs, where the best possible K, is determined as follows. Let t, be the solution of

(CN)) G+ D=2 =2,
so that 1<t,<2. Further set
4.2 4, = [(1,+ 1)* = 1][(7, — D"+ 1] *

= [(t+ D/(t,— D = 2(t, + 1) = 1.
Then K,=gq, for a=1, K,=1/q, for O<a<1, and K,=1.
The quantity g, is a continuous strictly increasing function of «. Hence for any

given K=1, there are unique numbers o, (K)>1 and «,(K)€(0, 1) such that K=
K, for a=0;(K) and for a=0,(K).
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We define Dy=(1;,—1)8;%,
D, = B Cp{(A -1 — (L -1} <0,

D,=D%"*, and we define Dy, D;, D;, by the same formulas, replacing f;, 4, a,
by B1, A1> @ We prove the following result.

Theorem 1. Let #(K) be rational. Then as x— oo, we have
4.3) My(x, K)x~*~¢,(log x+log D),
(D) mq(x, K)x~*2 ~ ¢, (log x +log Dy),

where @, and @, are continuous periodic functions, ¢, has period log A,, ¢, has period
log A7, and

(4.5) @1 (v) = D, exp (—va))+ D, exp (v(1—y)), 0 =0 <logy,

(4.6) @2 (v) = D] exp (—va)+Dj exp (v(l —0y)), 0 =v<logl{.
Furthermore,

@7 log 21 = (log L)(¢(x—1)™* = g~ log (,+1), a = y(K),

(4.8) By =2q7(r+2(t,+ 1)) a=a(K),

4.9) logi = (log1/A)(p—q)(1 =)™t = (p—q)tlog (f,+1), a= x(K),

(4.10) Bi=2(p—@) (s +2(t,+ 1)L, a=0(K), s=s(K).

4.1. We prove (4.3), (4.5), (4.7) and (4.8). The proof of (4.4), (4.6), (4.9) and
(4.10) is similar.

Clearly (4.8) follows from (3.2) and (4.7). Next let P be given by (3.1) with
m=p—gq. By Lemma 1, 4, is the unique positive zero of P. So to prove (4.7), it suffices
to show that P(8)=0, where §=(t,+1)"/%. By Lemma A and (4.2) we have K=
[(t+1D/t—1]*~Y, where t=t,, a=0;(K), and L=(¢+1)*~', which proves the
second equality in (4.7). We get

P(8) = 6°(1-26"9)—1 = (39 ~1(67-2)—1
= (t,+ 1) (=Dt + D71 =1
— Lr/(a-l)K—l/(a—l)_l =0

since L'=K by the definition of r. This proves (4.7).

4.2. It remains to consider the asymptotic behaviour of M(x, K). By (2.5) end
Lemmas 1 and 2 we have

4, = ﬂl’lg(l +Z,?=2 (ﬁi/ﬂl)(li/il)") = Bl '1'(1 +En)’

where |E,|=Eoc" for some ¢, 0<o<1, and some positive E. The function f has the
slope L"%on (x,_,X,), and
x,, = 1+2:’=1 Ai‘
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Suppose that x,=x<x,,;. Then
“4.11) flx) = 1+2;’=1 A,-L"/"+(x—x,,)L("+1)/Q,

By [5, Theorem 1] we have f(x,)=M,(x,, K). By [5, Theorem 4], there are points
7y, zy such that x,=z,=x=z,=x,41, 2,—2z,=2"*?, and f(z;)=M,(z;, K) for
i=1,2. Since fand M,(x, K) are increasing and f=M, (since f€N,(K)), we have

4.12) 0=M(x, K)—f(x) = f(z)—f(x) = (z—x) L"+V/a < B[/,
where B=LY12%+p,

Next we estimate x, and f(x,). We have
(4.13) X, =1+ 37 BIA(+E) = B2 (4 —1)71(1+S,)
where |S,|=S¢" for some positive S. Further, we have
(4.14) SCe) =1+ 37 L LY (1+E) = 2" DO -1D(1+T,)

where a=0,(K) and |T,|=T¢" for some positive 7. Note that A,L"?=]% by (4.7).
We write x=x,e” and deduce from (4.11), (4.12), (4.13) and (4.14) that
(4.15) My(x, K)x—2 = fi=*(l, — D)~ %e~(1+S,)"
A=D1+ T)+ (=D =D (1 +S)}
where we have included the effect of M (x, K)—f(x) in the T,-term, as we may,
and divided through by 2;"*P. As x-—oo, we have n—-e andso S,, T7,~0. We
have 0=v=log (x,.:/x,)=log };+0(1) and
v = log x—~log x, = log x+log Dy+(n+1) log 4, +1og (1 +S,)
= log x+log Dy +0(1) (mod log 4,).
In view of the definition (4.5), (4.15) now implies (4.3).
We claimed that ¢, is continuous, i.e. ¢;(0)=lim ¢,(v) as v—log 1,—, which
reads
Dy+D, = Dy 21 *+D,y217°%
ie. (A{—1)D;+(4;—24,)D,=0. This follows straight from the definitions of D; and
D,. Theorem 1 is proved.

