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ASYMPTOTIC EXTREMAL GROWTH OF
QUASISYMMETR.IC FUNCTIOI\S

A. HtrSKKANENr)

1. Introduction

The purpose of this paper is to determine the asymptotic behaviour of the func-
tions Mo(x,K) and mo(x, K), defined below, that describe the maximal and minimal
growth of K-quasisymmetric functions. The work is based on an earlier paper [5] of
the author, which can be regarded as a sequel to the papers [3, 4] of W. K. Hayman
and the author.

An increasing homeomorphism/of the real axis R onto itself is called K-quasi-
symmetric (K-qs), *h"tt 1<1(<e, if

(1.1)

for all x€R and l>0. The function/is quasisymmetric (qs) if it is K-qs for some

K. The condition (l.l) was formulated by Beurling and Ahlfors [] who proved that
qs functions are precisely the boundary values of those quasiconformal maps of the
upper half-plane onto itself that fix the point at infinity.

Some results on the growth of 4s functions can be found in Kelingos' paper [6],
and a more systematic study has been performed in [3, 4, 5]. Following [4], we set

Nr($ : {/l/ is K*qt, "f(t) : l, "f(-1) - -U,
Mo(x,K) : max {"f(x)l,fe /Vr(f)},

mo(x, K) : min {/(x)l,fe  f'(&}.

We note that by [I], the class No(K) is compact.
The class No(l) consists of the identity map only, so that Mo(x,l):ms(x,1):)c

for all x. Let Kbe fixed, K> 1. In [5, Theorems 1, 2lweconstructed piecewise linear
odd functions/and g belonging to Nr(K), such that/is the Iargest convex minorant
of M o(x, K) and g is the smallest conc:tve majorant of mo(x, K) for x> - 1. Further
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we foundinfinitely many points znandw, tending to - as rr*- such that

f(z): Mo(zn, K),

g(w,) : rns(wn, K)

for all z. It was also shown that if r:r(K) is rational, i.e.

(r.2) r(,r;: ffi: +, t: |w+r),
where p, q are positive relatively prime integers, then the points zn,wn occur at
bounded distances. More precisely, we have

Zn+t- Zn < 22P + P,

Wn+L-Wn =- 222P+sP

by [5, Theorem 4].
By [4, Theorems 5, 6] we have

(1.3) 1l,l.K) < Mo(x, K) = cL(K)f,(K),

(1.4) cr(K1f,<xt = mo(x, K) = Yzt. )

for x> 1, where the constants d1. d.21cr, c, depend on K only and can be estimated.
Hayman [3, Theorem l] showed that if r(r() is irrational, then the ratios
Mo(x,K)x-or(K) and mo(x,K)x-or(K) tend to some limits as x+6r say yr(K)
and yr(K). He also proved [3, Theorem 5] that it r(K) is rational, then these
ratios are asymptotic to some periodic functions of log x (for example
Mo(x, K)- f,<xt*1log x) where 9 is periodic) but left open the question whether or
not E is constant.

In this paper we use the explicit formulas for the above functions/and g together
with the factthatf and Mo(x, K) as well as g and mo(x, K) have the same asymptotic
behaviour, to determine the above functions E and the limits y1(K) and yr(K). This
will be done in Sections 4 and 6.In Sections 5 and 7 we study the properties of the
functions E, y, and y, to describe the behaviour of Mo and mo more precisely. The
proofs are based on difference equations arising from the definitions ofJ'andg, and
these will be considered in Sections 2 and 3. In Section 8 we study the asymptotic
oscillation properties of an individual K-qsfunction.In the final Section 9 we prove
a technical result used in Section 6. As stating our results precisely requires some prep-
aration, this will be done in the appropriate sections.
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2. 
^ 

difference eqtration

If K=r, we set L- L!K)-(UZ)(K+ 1), Ä- A(K)-(U2)(1 + K-L),

(2.1)

(2.2)

r - r(K) - los5 ,log.L j

s-s(K): l9-g{"-
Iog Å

Wehave l=r=2, s>.2, lfr*lls:|. If r(Q, say r:pfq wherep,4arepositive,
relatively prime integers, then s:pl(p-q), q-.p-.2q, 1=p-q-p, and p>3,
q>2. The numbers r and s are rational or irrational simultaneously.

Consider pairs (re, rz) of integers ffi=l, n>0. Following [5], we order these

pairs so that

(2.3) K*, Ln, s K*z L, #...

The ord-'ring is unique if and only if r{Q. lf r€Q and if K*u Au has the same value

for Msk€N, we order these pairs (me, ro) so that ffiM>ffiM+t>...>tny.
There is a unique odd piecewise linear continuous function/such that f(x):x

for 0<x= I and such that the slope of/is K-uUu on the interval lXo-r, X6], where

Xk- Xk-1 _ )nu*L for k=1, and X*: I"

It was shown in [5, Theorem l] that /€If'(K) and that f(z]:Mr(z,K) whenever

z-xk-t*jZnu+t,0= j=

("'* 
* 
ii:- 

1)

Similarly, there is a unique oCd function g such that g(x) - x
such that the slope of g is K-,/uANu on IYn-r, Yo7, where Mk= l,

f*'o*år-l) , k*

(*r5il--1)

(ur\#-'1) , k

1.

for 0< x<
ldo 

= 
C,

1 and

K-Mt /LNt = K -M2 AN, ä ... ,

ld > 1,

By [5, Theorern U, we have g€ÅIo(K),

Yk--Yk-l : 2Nk+1

and I'o : 1.

for

and g(u,):n1o(n, K) for

l,u -- Yk-r*j2*u*l, 0 = 
j = =1.

Suppose now that r(K) is rational, say r(K):plq as before. Then every slope of
f can be written as K*L:L(mp+nq)lq since Kq:Lp. So the distinct values of the
slope of/are given by Lnlc,where m runs through all positive integers of the form
m:ap*bq where a>l and å>0, and in particular through all integers ru>
(p-l)q. Let the interval of the positive axis where/has the slope Lnta be (x^4, x-)
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whete m>l (so x^-1:x^ for finitely many small values of m). We set l,:
xn- xn-r. By the definition ofl we have

An : Z @,u)er,( 
* uu-') 

ru *r,

where
Fn: {(a, b)la = l, b = O, ap*bq : n}.