5. On the functions ¢, (v) and ¢,(v)

In this section we study the functions ¢;(v)=¢;(», K) for i=1,2, given by
(4.5) and (4.6). This will show more precisely how much M,(x, K)x~4® and
my(x, K)x~*) can oscillate.

First we consider ¢,(v). We may assume that O=v=log4,. We have
e"1¢’(v)= — o, D;—(o;— 1) D, e’ which vanishes at only one point »,. Since ¢, is not
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constant and ¢,(0)=¢, (log 1,), we have O<v,<log4,. Since ¢;(0+)=0, as one
can check, @, takes its maximum value at v=v, and its minimum value at v=0. We
write

max @, ¢1(v) -1

= K = - = N
¢=o(K) ming;  ¢,(0)
so that
(=1t Je—1 [ A—1 )1““
G.D oK) =——="——7\l-%—7) -

where a=0o;(K) and A=4,. If r(K) is irrational, we set ¢(K)=1. We prove the
following result, which shows that ¢ (K) is bounded, that ¢o(K) is continuous at K=K,
if r(K,) is irrational and that ¢(K) does not tend to a limit as K— <.

Theorem 2. We have o(K)<((3+V5)/2)¥*<1.38 for all K. If K;~K and
r=r(K) is irrational, then o(K;)—1, and

(.2 ¢1(0, K)) ~ y1(K) = a1 20~ [log (r+ D [r+2(¢+ 1) 1%,

where t=t, and o=o,(K). If K;—~1, then o(K)—-1. If K;> and r(K;)=
Pilq:> then

(5.3) limiup o(K) = e™oy/logo, = 2/(elog2) < 1.0615,
(5.9 li‘[p’inf o(K) = e~ ayflogos,,

where

(5.5 o; =2, 1, = M,(1-2"YM), i=1,2,
(5.6) M, = limlnfpi—q,-,

5.7 M, = lil}lﬂlp Di—q;.

If M=o, then t,=1/log2, o,=e¢, and e lg/logo,=1. Otherwise
e lg,/logg;=1. We have M;=1. Thus ¢,=4 and e~ lo,/log 6;=2/(elog2) since
M (1—27Y™) increases from 1/2 to log 2 as M increases from 1 to . The theorem
shows that even for large K, it is possible to have ¢(K) bounded away from 1. The
upper bound ((3+V5)/2)"® for ¢(K) is not best possible, and it may be that o(K)<
2/(e log 2) for all K. In Theorem 5, Section 6, the function y, (K) will be identified as
the limit of My(x, K)x~*) as x—e when r(K) is irrational.

Hayman [3, proof of Theorem 5] showed that ¢(K)=2%®), which also remains
below an absolute constant, for example 2/3.

5.1. To prove Theorem 2, suppose that »(K)=p/q and note that

Al—] ]dt-l 2«1—1

(Pl(OaK)=D1+D2=( B 1"
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Further, by (4.7), ,=(t+1)"? where t=t, and a=o,(K), and by Lemma 2 we have
2B *=p+2q(t+1)y-1. Hence if we take here K=K;—~K, where p=p;, q=g;—~<o
and p;/q;—~r(K,), we get (5.2), since o; (K) and ¢, are continuous functions of K.

If K;~K and r(K) is irrational, then g¢;—»o, A;—1~g;'log(z+1) and
A2—1~g; alog (t+1). Hence an analysis of (5.1) shows that o(K;)~1.

Similarly we see that o(K;)—1 if K;—~1.

Suppose next that K;— <~ in such a way that p,—g;=m is a constant. Then by
[4, Theorem 6] we have

_logK;  gqi+m
r&) = logL;, ¢
and
log K; ma log 3

%= MR og (KJL) ~ Togz %= k)

Hence A*=(t,+1)¥%—~2"™ since 1,~2. Further A—1~(log2)/(ma). It follows
that

1-a
(1-_’1:1_) -2 g =m(2Um—]).

A2—1

Since
(a—1)*1 J2—1 -1
T 7—_'—1— e ‘L'/lOg 2,

it follows from (5.1) that ¢(K;)~e'o/log 6, where ¢=2"*. Now (5.3) and (5.4)
follow from this result.

5.2. It remains to find an upper bound for ¢(K). Suppose that r(K)=p/q and
that l<a<2. Note that g=2 only if »(K)=3/2, ie. if o;(K)=2. Now a<
(C*—1)/(C—1)<aC for any C=>1. Hence

o = (1) [{li-3=0) " e-n 7]
-1

- = 1/q 1/3
<oz(A—l)<j' (t+ DY = (e 1)15.

Since ¢, is an increasing function of « and ta=(1+]/§)/2 when a=2, we have
o(K)<((3+V5)/2)"*<1.38 for l=<ua,(K)<2.

If =2, we could use the inequality a<(C*—1)/(C—1)<aC*-?! valid for a>1,
C=>1, to get o(K)<A*~'=LY% Since further 1/g=(p—q)/g=log (K/L)/log L and
K=2L, this gives ¢(K)<2 for all a>1. We get a better upper bound by observing
that for any fixed =2, the right hand side of (5.1) is an increasing function of A
for A>1. Hence using the bound A=2"“-Y obtained above we get

(a_l)a—l (2a/(az—1)_1)¢ _
Q(K) = 202 21/(a_1)_1 - V(a)9
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say. When o increases from 2 to <, ¥ (e) decreases from 9/8 to 2/(e log 2), so that
0(K)<9/8=1.125 for a=2. This proves Theorem 2.

We remark that if «=2, then K=2+V35, r(K)=3/2, and o(K)=(2+ }/3')/4<
1.05902.

5.3. One can obtain similar results for the function ¢, (v, K). There is a unique
point 2,€(0, log /;) such that ¢3(v)=0. The function @, takes its maximum at
v=0 and its minimum at v=v,. We set

~ o -1
sk = MaX Pz _ | s a[/t—l) ( _A“—l)“
a(K) min ¢, = (1—a)y~" Ar—1 ! A—1 ’
where a=a,(K) and A=A]. If r(K) is irrational, we set g(K)=1. The following
result is proved in the same way as Theorem 2.

Theorem 3. We have §(K)<4 for all K. If K;~1 or K;—os, we have §(K))
—~1. If K;~K and r(K) is irrational, we have §(K;)—~1 and ¢,(0, K)—>7,(K)=
a~12t-9log (t+ DI~ [s+2(t+ 1)~ '1*~%, where a=0,y(K), t=t,, and s=s(K).

6. Asymptotic behaviour of A, and m, for irrational r(K)

Suppose that r(K) is irrational. Since we have estimates for M,(x, K) and
my(x, K) when r(K) is rational, which could be made even more precise as is shown
by the remarks in Section 3, one could suggest that we choose a sequence K;—~K
such that r(K,) rational, and try to obtain the asymptotic behaviour of M, (x, K)x~5(X
from the estimates for M, (x, K;)x~ %9, However, it seems to me that even the best
information mentioned in the remarks is far too imprecise for doing this. Therefore
we shall consider M,(x, K) and m,(x, K) directly.

We start with the following technical result, which will be proved in Section 9
and which forms the basis for our estimates.

Theorem 4. Let a, b be positive numbers such that a+b=1, suppose that r>1,
and let C be the unique positive zero of the function

6.1) P(x) =x—-bx"1-
Then C=>max (1, b, a""), P’(C)=0, and the function
62) @) = Spama (757 arbr
pr+q=X q
satisfies
CX+ ;
(6.3) S&) = gpeyisge 1O ™)

as X- oo, for some positive constant 1.
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Note that CP’(C)=ar+bC"-1.
Now we can prove the following result.

Theorem 5. If r=r(K) isirrational, then

6.9 521; M,(x, K)x~2® =y, (K)

and

6.5 Tim mo(x, K)x=20 = 3,(K),

where

(6.6) 1K) = a2 [log ¢+ D r+2¢+ DY t=1t, a= oK),
and

6.7)

72(K) = a2V [log (+ DPF s +20+ D), 1=1, a=o0(K), s=s(K).

Recall that (r—1)(s—1)=1.

6.1. Hayman [3, Theorem 1] proved that the limits (6.4) and (6.5) exist. So it
suffices to evaluate them. We have no essentially new proof for the existence of the
limits. We consider M, (x, K) only, since the argument for m,(x, K) is similar.

Now we apply Theorem 4 (so we make no further use of the irrationality of
7(K)) with r=r(K). Take first a=1, b=2. Then by [5, Theorem 1], for each X=0,
1+2S8(X) is equal to a point X, used in the definition of the function f€Ny(K)
(note that the index p in Theorem 4 corresponds to some p,—1 in [5, Theorem 1,
(1.3)]). Takingthen a=K, b=2L anddenoting the resulting S(X) by T(X), we de-
duce from [5, Theorem 1, (1.4)] that if X,=1+2S(X), then f(X,)=1+2KT(X).
As X-o, we have X,—oo. Further, we have f(X,)=M,(X,,K) for all n by
[5, Theorem 1].