Clearly Ao=2, Apaq:4, and Ao:Q if l=n=2p-1 and p*n*p+q. We
shall show that

(2.4) A,: An_o*2An_r,n> p.

lf (a,b)€F", then (a-|,b)QF,-o if a>2, and (a,b-l)€F,_q if b>1. Further,

(' * l- t) 
ru *, : (,' 

* D ; u - t) zu *, + z(4 + (f - | - 
I 

) 
z,u-,, *,, whle

(ta-r)+u-') :o ir a:r and y+tuu_?-,) :o ir b:0.
Also if (a,b)€Fn-., then (a*l,,b)<F,, and if (a,b)(F,_r, then (a,b+l)<F,.
These results imply (2.4).

The equation Q.$ and the values of Anfor l=n<p, determine the numbers l,
uniquely. By the standard results on difference equations, we can write

(2.5) A,: )e,:, fii,i
for some complex numbers 8,, where the )trare the zeros of the polynomial

(2.6) P(z): zD-2zo-c-y.

We shall prove that these zeros are simple.
Before studying the polynomial P more closely, we list the corresponding results

for the function g. Roughly speaking, the role of q is taken by p:p-q(ll, pl2).
The slopes of g are of the form A'lp where n> p. lf g has the slope Antu on (!,_t, !,),
and A!n:yr-!n4, then

Ai : Z <", tterrf 
* uu-') 

ru *r,

where
Fi : {@, b)la = l, b = 0, ap+bp, : n).

Wehave
(2.7) Ai: Ai_,*2Ai_u.
Hence

(2.8) Ai: Zo,:, pi().!)",

where the li are the zeros of

Qk) : zP -2zp- 
p - I : zp -2zq _1,

all of them simple zeros.
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3. On the polynomials P and Q

We study the polynomial

(3.1) P(z) : zP -22* -1,
where p and m are relatively prime (in particular, p and m cannot both be even) and
l=m<p.Weshallapplytheresults to m:p-q and to m:q.

Lemma l. The polynomial P has p simple zeros )4, .,,, 1r. One of them, say ).r,
is theunique positiue zero of P and

l).rl<)'r, 2=i=p.
Further, l<.)r<.3, ).!-*<3, and ).r<{l if p-m>2, tvhile 2=),r=212r-p if
m:p-1,

Wehave
P'(z) : pzP-L -2mz^-1 : 0

if z:0 (which is not a zero of P) or if zp'*:2mfp. Hence if P(z):P'(z):O
(so z*O), we have ,*:-(2(l-*ld)-' and zp:-ml@-m). This implies that
with Q:mlp((0, 1), wehave

2qe(1-g)t-o : 1.

This is satisfied only if Q:112, i.e. p-2m, which is against our assumption. Hence

all the zeros of P are simple.

We have P(0): - 1<0. For realz, P(z)is real, and for z>0, we have P'(z)<0
fs1 Q<.2<(2mfp)rl<n-m1- Ao and P' (z)>Q for z>Ar. Hence P has a unique posi-

tivezero.[1. Wehave ).1> I since P(l): -2<0. lf )'l>3]'*, then P(,lr)> )'f-l>0.
Hence 1t=),1-^=3., and consequently ),r=/l if p-m>2. lf m:p-l, then
P(2):(2-2)2!-'- 1=0, so that ).r>2, while P(2+2r-p)>2r-p2p-1-1:0, so

tbat 1r<2+21-e.
Suppose that 2=i=p. Then p,,le:121i*ll<2p.11^*l unless 1i>0. So

P(l,t,l)<0 andhence llrl-1r. If 1,1,1=1, then fi.11-).1. Suppose then that p,tl>l
andthat 1i>0. Then 1!:))"{+1>0 and (2n)-ratglt:|7fry:llp for some inte-
gers k, / with O<k<m, O<l=P. Sincre kp:lnt, we have mlk, so kf m:0 and
.1,> 0. But then )"r: )r, which is impossible. Hence p.rl< )", for 2= i= p. Lemma 1

is proved.

3.1. We make a few remarks concerning the case rn=p-e, where q<p<2q.

Remark 1. A more careful analysis shows that for 2=i=p, we have

1.tr,1 =,tr(1 -Ap-,),
where I is a positive absolute constant. This seems to be best possible apart from the
best value of l.
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Remark 2. Applying Rouche's theorem to zp and 22.+l on the unit circle we
see that P has m zeros in the unit disk. t he other p-m zeros lie in {lzl>.1}, except
if p and m are odd, in which case P(- 1):0. Also all zeros zo of P satisfy lzol=8,
where ,B((0, l) is the unique positive zero of zp*22*-1.

Remark 3. In Section 5 we will consider what happens to various quantities as

Ko*K, r(K,):p,lq,, r(Kn)*r( (1, 2), where r is irrational. It might be of interest to
study what happens to the zeros of

Pr(r) : zP -2zt -1, P : Pn, tfl : pn- Q,

as n+ 6. It seems plausible that for a portion l lr of the zeros (whose number * -),
the q,-th powers of the zeros cluster towards the circle {lzl:C\, where C>l is
the unique positive zero of f -2x'-L- 1, while for a portion l-r-L of the zeros,
the q,-th powers cluster towards the circle {lrl:B}, where 0<B< 1 and .B is the
unique positive zero of x'+21-L- 1. However, any useful information would have
to be more precise.

3.2. Now we can determine the numbers B,in (2.5) and Bi in (2.S).

Lemma 2. Let ).r, l=i=p, be the zeros of P gben by (3.1) with m:p-e.
Then

(3.2) B,:TiOi: fi* * o

inQ.5).Let ),i, l=i=p, bethezerosof Pgtuenby(3.1)with m-q. Then

(3.3)

in (2.8).

It suffices to
that Ao:2 and
contains all zeros

Dr2
r L r; P' (Ä;) P +2(P - cil Å;n

#0

prove that with §, given by (3.2), (2.5) is true for
An:O fcr l=n<p. Let /R be so large that

of P. T hen the residue theorem gives

l=n=p. Recall
the disk {lrl= R}

I f zn(fo ).i

while for all large .R we also have, with z: Rei?

1f
Zni J 7,t:n

1 n?r
I

2nJo

1 n\n: ; J ; d0 z"- o Z;:o(22*- p + z- p)k

1 r\n: * J ; d0 z"-r(1+ 2z*-, + z-'+ z;:p+ta*z-)

zn-L d z

P (r)
,7n- p d0

I -(22* + I) z- t
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for some numbers ao.Hence this integral is equal to I if n:p, and equal to zero if
l=n<p. This proves the claim concerning the Pr, and for the P; the proof is the
same. It is routine to verify that the second equality holds in (3.2) and (3.3). Lemma
2 is proved.

R e m a rk. Since 11,;r-e = 
)"!: 77-n =3, we have 

I 
p * 2q1l- ql 

= p * 6q <. 7 p, hemce

l§J>2|Qfl. Since ,l.r>1, we have fi,,=llp. One can show that lfrl=Ar(r)lp,
where lr(r) depends only on the ratio r:plQ, Ar(r) remains bounded äs r*l
(i.e.as K**), batAr(r)mighttendto -as r*2 (i.e.as K*1).

Further, one can show that 0< Ar(r)< plBil= A"(r), where the function Ar(r)*
-onlywhen r*1 and Ar(r)*- only when r*2.

4. Asymptotic behaviour of Mo and ms for rational r(K)

Let r(K) be rational, say r(K):pfq, where p, q are positive and coprime. As
mentioned in Section 1, the asymptotic behaviour of Mr(x, K) and mo(x, K) is the
same as that of f andg, respectively. The piecewise linearfunctions/'and g are deter-
mined by their slopes Z'le and tLntq,where p-p-q, and by the numbers Ao, A:,
which by Lemmas I and2 are asymptotically given by BjQand P;( )". f his allows
us to determine the asymptotic behaviour of Mu andno. Furthermore, we shall show
how B1, 1r, fri,,l,i are conne:ted to quantities studied in [4].

Let us recall [4, Theorems 5, 6] that if K> 1, then we have

xn, = Mo(x, K) = cr(K)x"r,

cr(K)v'" = mo(x, K) = 76na

for x>1, where a1:u1(K) and ar:ur(K) are obtained as follows (see [1] or
[4, Lemma 1]).

Lemma A.If a>0, then thefunction

g,(x) : lxl' sign x

is K,-qs,where thebest possible K,is determined asfollows. Let tnbe the solution of
(4.1) (/+ 1)1-'+(r -l)'-o :2,
so that l<tn<). Further set

(4.2) q,: l(to+ l),- ll(r,- l)'+ t1-r
: [(r,+ l)l1,- 1)]o-' : 2(t,+l),-L-1.

Then Ko:qn for a>1, Kn:11q, for 0<a< l, and Kr:1.
The quantity qo is a continuous strictly increasing function of s. Hence for any

given K=1, there are unique numbers u1(K)>l and ar(K)((O, 1) such that K:
Kn for d,:aL(K) and for a:az(K).
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We define Dr:()"r- l)P;!,

D, : BrDfi, {(),i1 - 1)-1 -(,tt - l)-t} = 0,

Dr:Dfir-r, and we define Di, Di, D;, by the same formulas, replacing frr,1r, a,
by §i,Li, or. We prove the following result.

Theorem l. Let r(K) be rational. Then as x+@t we haue

(4.3) Mo(x, K)x-n,-qr(logx*logDo),
(4.4) ms(x, K)x-o,-9r(logx*logDfl,

where rp1 and cp2 are continuous periodic functions, q1 has period log ).r, E2 has period

log )'i, and

(4.5) Er(u):D. exp (-oar)+Drexp (u(1-ar)), 0 -- u < log x1,

(4.6) Er(u) : Diexp (-oa)+D!rexp (u(1 -ar)), 0 < u < log )'i.

Furthermore,

(4.7) log ),r: Qog L)(q(a- 1))-' : q-L log (r, + 1), u : ar(K),

(4.8) fu:2q-r(r+2(t"+ 1)'-r1-r, a : ar(K),

(4.9) log),i : QogllA)((p-q)(l -a))-t : (p-q)-rlog(r,+1), a : a2(K),

(4.10) §'r:2(p-q)-t(s+2(t,+l)s-r)-r, u: dz(K), s: s(K).

4.1. We prove (4.3), (4.5), (4.7) and (4.8). The proof of (4.4), (4.6), (4.9) and
(a.10) is similar.

Clearly (4.8) follows from (3.2) and (4.7). Next let P be given by (3.1) with
m: p - 4. By Lemma 1, X, is the unique positive zero of P. So to prove (4.7), it suffices

to show that P(ä):0, where 5:(tnll)Lte. ,t Lemma A and (4.2) we have K:
l(t+l)l|-l)lo,-', where f:fo, a:a1(K), *6 .L:(l*1)n-1, which proves the
second equality in (a.f. We get

P(ä) : öe (l -26-s) -1 : (äe)'-l(äc -2) - |
- (t o+ l)' (t,- l) (/" + 1) -, - t
_ Lltt6-\ K-rl(a-1)_ 1 : 0

since .U:K by the definition of r. This proves (4.7).

4.2. lt remains to consider the asymptotic behaviour of Mo(x,lO. By (2.5) and

Lemmas I and 2 we have

An : p..lli(l + Zi:, (P J ilQ,J xr)") : B, ),i(l + E),

where lE,l= Eon for some o, 0=o< 1, and some positive.E'. The function/has the

slope ll/e on (xn-1, xr), and

xn: l+ Zi=rA,.
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Suppose that xo<x<xr*.. Then

(4.11) f(x): l+Zi=rA,Lta+7x-xn)L<n+r)!c.

By [5, Theorem l] we have f(x,)=Mo(x,,lO. By [5, Theorem 4'l,there are points
211 22 such that xn=zL=x=zz=xn+r, zr-zr=22'+0, and f (z):MoQ,,K) for
i:1,2. Since/and Mo(x, K) are increasing and f=Mo (since fiNu(K)), we have

(4.12) O = Mo(x, X)-f(x) =f(zr)*f(x) : (zr-x)L@+7)tc = Bl,lntc,

where B:LUsILP+P.
Next we estimate x, and /(x,). We have

(4.13) xo:l+Zi:r§rli0*4) : §rli+'(Ar-1)-1(1+SJ

where lS,l= So' for some positive ,S. Further, we have

(4.14) f(x) : r+ Zi=, PLQ,LLtts)i(l+E) : PL11(n+r)(7?-tX1+r,)

where a:ar(K) and lT,l=To" for some positive 7. Note that ),rLrte- 4 bv @.7).
We write x:xneu and deduce from (4.11), (4.12), (4.13) and (4.14)that

(4.15) Mo(x, K)x-" : fr!-"(1r-l)-ae-od(l+,S,)-n
. «/.f - 1)-1 (1 + 4) + @, - t) ()"r- l)-1(1 + ^s,)),

where we have included the effect of Mo(x, K)-f(x) in the [-term, as we may,
anddividedthroughby,litr+t). As x*-, wehave n+@ andso S,,7,,*0. We
have 0<a<log (xn*rf x,):log /.r* o(l) and

u : log x -l og xn : log x*log Do * (n * 1) log 1., *log (1 + S,)

: log x*logDo *o(l) (mod log,1r).