The limit (6.4) is therefore equal to

(6.8) lim 2-*KT(X)S(X)™% o = ey (K).

If P(X) is given by (6.1) with a=1, b=2, then C=t¢,+1. To prove this, it suffices
to show that P(t,+1)=0, which is a consequence of (4.1) and (4.2) (cf. the argu-
ment in subsection 4.1). If P is given by (6.1) with a=K, b=2L, let us denote P by
P, and the corresponding C by C,. We have C,=CL, since P,(CL)=0. Namely,
Py(CL)=C'L'—2LC"-'L"-'—K=0 since L"=K andsince P(C)=0.

We conclude from Theorem 4 that the limit (6.4) is equal to

. (CLY**" = (log C)*P’(C)*
1l—a
Am 27K e log CL) P (CL) CRF+n

Taking into account that CL=C* by (4.2), we obtain (6.4) after some calculations.
Theorem 5 is proved.
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Remark. To prove (6.5) we apply Theorem 4 with a=K~%, b=1+K"L, so
that a+b=1+2K~1. Therefore it is essential to have the assumption a+b=>1
instead of, for example, a=1, b=1 in Theorem 4, even though this makes the proof
of Theorem 4 more complicated.

7. On y,(K) and y,(K)
It may be of some interest to see how 7y,(K) behaves as K—1 or K— <, for
i=1, 2. This gives a better idea of the order of magnitude of M,(x, K) and m,(x, K).

Theorem 6. We have y;(K)—~1 for i=1,2, as K—~1. As K—o, we have
v, (K)—~1 while

7.0 y1(K)~BK4/log K
where A=(log 3)~*log [(3 log 3)/2]=10.454676 ... and
B = (log 3) exp {(log 2)(3 log 3)~(log 4—2loglog 3)} = 1.41346 ....
This should be compared to the estimate [4, Theorem 7]
logd = lil?l‘i’pf%(l{) = liII](’l_SBp ¢;(K) =log9,
where ¢;(K)=c,(K)K'loglog K and
a(K) = sup M,(x, K)x—=®,

The quantity ¢, (K) is much larger than y,(K) since ¢, (K) is affected by M,(x, K)
for x close to one.

Consider now y,(K). We use (6.6) together with [4, (5.4)], which reads
(7.2) #;(K)—1 = log K/log 3 —log 4/log 27+0((log K)™?),
and the result in [4, Section 3] that 7,-2 as K-, where a=«,(K). This gives
log 7, (K) = —log a+(1 —a) log 2+ (x—1) log log (t+ 1)+
+(x—Dlog[r+2@+1)"1,
where a=a,(K), t=1t,, r=r(K). Hence we see after some calculations that
log y,(K) = —log log K+log log 3—(log K)(log 2)/log 3+
+(log 2)(log 4)/log 27 + (log K)(log log (t+1))/log 3 —(log 4)(log log (¢ +1))/log 27+
+(log K)(log G)/log 3 —(log 4)(log G)/log 27+ 0(1/log K),
where G=r+2(t+1Y"'>3 as K- and r—1. Since (log K)(r—1)=log2+
O(l/log K), we have

log G =log 3+(3log K)~*(log 2) log 9¢+0(1/log K)
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as K— oo, Further, by [4, Lemma 1], we have
loglog (t+1) = log log L—log (x—1)
= log log 3—(log 2)/(3 log K)+O((log K)~?),
in view of (7.2). Combining these formulas we obtain (7.1).
In fact one can show that
11(K) = BK* (log K)~*(1+0((log K) ™).

As K—1, we have ;(K)~1 for i=1,2. Thus y,(K)—~1 for i=1, 2, by (6.6)
and (6.7).

Since ¢,(K)=y,(K)=1 by (1.4) and since ¢,(K)—~1 as K- by [4, Theorem
5], we have y,(K)—1 as K—eo. This proves Theorem 6.

Remark. One can ask if y,(K) is strictly increasing for K=1. We can show
that this is the case at least when o, (K)=>4.54. Further, we have y,(K)<1 for
l<K<o, and y,(K)—1 as K—1 or K—eo. It might be of some interest to deter-
mine the minimum value of 7,(K).

8. Asymptotic behaviour of K-qs functions

Let f be K—gs. Hayman [3, Theorem 4] showed that if

lim sup f(x)x—2® = 0,

then

lim inf f(x) x~ =K = (,
and that if

lim inf f(x)x~2® <o,
then also

lim sup f(x)x~ %X <o,
X =» 0O

In fact Hayman’s results are more precise, particularly when #(K) is irrational (see
[3, Theorems 3, 4]). The above shows that if a K— gs function grows at least sometimes
as fast or as slowly as possible, then the function cannot oscillate too much. However,
fcan oscillate between two powers close to o; and a,.