In view of the definition (4.5), (4.15) now implies (4.3).
We claimed that q is continuous, i.e. gr(0)=lim gr(u) as o*log 11-, which

reads
Dr+Dz: DJ';"*Dz),!-n,

i.e. (Li-DDL+( i-)"r)Dr:0. This follows straight from the definitions of D, and
Dr. Theorem I is proved.

5. On the functions Er(u) and E2(a)

In this section we study the functions Ei(u):Ei(a,K) for i:1,2, given by
(4.5) and (4.6). This will show more precisely how nt:uch Mo(x. K)x-o,(() and
mo(x, K)x-"g(& can oscillate.

First we consider Er(u). We may assume that 0Sa€log).r. We have
sodr E' (u): - a1D1- (ur- l) Dre' which vanishes at only one point ao . Since g, is not
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constant and qr(0):Er 0ogl), we have 0=ur=log,t1. Since rpi(0*)=0, as one
can check, g, takes its maximum value at u:a, and its minimum value at a=0. We
write

so that

(5.1)

where a:ar(K) and )":Xr. If r(rK) is irrational, we set s(K):l. We prove the
following result, which shows that q(K) is bounded, that p(f) is continuous at K:Ko
if r(Ks) is irrational and that g(K) does not tend to a limit as K* -.

Theorem 2. We haue p(K)<((3+l/i)i2)r/0<1.38 for all K. If K,*( qnfl
r:r(K) is irrational, then p(K,)*|, and

(5.2)

where

PilQi,

(5.3)

(5.4)

where

(5.5)

(5.6)

(5.7)

p.(0, Kr) * yr(K) - o-t2t-afiog(r+ l)1"-tlr+2(t+ l)'-tF-t,

t-tn and a:at(K). If Ki-t, then q(Kr)*|. If Kr-* and r(Kr):
then

liry sup A(K,) - e-'orfiayot = 2l{e log 2) = 1.0615,

lill inf a (K,) - e-r ozllo9oz,

Oi : 271',, Ti - Mi(l - Z-UM,), i - !, 2,

ML: lillinf p, - Qi,

Mz : liry sup pi- gi.

If M1:61 then ri:1llog2, oi=€, and e-ro/logo,:1. Otherwise
e-ro;llogo;>1. We have M,> l. thus or<4 and, e-roillogoi=21@ log2) since

M(l-2-rtu) increases from ll2tolog2 as Mincreases from I to -. the theorem
shows that even for large K, it is possible to have q(K) bounded away from l. The
upper bound (G+/rl2)us for S(K) is not best possible, and it may be that e(K)=
2l@loe2) for all K. In Theorem 5, Section 6, thefunction 7.(K) will be identified as

thelimit of Mo(x,K)y-alx) as x+@ whenr(K)isirrational.
Hayman [3, proof of Theorem 5] showed that q(K)<,1i,(ro, which also remains

below an absolute constant, for example 2y'T.

5.1. To prove Theorem 2, suppose tlnt r(K):plq atdnote that

ar(o, K) : Dt* Dz: (''p; ' )"'-' #.

304
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Further, by (4.7), ),r: (t * l)t/n where t - t d and a: ar(K), and by Lemma 2 we have
2P-r:p+2q(t+l)'-1. Henceif we take here K:Kr-Ko where p:pr, e:q**
and p1f qi*r(Ko), we get (5.2), since ar(K) and ln are continuous functions of K.

lf Ki*[{ and r(K) is irrational, then qi**, ).1-l*q:r log (r+ l) and
1l-l-q-L a log (t+ l). Hence an analysis of (5.1) shows that A((r)*1.

Similarly we see that A (Kr) * 1 if f<,* 1.

Supposenextthat Ki** insuchawaythat Pi-Qi:m isaconstant. Then by

[4, Theorem 6] we have

r(Ki):ffi:#
and

Qt: ffi
Iog K,

r(K,)log (K,lL,i)

Hence 7:(tn*l)atet*2ttn since tn*2. Further ,t-l-(log2)l@a). It follows
that

malog3
- , d:ur(K).

Since

it follows from (5.1) that q(KJ*e-loflogo, where o:27t'. Now (5.3) and (5.4)
follow from this result.

5.2. lt remains to find an upper bound for q(K). Suppose that r(K): plq and
that l<a<Z. Note that q:2 only if r(K):t12, i.e. if a{K)=). Now c<
(C'-l)lG-l)<aC for any C>1. Hence

s(K)

= # < )' = (t+l1tte= (t+ 1;rrr.

Since to is an increasing function of a and ,n:(l+6)lZ *n" u:2,wehave
q(1O=«3+ li11z1'r'=1.38 for l<a,(K)=2.

lf a>2, we could use the inequality o=(C'- Dl@ - l)=aC"-L valid for a> l,
C>1, to get p(K)<.)"'-r: Lrts. Since further llq=@-q)lq=loe(KfL)llog L and
K=2L, this gives q(K)<.Z for all a> 1. We get a better upper bound by observing
that for any fixed a>2, the right hand side of (5.1) is an increasing function of ,1,

for,l,>1. Hence usingthe bound 1<2tl(d-1) obtained above we get

eoo = 
(a _tx-' Q=,tl:-'t -t)" .2an zLlE=trf - V(u)'
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say. When a increases from2ls *,V(a) decreases from 9/8 to2l@log2), so that
q (K)= 9/8: I .125 for a> 2. 'lhis proves T heorem 2.

We remark that if a:2, then K:2*{i, r(K):312, and g(K): Q+6)H-
1.05902.

5.3. One can obtain similar results for the function Er(a, K). There is a unique

point oo€(0,logli) such that Ei(ur):O. The function g, takes its maximum at

o:0 and its minimum at a:uo. We set

o(K) : ffi= (r - a)1-o a' (#)" (, -'1=lr)'-',

where c:az(K) and ),:),1. If r(iK) is irrational, we set 0(I0:1. The following
result is proved in the same way as Theorem 2.

Theorem 3.Wehao*e d(K)=4 for all K. If Kt*l oF Kr**, wehaue §(K)
*1. If Ki*K and r(K) is irrational, we haL-e 0(K,)*l and Er(0,Kt)*yr(K):
o-t2r- "flo1(t+ l)1"-1[s+ 2(t+ l)'-1]'- t, where a: ar(K), t : t,, and s: s(K).

6. Asymptotic behaviour of Ms antl neo for irrational r(K)

Suppose that r(K) is irrational. Since we have estimates for Mo(x, K) and

mo(x, K) when r(K) is rational, which could be made even more precise as is shown

by the remarks in Section 3, one could suggest that we choose a sequence Ki* K
such that r(§) rational, and tryto obtainthe asymptoticbehaviourof Mo(x, K)x-*'(r)
from the estimates for Mo(x, Ki)x-"'(K). However, it seems to me that even the best

information mentioned in the remarks is far too imprecise for doing this. Therefore

we shall consider Ms(x, K) and mo(x, K) directly.
We start with the following technical result, which will be proved in Section 9

and u'hich forms the basis for our estimates'

Theorem 4. Let a,b be positiue numbers such that a*b>1, suppose that r>1,
and let C be the unique positiue zero of the function

(6.1) P(x) : t -bf -L - a.

Then C>max (1, b, otl'1, P' (C)>0, and tlrc function

(6.2)

satisfies

(6.3)

tts X-'*, fo, Soyne

s(x):ffi6(1 +og-n11

positius (etttstant ry.

^s(x) - ap bqzx,,\=r:=, (';')
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Note that C P'(C): or+bc'-L.
Now we can prove the following result.

Theorem 5. If r-r(K) is irrational, then

(6.4)

and

(6.5)

where

(6.6)

and

(6.7)

lrg Mn(x, K) x-d,{K) - Yr(,K)

l5rg 
mo(x, K)x-az(K) : Tz(K),

yr(K) - u-L2L-'fiog (r+ 1)].-'[r* 2(t + 1)'-11a-1, t - to, a_ ar(K),

yr(K): d-L2L-dlog(r+1)]"-1[s+2(r+1)"-t]'-1, t : ta, a: uz(K), s : s(K).

Recall that (r- 1)(s- 1): l.
6.1. Hayman [3, theorem l] proved that the limits (6.4) and (6.5) exist. So it

suffices to evalu:te them. We have no essentially new proof for the existence of the

limits. We consider Mr(x, K) only, since the argument for mo(x, K) is similar.
Now u'e apply theorem 4 (so we make no further use of the irrationality of

r(K)) with r:r(K). Take flrst a:1, b:2. ihen by [5, Theorem l], for each X>0,
1+2S(X) is equal to a point X, used in the definition of the function feNo(K)
(note that the index p in t heorem 4 corre sponds to some pr- I in [5, Theorem l,
(1.3»).Takingthen a:K, b:2L anddenotingthe resulting S(X) bV I(X), wede-
duce from [5, Theorem l, (1.4)] that if X,:l'l2S(X), then f (X.):1+2KT(X).
As X*-, we have Xn**. Further, we have f(X,):Mo(X,,K) for all r by

[5, Theorem 1].

The limit (6.a) is therefore equal to

(6.8) Jg 2L-. KT(X),S(X)-', a - ur(K).

It P(X)is given by (6.1) with a:1, b:2, then C:/n*1. To prove this, it suffices

to show that P(tn+ 1):0, which is a consequence of (4.1) and $.2) (cf. the argu-
ment in subsection 4.1). If P is given by (6.1) with a: K, b:2L, let us denote P by
Poandthecorresponding C by Co.Wehave Co:CL, since P'(CZ):O. Namely,
Po(C L): g' y - 2LC' -L E -1- K: 0 since lr: K and since P(C): 9.

We conclude from Theorem 4 that the limit (6.a) is equal to

(cL)*+'cd (log c)" P'(c)"
lim

X-too

Taking into account that
Theorem 5 is proved.

zL-d, K
CL (Log CL) P',QL) C"t' +r) '

CL:Co by (4.2), we obtain (6.4) after some calculations.
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Remark. To prove (6.5) we apply Theorem 4 with a=K-l, å:1+K-1, so

that a*b:l+2K-t. Iherefore it is essential to have the assumption aib>l
instead of, for example, a> l, b= I in Theorem 4, even though this makes the proof
of Theorem 4 more complicated.

7. On 7r(K) and yr(I()

It may be of some interest to see how y,(K) behaves as K*l o. 1g*-, for
i=1,2. Thisgivesabetterideaoftheorderofmagnitudeof foIo(x,K) and mo(x,K).

Theorem 6.We haue yr(K)*l for i:1,2, as K-1. As K*@, we haue

h(K)*l while

(7.1) tJK)-BKAltosK
where A:(log 3)-r log [(3 log3)12l:9.454676 ... and

3 : (log 3) exp {(log 2)(3 log 3)-1(log 4-2log log 3)} : 7.41346 ....

This should be compared to the estimate [4, Theorem 7]

log4 <_ lin: inf cr(K) = li{rls3p cr(K) = 
log 9,

where cr(K):cr(K)K-t log log K and

cr(r1 : flM.,(r, K)x-'r(&.

The quantity cr.(K) is much larger than y1(K) since cr(K) is affected by Mo@, K)
for x close to one.

Consider now yr(K). We use (6.6) together with 14,(5.4)), which reads

(7.2\ aJK)- 1 : los Kllos3-togabs27 +o((log K)-1),

and the result in [4, Section 3] that t,*2 as K-*, where e:ar(K). This gives

log yr(K) - -log a*(l -a) log 2*(r- 1) log log (t+i)+
+(c- 1) log [r+2(t+ 1)'-1],

where c:ar (K), t:tn, r:r(K). Hence we see after some calculations that

log h(K) - -log log r(*log log 3 -(log K)(log 2)llog3*

+(log 2)(loe qltog2T +(tog K)(log log (r+ l))/log 3 -(log a)(log log (r* t))ltos27 +

* (loe K) 0o s G)ltoe 3 - (loe a) (log G)/log 27 * o (t llog K),

where G:r+2(t+l)r-r*, as K*- and r*1. Since (log K)(r-I):log2+
O(lllogK), we have

log G : log 3*(3 log K)-t (log 2) log9e*o(lllog K)
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as K*-. Further, by [4, Lemma 1], we have

log log (t+ t; : log log L-log (d._1)

: los los 3 -(log z)lQ ros K)+o(0os K)-'),
in view of (7.2). Combining these formulas we obtain (7.1).

In fact one can show that

rr(K) : BKÅ (los/()-1(1+o((log rK)-)).