Theorem 7. If K>1 and O<e<(u(K)—0,(K))/2, we set 6,=(o,+,)/2 and
O0y=0;—&—0;. The odd function f given by

8.1 f(x) = exp {0, log x+ 8, log x cos (1 log log (x +e))}
for x=0 belongs to Ny(K) and satisfies

(8.2) lim sup S x—a®+e =1
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and

8.3) lim inf f(x)x—2®-¢ = |
provided that O<n<n,, wheren, depends on K and ¢ only.

Remark. Suppose that h(x) is defined for x=x, and that A(x)—>o as x—oo.
One can ask if there is f€ Ny(K) such that

(8.9 liT_’glp Fx)(x®/h(x)™t >0
and
8.5 Tim inf £ () (= ® h(x)) 1 <.

One could try to find such an odd function f given by
f(x) = exp {E, log x +[E, log x —log h(x)] cos ny (x)}

for x>0, where E =(;+a)/2, E;=(0t;—a,)/2, n is a small positive number
depending on K and h, the function A is assumed to satisfy regularity conditions not
essentially affecting its rate of growth, and ¥ (x)—< slowly as x- o, the rate of
growth of ¥ depending on that of A.

It seems to me that such a construction of f might work for some functions A
growing more slowly than the powers A(x)=x% but the case of an arbitrary 4 remains
open.

8.1. We proceed to prove Theorem 7. To show that the function f given by (8.1)
satisfies (1.1), we may assume that x>0 and write x7 instead of ¢#. Then (1.1) is
equivalent to

8.6) fx+0) =K+ l)f(x)-—Kf(x(l —1))
and
.7 S +0) = A+KDf()—K 2 f(x(1-1),

which are to be proved for all positive x and ¢. Further, we must show that fis strictly
increasing for x=0 if n=g#,.

For brevity, we write  (x)=1og log (x+e), sothat ¥’ (x)=[(x+e) log (x+e)]1.
We have

xf’ (O)[f (%) = 8+ 0 cos mp (x) =, (sin ny (x)) (x log x)¥” (x)
= 01— 03— 021 = 0a(K)+e—3d5n >0

if # is small enough, so that then fis strictly increasing and defines a homeomorphism
of the real axis onto itself. Note that log x<log (x+e¢) for x=1 andthat |xlog x|<
l<e=[y/(x)|™* for O=x=1.
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8.2. 'We shall prove (8.6). The proof of (8.7) is similar. In view of (8.1) we can
write (8.6) in the form

(8.8) (1+0)%e% = (K+1)+K(—1)0s¢%, t=>1,
8.9) (A+0Del24+-K(1—1)%ele = K+1, O0<it=1,
where

0, = 8,+ 0, cos s (xt +x),
0, = &, log x(cos mj (xt+x) —cos ny (x)),
03 = 6,+0, cos N (xt —x),
0, = 8, log x(cos ny (xt —x) —cos ny (x)),
05 = 8,+ 0, cos Y (x —x1),
05 = &, log x(cos n (x —x1) —cos n (x)).
Note that a,(K)+e=0,, 0;, 0;=0,(K)—e. Further since for 0<y<z we have

(8.10) cos mir () —cos n ()] = nly () ¥ (2)]

=/ du —~_ 1=y
y (ute)log(u+e) = (y+e)log(y+e)’

we obtain
[0, = nd.xt|log x|[(x+e) log (x+e)] = By,

8.11) 104 = néx(t—2)| log x|y’ (x) = Byt if t=2,
[0, = 3n6,x(2—1) [log x|y (xt—x) if 1=t<2,
106 = nd.xt |log x|y’ (x —x1),

where B depends on K only.

8.3. Recall ([1] or [4, Lemma 1] or Lemma A) that if a=«,(K) then for
1=0=a—e¢, we have

(8.12) (+0°=K+1+K(t—-1)°—0(e K)(1+(1—1)%)
for t=1, where o(¢, K)>0, and
(8.13) A+)°+K(1 -0 = K+1—0(K)

for 0<r=1, where ¢(K)=0. We deduce from these inequalities and from (8.11)
that if #,=1y(e, K) is large enough and n=n(e, K), 1=1(¢, K) and wo=w(e, K) are
small enough, then

(i) (8.9) holds for O<t=7 if

(8.14) Oslog(1-0)+0;=w

for O<t=rt;
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(i) (8.9) holds for t<t=1-1 if |0,—0;|=w, since |04 =BnC(r), where C(1)
depends on 7 only; ;
(iii) (8.9) holds for 1—7<t¢<1 and hence by continuity for =1 if

(8.15) 05 log (1 —1)+0g = w log (1—1)

for 1—1<t<1;

(iv) (8.8) holds for 1<it=1+71;

(v) (8.8) holds for 1+t<t<t, if |#,—06s/=w and [0,/=w; and
(vi) (8.8) holds for r=t, if 917 %=(K—w)e’~?, ie.

(8.16) 85 (log H)(ca—c¢y) = log (K—w)+6,(log x)(c;—¢,)

for x>0 and r=17,, where c;=cosny(xt—x) and c,=cosnyy(xt+x), and
K—w=>1.

8.4. It remains to verify that the conditions (i) to (vi) can be satisfied. We shall
denote by B or B, any constant depending only on K and g, not necessarily the same
every time.

If O0<t¢=7, then by (8.11) we have

05;1og (1—0)+05 = (0g+¢) log (1 —1)+ 8, yxt |log x|y’ (x —x1)
=—ayt+Bnt <0

if n is small enough, so that (8.14) holds.
If t<t=1-7, then

160,—6;] = 21152xtl// (x x)=Bpt'=ow

if » is small enough.
If 1—7<t<1, then by (8.11), we have

05;1log (1—10)+0¢ = (03+¢) log (1 =) +ndyx [log x|’ (x — x1),
which does not exceed
(ap+€)log(1—H)+Bp=o,log(1—¢) if 0<x =B,

where B;=2. Suppose that x=>B;, and choose a positive number §=4§(K) such
that y=(6;+9,)/(25,)—d=1. If x=(1—1¢)~7, we have

05log (1—0+0¢ = 6, log (1 —1)—d,(log x) cos ny (x) +
+ 85 log (x(1—1)) cos ny (x —x1)
= (6, =785+ (1—y)5,) log (1—1)
=268, log (1—1) =  log (1—1)
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as required. If x>(1—7)~7, then x(1—¢)=x'"""=B!~Y?. Thus
Y (x) =¥ (x—xf) = log log (x+e)—log log (x(1 —)+e)
=—Blog [1—(log (1-0)7%)/(log x)]
= B(log (1—1)~")/log x.
It follows that |0g|=By log (1—1¢)~1, so that (8.15) holds in all cases.
85. If 1+1<t<{,, then [0)=w by (8.11), and [0;—0;|=Bnxy’(xt—x)=w
if 5 is small enough, depending on 7 and ¢,.
Finally if =17, we assume first that x(¢,—1)=1. We have
ley—caf = 2nxf’(xt—x) = 2n(t—1)72 (log (xt —x+e)) Y,
so that |d;(log x)(c;—¢,)|=Bn and |6,(log ¢)(c;—¢,)|=Bn. Hence (8.16) holds for
some positive  if  is small enough.
If x(t,—1)<1, we consider separately the possibilities xt<1 and xr=1.
In each case we have to prove that
8.17) (log xt) (¢ —¢1) = @, = 65 log (K—w),
which implies (8.16).
If xt=1, then x<1 and
|(log xf)(cs—cy)| = Byx |log xt| = B/t = By = w,.
If xt=1, then we obtain
I(log xt)(c;—c)|=2nx (log xt)[(x(r—1)+¢) log (x(1— 1) +e)] '=By= oy,

considering, for example, the cases x(r—1)=2, 1=x(r—1)=2 and x(—-1)=1.
Hence (8.17) and thus (8.16) holds in all cases.
This completes the proof of Theorem 7.

9. Proof of Theorem 4

In this section we prove Theorem 4, stated in Section 6.

First we note that if N=1, then
B NN )‘1 B
—_—=N! 1/2 -
©.1) 1 ~ __N.( p (27N) =1+ ~

where B=1/11. We shall denote any positive constant by B, not necessarily the same
every time. We have

©.2) S ex (‘q’] bi=Bb =0 (VC_;’)
9.3) Dor=x (S) a? = Ba*I" =0 [%J .

Hence we may assume that p=1 and g¢=1 in (6.2).
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So we have by (9.1),
p+q 1/2
©.4) [”+")§B£M:(l+l] «_;B(1+_‘7_]"(1+£]"
q pPqty2p \P 4 p q)’

where instead of B we first have
(1+(1(p+g) ™) (1 =(11p) =) (1 ~(11)™) "2 = 1.265.