As K*1, we have a;(K)*1 for i:1,2. Thus ?i(K)*l for i:1,2, by(6.Q
and (6.7).

Since cr(K)=7r(K)=l by(1.a)andsince cz(K)*l as K*- by [4,Theorem
51, we have h(K)*l as K**. This proves Theorem 6.

Remark. One can ask if y.(K) is strictly increasing for K>1. We can show
that this is the case at least when ar(K)>4.54. Further, we hrve yr(K)<l for
I = K< -, ard ?e (K) * I as K* I or K* -. It might be of some interest to deter-
mine the minimum value of yr(K).

8. Asymptotic behaviour of K-qs functions

Let f be K- qs. Hayman [3, Theorem 4] showed that if
lim sup /(x)Jtr-dr(() > 0,

then
lim inf /(x)x-nr(x) >- 0,

and that if
lim inf/(x)x-ar(K) < er

then also
lim suP/(x)r*ag(K) <-.

In fact Hayman's results are more precise, particularly when r(K) is irrational (see

[3, I heorems 3, 4]). T he above shows that if a K- qs function grows at least sometimes
as fast or as slowly as possible, then the function cannot oscillate too much. However,

/can oscillate between two powers close to arand ar.

Theorem 7.If K>l and 0=e=(ur(K)-ur(K))12, we set ör:(ar*ar)12 and
öz: at- E- ör. The odd function f giuen by

(s.1) f(x) : exp {ä, log x*ä2 log x cos (4 log log (x+e))}

for x>0 belongs to No(K) and satisfies

(8.2) lim sup./(v)15-cr(x)+e = 1
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Remark. Suppose that h(x) is definedfor x>xo andthat h(x)** as x+@.
One can ask if there is ,f€N.(K) such that

and

(8.3)

prouided that 0< U<40,

(8.4)

and

(8.5)

(8.6)

and

(9.7)

ligff/(x)x-az(K)-e = I

where r1s depends on K and e only.

liEs;rn f@)(xtt$)1h(x))-1 > 0

lig*f /(xl (x,,ztKt h(x))-t < oo.

One could try to find such an odd function/given by

f(x) : exp {8, logx+lE2log x-log å(x)l cos qt@)\

for x>0, where E,:(a1*a)12, Er:(ur-u2)12, q is a small positive number
depending on K and ft, the function å is assumed to satisfy regularity conditions not
essentially affecting its rate of growth, and ry'(x)*- slowly as itr+-, the rate of
growth of ry' depending on that of h.

It seems to me that such a construction of f might work for some functions å
growing more slowly than the powers å(x):a', but the case of an arbitrary h remains

open.

8.1. We proceed to prove Theorem 7. To show that the function/given by (8.1)

satisfies (1.1), we may assume that x>0 and write x/ instead of t. Then (1.1) is
equivalent to

f(x(l + 0) = (K+ r)f(x) - xf(*(l - /))

f (x(1 + 0) = (1 + K-')f(x) - K -'f(x(l -,)),
which are to be proved for all positive x and ,. Further, we must show that /is strictly
increasing for x>0 if q=4r.

For brevity, we write f (x): log log (x* e), so that rlt' (x):l(x *e) log (x* e)l-1.
We have

xf ' (x) | f (x) : är * äz cos rylr (x) - ä, 4 (sin qrl, @)) (x lo g x) rlr' (x)

= är-äs-ä24 : az(K)*e-ö2T > 0

if 4 is small enough, so that then/is strictly increasing and defines a homeomorphism
ofthe real axis onto itself. Notethat log x=log (x* e) for x> I andthat lx log xl=
L< e< l*' @)l-' for 0<x< l.
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8.2. We shall prove (8.6). The proof of (8.7) is similar. In view of (8.1) we can
write (8.6) in the form

(8.S) (lar)o,se, 
= (K+ l)+1((r- l)o"eon, , 2- l,

(8.9) (l*t)\eet+K(l-t1eoro"<.I(+1, 0<t<1,
where

il : 6t* öz cos ?tlr (xt * x),

0z : 6zlog x(cos ?t{r@t*x)-cos 4ry'(x)),

0s : ör*äg cos rylt (xt - x),

0r: özlog x(cos ttL@t-x)-cos 4ry'(x),

0 t : öt* öz cos rylt (x - xt),

0a: özlog x(cos ?t{t(x-xt)*cos 4rl(x).

Note that ar(K)*e=01, 0s,l'<o*(K)-e. Further since for O-y=z we have

(8.10) lcoswlt (y)-cos qte\ 
= qltj)-t@)l

:,t|,ffi=6ffi6,
we obtain

l0rl = 4örxtllog xl[(x*e) log (x*e)]-L 
= Bqt,

(8.11) l04l = ttözx(t-2)l log xl*'@) = Bqt if t > 2,

l04l = 46zx(2-t)llog xlrlr'(xt-x) if I < t = 2,

l0 sl = qö zxt llog xl{' (x - xt),

where .B depends on K only.

8.3. Recall ([] or [4, Lemma l] or Lemma A) that if a:d{K) then for
l=0<a-e, we have

(8.12) (1+l)0 
= K*r+K(t-l)o-o(e,r1(t+(r*l)0)

for ,>1, where o(e,K)>O, and

(8.13) (l+r)o+.K(l -t)'= K+r-o(K)

for 0</--1, where o(K)>0. We deduce from these inequalities and from (8.11)
that if to:to(e,K) is large enough and q:r1(e, K), r:r(e,K) and a:a(q K) are
small enough, then
(i) (8.9) holds for 0<r=z if
(8.14) g6log (1 -D+e6 = a)

for 0=/=r;

311
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(ii) (8.9) holds for r<tsl-r if l9r-flul=a, since 106l< B4C(r), where C(r)
depends on r only;
(iii) (8.9) holds for l-z<t< I and hence by continuity for r= I if
(8.15) 0u log (l -t)+e6 = o log (1-t)

for l-r<l<1;
(iv) (8.8) holds for l<t=l*t;
(v) (8.8)holdsfor l*t<t<r. if l0r-Osl=a; and lOnl=ar; and
(vi) (8.8)holdsfor t>to if 10,-0,=(K-ot)s0n-0,, i.e.

(8.16) ä, (log t)(cr-9r) = log (K-ar)+är(tog x)(cr-cr\

for x>0 and t=to, where cr:cos rylt(xt:x) and qe=cos 4rlr(xt*x), and
K-a>1.