We write
9.5) x=q/X, y=rp/(X—q).
Since p,g=1 and pr+g=X, we have
0< % =x=1 _% <1

and

X—-1
We define for 0<=x<1, O<y=1,
x p(1—x)/r
— L= 0)frpx y(l'x)) ( rx ])
h(x,y)=a b [l—!— — 1+y(1—x) ,

rx ](I—X)Ir
I—x ’

h(x) = h(x, 1) = a®=»/p* (1+ l;x} (1+

1/2
T6,3) = (-9 ;4]

1/2
T(x) = T(x, 1) =(1—x)(%+ 1:x] :

Using the values given by (9.5) for x and y, we obtain

q p p q
9.6) (1+—) (1+—) arb? = h(x, y)¥,
p q
(p+)r*e [ 1.1 ]"2 _ x VX
9.7) Fr R A afb? = h(x, p)*T(x, y)X—_J-

9.1. We proceed to find some properties of H(x, y)=logh(x,y) and H(x)=
H(x,1). We have

wpn . (r=1)? r 1 —r
rH’(x) = x+1l-x x 1—x x(l—x)((r—l)x+1) <0,
so that
9.8) FH' (%) = log br((r—1)x+1y"1(1-x)

a(rx)
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is strictly decreasing for 0<x<1, and there is a unique number x,€(0, 1) such that
H’(x,)=0. Then H”(x,)<0, and H(x) has its unique global maximum at x=x,.
Further, H (x) is strictly increasing for 0<x=x, and strictly decreasing for x,=x<1.

Using the fact that H’(x,)=0, we see after a lengthy but routine calculation
that P(h(x,))=0(h(xo)=€"?). Hence h(x,)=C and H(x,)>0. A calculation also
shows that the number y defined by

9.9 1=+ ]”2{(10g(1+ = ]] (_Hv(x"))m}_l

x() 0 ]. -xo
satisfies
(9.10) y = C™1/(P’(C)log C),
and that
r_ rXy
9.11) l1<C __a(l—l-l_xo].

We omit the details.

9.2. Our next aim is to show that H(x,)=H(x,, 1) is the unique maximum of
H(x,y) for 0<x<1, O<y=1. We have

3 rx
9.12) r—é;H(x, y) = (1-x)log [a[l+m]}-

For a fixed x, either this is positive for O<x<1, in which case H(x, y) is strictly
increasing, or there is y, such that 9,H(x,y)>0 for O<y<y, and 9,H(x,y)<0
for y,<y=<1. In the former case H(x,y)<H(x)<H(x,) for O<y<1 and x#x,,
and H(x,,y)<H(x,) for O<y<1. In the latter case we have 0<a<1 and x<
Xo—& for some &. Namely, if x=x,—¢ and O<y=1, then since x/(1—x) isan
increasing function of x, we have

X r(x,—e;)
g (1= ) = g1 0 )
osa +J’(l—x) o84 +J’(1_xo+31)

r(xo—&y)
by (9.11) if ¢, is small enough.

If there are any x, y with 0,H(x,y)=0, then clearly there is x;€(0, xo,—é&,)
with the following property. For every x€(0, x;) there is y=yy(x)€(0, 1) such that
0,H(x,y)=0 ie. a(l+rx/[y,(x)(1=x)]))=1, while for x€(x;,1), H(x,y) is a
strictly increasing function of y. Suppose that this is the case. Since h(0, y)=1<
h(x,), it suffices to show that

0<S:cl£x H(x, J’o(x)) < H(x)-
As we must have yo(x;)=1, wehave H(x, yo(x))=H (x,)—¢, by continuity for some
positive & and for x;—e=x=x;. If H(x,po(x))>1 for any x=x;—¢,, then
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H(x,yo(x)) attains a maximum on (0,x;—&]. So it suffices to prove that
H(x, yo(x))<H(x,) for these x, i.e. that D=eH*<C. Using the fact that
0,H(x, y)=0 for y=y,(x), we obtain
x xl
POALE N S

1—a l1—a 1—a

since b>1—a. Further since y,(x;)=1, we have

1=a
ar+1—a’

Xy =

As P(Dy)=P(C)=0 implies that D,=C, we shall show that for any fixed a€<(0, 1)
and r=1, the expression P(D,) is =0 for any b=>1—a, where D, and x; are as

above. This reads
hl(b) = —Albel‘l‘a "‘.A2bel--\‘-ez = 0,

where A;=(1—a)™™, A,=1—a)*™"%, e,;=rx;, e,=1—x,>0, and h,(1—a)=0,
while h;(b)>0 for b>1—a. Thus h,(b)>0 for b>1—a. This proves that H(x,)
is the unique maximum of H(x, y).

9.3. Now we can estimate S(X). Suppose that 0<d6<1/2, ¢=0, O<=x,—e<
Xo+e<1, and set

Vi, ={p Plp.q=1,pr+g =X, |x—x| =& or y=1-48}
where x and y are given by (9.5). With

Ulp, 9) = (p;rq) arbe,
we have by (9.4) and (9.6),

X
9.13) 21’(6,6) U(p, q) = BZV(a"‘) h(x, y)x = BXZ(’]C)X =0 (VC‘?——] ’

where n=n(9, ¢, r, a, b)€(0, 1) is such that h(x, y)=4C if |x—x,|=¢ or y=1-3.
Note that there are at most BX? terms in the sum.
‘We set

W=W(Ee,e)={p,Dlp,g=1,pr+qg=X,|x—x] <¢ and y=>1-5}
If (p,q)¢W, then with

L qg)Ptae o1 1\12
R
pPqty2n \P 4
we have
9.14) I[pjl_q)—R(p, q)l =BR(p, q)X .