8.4. It remains to verify that the cpnditions (i) to (vi) can be satisfied. We shall
denote by .B or B, any constant depending only on K and c, not necessarily the same

every time.
If 0<r=r, then by (8.11) we have

0u log (1 -t)+06= (a2*e) log (1-r)+ä ,rlxtllog xlr!'(x-xt)
< -azt*Bnt < 0

if 4 is small enough, so that (8.14) holds.'
lf r<t= 1-r, ther1,,

l0r-Oul =2qörxtr!'(x-xr) = 
Bqr-L < ot

if 4 is small enough.
If 1- z< t< l, then by (8.11), we have

05 log (l - r) +00 = 
(ar+e) log (l -t)+ryärx llog xlrl'(x-xt),

which does not exceed

(a2*e) log(l-t)*Bq = a2log (l -t) if 0 < x = .81,

where Br>2. Suppose that x>By and choose a positive number ä:ä(K) such
that y:(6r* 6)l(262\*ö>1. If x<(1-/)-1, we have

eu log (l -t)+06< är log (1-r)-är(log x) cos 4t@)+

+62 log (x(1 - r)) cos nrlr (x - xt)

= (är-7är+(t -Y)äJ log (l -r)
- 2öözlog (l -r) = ar log (l -t)
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as required.If x>(l-l)-r, then x(l-r)>x1-r/r>3r-r/r. 1tr t
,1, @)-{(x-xt) : loulog (x+e) -log log (x(1 -0+e)

= -B log [l -(log (l -r)*1)/(log x)]

= B(log(1 -t)-r)llogx.
It follows that lPul= 3q log (l - l)-1, so that (8.15) holds in all cases.

8.5. If l+t=t=1o, then l0ul=o by (8.11), and l0r-0ul=Bqnlt'(xt-x)=a
if 4 is small enough, depending on z and t6.

Finally if t> to we assume first that x(ro- t)> 1. We have

lct-crl = 2r1xr!'(xt-x) = 2q(t- l)-1(log (xt-x+»-1,
so that lär(log x)(c1-c)l= 84 and lär(log t)(cr-cr)l=84. Hence (8.16) holds for
some positive a if q is small enough.

If x(ro-1)<1, we consider separately the possibilities xt<l and xt>l.
In each case we have to prove that

(8.17) (log xl) (c, - ct) = cr,: äg-1 log (K- @),

which implies (8.16).

lf xt= l, then x<l and

l(log rr)(cr- cr)l = Bqx llog xtl = B4lt = Bq = at.
lf xt>|, then we obtain

l(log xt)(cr* cr)l=2r1x (log xr)[(x(r- 1)+e) log (x(r- t)+e)1-t=s4*@t,
considering, for example, the cases x(t-l)>2, l=x(t-l)<2 and x(l-1)<1.
Hence (8.17) and thus (8.16) holds in all cases.

This completes the proof of Theorem 7.

9. Proof of Theorem 4

In this section we prove Theorem 4, stated in Section 6.
First we note that if /f> l, then

(e.r) G+=n!(# (znNyr)''= r+f
where B: l/11. we shall denote any positive constant by .8, not necessarily the same
every time. We have

(g.2) Zr=*ffibq= Bbx: "(ä
(e.3) 2,,=,(t)* < Baxt, : "fr)
Hence we may assume that p>l and q>l in (6.2).
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So we have by (9.1),

(s.4) (';1= BWW(}*!)''' = a(r+t)'(,*t)',

where instead of B we first have

(r +1r r (p+ q))-,)(1 -(1lp)-r;-r(r -1r rq1-) -L = 1.265.

Wewrite

(9.5) x: qlX, Y: rPl(X-q).

Since p, q>l and pr*q€X, we have

o=*<N< r-|,=r
and

o=ia=y=1.
We define for 0<x< l, 0<y=1,

h(x, y) _ qte-x), 6x(, *l*a)' (r * ffi)*'-"',
h(x) : h(x, t) - s(t-x)t'r 6x(r + f)' (r +;1t'-'o,

r(x, y): (r -x) (f *ZiO)",

r(x) : r(x,1): 1t -x) (*.ti-)"i
Using the values given by (9.5) for x andy, we obtain

(e.6) (t*$)' l*t)' aPbq : h(x, y)*,

(s.7) !W(i**)''' apbq : h(x,y)xr(x,»*.

9.1. We proceed to flnd some properties of H(x,y):lsgh(x,y) and ä(.r):
H(x,l). We have

(r-l)' r I -rrrr'(x): fri;-z-fr: r(I:;;11;11;11; = o,

so that

(e.8) rH'(x): roell(@fifr(l-*)
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is strictly decreasing for 0=x= 1, and there is a unique number xs€(0, 1) such that
H'(x):O. then H"(xr)<O, and II(x) has its unique global muimum at x:xo.
Further, I1(x) is strictly increasing for 0<xSiro and strictly decreasing for xo<x= 1.

Using the fact that H'(xo):Q, we see after a lengthy but routine calculation

that P(h(xo)):O(ft 11so):r'(9. Hence h(x):g and ä(xr)>O. A calculation also

shows that the number y defined by

(9.9)

satisfies

(9.10)

and that

(9.12)

y - cr-'l(p'(c) log c),

(9.11) t<c:r(r.#)
We omit the details.

9.2. Oar next aim is to show that H(x):H(xo,l) is the unique maximum of
H(x,y) for 0=x< l, 0=y= 1. We have

For a fixed x, either this is positive for 0=x=1, in which case H(x,y) is strictly
increasing, or there is yo such that 0rH(x,!)=0 for O=y=!o and \rH(x,y)-O
for yo-.y-.l. In the former case H(x,y)<.H(x)<H(xo) for 0<y<1 and x*xs,
and H(xs,y)<.H(xs) for 0=y<1. In the latter case we have O<a<l and x<
xn-e1 for sorle 81. Namely, if x>xo-e1 and 0<y-- 1, then since x/(l-x) is an

increasing function of x, we have

ros o (r -,.år) > tog a(,.fr$*)
>tosa(,*ffiJ=o

by (9.11) if el is small enough.

If there are any x, y with \rH(x,y):O, then clearly there is xr€(0, xo-er)
with the following property. For every x€(0, x1) there is y:yo(xX(0, 1) such that

\rH(x,y):O i.e. a(l+rxl[yo@)0-x)]):1, while for x((xr, l), H(x,y) is a
strictly increasing function of y. Suppose that this is the case. Since å(0,y):l=
h(x), it suffices to show that

,:yg".rr(*, 
yo(x)) = Ir(rJ.