Hence it suffices to prove the asymptotic formula (6.3) for
F(X) = 3w R(p, ¢)a®b?
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instead of S(X). That together with our earlier estimates (9.2), (9.3), (9.13) and (9.14)
then proves Theorem 4.
By (9.7) we have

(9.15) Foy =X VV_ > XHENT(x, y) —

where x, y are given by (9.5). Here g runs from X(x,—¢) to X(x,+¢) and for each g,
p runs from (1—38)(X—q)/r to (X—gq)/r. Hence any successive values of x and y,
say x; and x,, or y; and y,, satisfy

[x,—x,| = 1/X, |y1—y.| = B/X,

r
XXq

where B depends on r and x,. Using this and the monotonicity properties of H(x, ),
one can show that

x5/ BCX
9.16 O =
.16 FOO == I ==
where

1(x) = fxo+ef XHEN T (x, y) dx dy,

Xg—¢
provided that § and ¢ are small enough and X is large enough. We omit the details.

9.4. It remains to estimate I(X) for small but fixed é and & as X—<. In partic-
ular, we make sure that x;<x,—e¢, if there exists x; as above. We note that

0<H(x)-H(x, y) = (1-»)0,H(x, &)
for some £€(y, 1). If y=1—BX'log X for a suitable B then
H(x,y) = H(x)—(1—y) min 9,H(x, o)

=logC—(1=y)(1—-x)rtloga (1-{- lixx]
=logC—5X"1tlogX
and exp XH (x, y)=C*X~® Hence
S LT T e i dy = BOTX

Consider next
E(x,y) = H(x)—H(x, y) —(1—»)0,H(x, 1)

for |x—xo=e, 1—BX'log X=y=1. Let x be fixed. We have E(x, 1)=0. Hence
—E(x,y)=(1-)9,E(x, ¢) for some e (y,1). We have

0,E(x, y) = —0,H(x, »)+8,H(x, 1) = (1— )2, H(x, &)
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for some ¢&,€(y,1). So
—E(x,y) = (1-»)(1-8)d,, H(x, &)
where y=¢=¢,=1. We have
o0 O
and 10,,H(x, y)|I=B for |[x—x4|=¢, 1-6=y=1. Thus
0=E(x,y)=B(l—y)?=BX2(log X)2

ayyH(x’ y) =

It follows that
eXH®Y) = oXH(x) p—X(1—)8 H(x1) o~ XE(x,)
— oXH() exp {_ X(1=y)(1—-x)r~tlog [1 +1L_xx‘]} (1+E)

= X (exp g(x, ¥)) (1 +Ey),

say, where
E, = E,(x,y) = 1—exp (—XE(x, y))
and so
|Eyl = BX 71 (log X)2
Hence

Lo o € PTG ) ddy
= [[ e HOT(x, y)er=» dx dy(1+0(1) X = (log X )?).
A similar argument shows that
T(x,y)=T(x, )+0(1)X log X, »

so that we can replace T'(x, y) by T(x) in the above integral. The resulting integral
depends on y only through 1—y in the exponent, so that integrating with respect to
y we obtain

.17

fxo+a XET(x)r dx

x—e X(1—x)log (1+rx/(1—x)
where B, (x)=(1—x)log (1+7x/(1—x)). The second term in brackets is O(X ")
for some positive n<1. To deal with the first term we use the following standard
result (see e.g. [2, Theorem 2, p. 19]).

) (1 —exp {— B(log X) B, (%)}),

Lemma B. Let H(x) and q(x) be analytic functions of x, regular on (c, d) and
continuous on [c, d]. Let H be real and suppose that H attains its maximum at x=x,€
(c,d) only, while H”(xy)<O0. Then as X— e, we have

1/2
f: eXH® g(x) dx = XHx0) g(x,) (TJI@T] (1 + OA(’I) ) '
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Applying Lemma B to our present H(x) and to
g(x) = rT(x)[X (1 —x) log (1 +rx/(1—x))] 7%,

as we may in view of what we have proved about H(x), we see that the integral (9.17)
is equal to

( o )1/2 " eXH(xo)T(xo) (_ H"(xo))"l/z
X)X (1—Xo) log (1+7xe/(1—x0))

Using this, the definition of T(x), (9.16), and our earlier estimates we get
S(X) =yCX(1+0(X ™).

In view of (9.10), this proves Theorem 4.

(1+0(x ™).
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