As we must have yo(xj: 1, we have H(x, yo@))= H (x)- e, by continuity for some

positive e, and for x1-er<x=x1 . lf H(x,yo(x))=l for any xsxl-e2, then
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H(x,yo@)) attains a maximum on (0, xr-Ezl. So it suffices to prove that
H(x,ys(x))=ä(xo) for these x, i.e. that p-"H(x,tolx))<C. Using the fact that
ilrH(x,y):O for y:yo(x), we obtain

!<D:(*)'=(+-J'-Do=*
since å>1-a. Furthersince yo(xr):l, wehave

*,: J:_o .--L ar*l-a'

As P(Do)=P(C):0 implies that Do=C, we shall show that for any fixed a€(0, l)
and r=1, the expression P(Do) is <0 for any b>l-a, where Do and x1 or€ Ets

above. This reads
hl(b) = - Atb",+ a -Y Arb"i", > 0,

where lr: (l- a)-'"r, A2:(l- a)[-')tr, er: rxtt €z:1 -x1=0, and hr(l- a):Q,
while hi(b)>O for å>1-a. Thus fu(b)>O for b>l-a. Thisprovesthat ä(xo)
is the unique maximum of H(x,y).

9.3. Now we can estimate ,S(X). Suppose that 0=ä= lf2, e=0, 0<xo-c.<
xo*e<1, and set

Y(6,e): {(p,dlp,q> l,pr*q=X,lx-xol >e or y= l-ä}
where x andy are given by (9.5). With

we have by Q.$ and (9.6),

(9.13) Zv<a,"'t U(p, q) = B )v6,"yh(x,y)x = BXz(nC)x: , |,g)- r:/v )'
where 4:4(ä,e,F,a,å)€(0, l) is such that h(x,y)=4C if lx-xol>e or y<I-ä.
Note that there are at most.BX2 terms in the sum.

We set

W :W(6,e) : {(p, dlp,S> l, pr*e= X, lx-xol < e and .y = 1-ä}.
rf (p,q)€w, then with

R(p,s): ffi(i**)',"
we have

(e.r4) l(tr')-R(p, ill= nn1e, ilx-,.
Hence it suffices to prove the asymptotic formula (6.3) for

F(X) : Zn R(p, Q)a?bq

u(p, q):(';1rru,,
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instead of S(X). That together with our earlier estimates (9.2), (9.3), (9.13) and (9.14)

then proves Theorem 4.
By (9.7) we have

(9.15) F(x) = ffi r" exil(*,»T(x,»+;n,

where x, y are given bV (9.5). Herc q runs from X(xs- e) to X(xo* e) and for each q,

p runs from (1-ä)(X-q)lr to (X-q)lr. Hence any successive values of x and y,
say x, and xL, ot yLandy2, satisfy

lxr-xrl :11X, lYr,-Yrl = BlX,

where B depends on r and xr. Using this and the monotonicity properties of II(x, y),
one can show that

(e.r6) 1r1*y-{--r(x)l = #,' rl2n yX'
where

r(x) : I:::: t_,exil(*v)r(x, y) dx ity,

provided that ä and e are small enough and Xis large enough. We omit the details.

9.4. It remains to estimate I(X) for small but fixed ä and e as X*-. In partic-
ular, we make sure that x1<xs-e, if there exists x1 as above. We note that

0 - H(x)-H(x, y) : (l-y)|ril(x, o
for some tcj, D. lf y=l-BX-r log X for a suitable.Bthen

II(x, y) = Ir(xo) -(1 -r) ,ggg, 
A, H@, €)

: losC-(t -y)(t-x)r-llosa (,-ii)
=logC-5X -1logX

and exp XH(x,y)<-CxX-6. Hence

f::: t-:-"o"* r(*' v)ex*(*'tt dx dv = BCx x-6'

Considernext

E(x, v): H(x)-H(x, Y)-(l-Y)iltä(x' 1)

for lx-xol= e, l-Bx-tlogX=-y=l. Let x be fixed. We have ä(x, 1):Q. Hence

-E(x,y):11-y)0rE(x, O for some €e (y,l). We have

LrE(x, y): -\yH(x, v)+\rH(x,l) : (1 -y)\uil(x, (r)
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for some tr€(y,l). So

-E(x,y) : (l -y)0-\\nil(x,4,)
where y=(=(r=1. We have

and to 
"" 

H (x, y)t 
= 
B -':,:: : =; #li ?-= 

"
O = E(x, y) 

= B(t - y), 
= BX -z (tog X)2.

It follows that

eXE(x, y\ 
- eXE(x) e-y(1-y)ärg(r, l)r-XE(x,r)

- sx*1x1.*p {-x1r - Do-x) r-r r"s (r +f, )} «r +al

= sxn1x1(exp g(x, /»(1+EJ,
say, where

and so 
Er: Et(x, !) : l-exP (-xn@, y))

Hence 
lErl = BX-r (log x)r.

f:: t- r. -' r,, * e*'G' n) T (x' Y) dx d Y

: tt exat")T(x, y)ser'» dxdy(t*O(t)X-t(log X)r).

A similar argument shows that

T(x, v) : T(x,1)+o(1)x-'log x,
so that we c.rn replace T(x, y) by f(x) in the above integral. The resulting integral
depends on y only through l-y in the exponent, so that integrating with respect to
y we obtain

(e.r7) I::::#,ffi(r -exp {-B(rog x)r,(x)}),

where .Br(x):(l-x)log(l+rxl[-x)). The second term in brackets is Og-n1
for some positive 4=1. To deal with the first term we use the following standard
result (see e.g. [2,Theorem 2, p. 19]).

Lemma B. Let II(x) and q(x) beantlytic functions of x, regular on (c,d) and
continuous onlc, dl. Let H be real and suppose that H attains its maximum at x:xoe
(c,d) only,while H'(xs)<.O. Thmas X*@, wehate
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Applying Lemma B to our present fl(.r) and to

q(x) : rr ($lx (t-x) log (t + rxl(t -r))l -',

as we may in view of what we have proved about ä(x), we see that the integral (9.17)

is equal to
,nxw(xslr(xo) ? n "(xo)) -Ltz (
ffiffit L+O(X-')).

Using this, the definition of 7(x), (9. 16), and our earlier estimates we get

s(x) - yc*(I+o(x-')).

In view of (9.10), this proves Theorem 4.
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