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OI{ A DISTANCE INVARIANT UNDER TUÖgtUS
TRANSFORMATIONS IN R'

IIEINZ LEUTWILER

1. Introduction

The distance referred to in the title is the following: Let Q be adomain in Ro

and set

sup {ffi: h>0,

t"t {ffi : h > o, harmonic on 
"}

harmonic on o)
(1.1) Qo(x, y) :1og

for all x,y(Q. Then qn defines a (complete) distance on O, provided the positive

harmonic functions separate the points of O.

In case Q:8,, the unit ball in R', qo is - up to a factor n - equal to the

distance function är", defined by the Poincarö metric ds:2(l- llxllz;-t lldxll Gheo-
rcm4.2).

The distance gs has the following irwariance property: For any Möbius trans-

formation y, we have Qyo(!x,'ty):Qn(x,y) for all x,y€O, where yO denotes

the image of O under y (see Theorem 4.1). The invariance of pr2 is based on a gen-

eralization of Keluin's transformation to arbitrary Möbius transformations 1,

(Lemma 2.1).
In Section 3 we establish sharp bounds for the positive harmonic functions

in B, and the upper half-space ä,. These will be used in Sections 4 and 5, in the

latter to find an explicit expression for the so-called Harnack distance dr^ of 8,, a

distance generally introduced by J. Köhn in [4].
The generalization of Definition 1.1 given in Section 6 incorporates other

invariant distances such as the classical Cayley-Klein distance or the well-known

Carath6odory distance.
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2. Transformation-preserving harmonicity

In R' all similarities preserve harrnonicity. So, according to Kelvin's theorem,
does the transformation T: h*fr' where

(2.1) fr1x1:EFrr,(#).

The following lemma is based on the observation that, with these two special
cases, any Möbius transformation in R' gives rise to a transformation of this sort.

Recall that the full Möbius group fr1n,; is the group generated by all simi-
larities together with the inversion

(2.2> J: x*r*:ffi.
As in Ahlfors [1], for any ycflln'), we denote by ly'(x)l the unique positive real
number such that

,t'.9!, eo1n1.
ly'(x)l '"

Here o(n) denotes the orthogonal group and y'(x) the Jacobian matrix of y at the
point x. Observing now that l"l'(x)l:llxll-r, (2.1) reads as follows:

(2.3) rt61 : lJ'(x)l<'-ztrzh(Jx).

Hence, if y denotes either a similarity or the inversion .I, we have the following
result: The transformation

(2.4) Tr: h * fr, where fr1x1 : lt'(x)l<,-zttztr(u*r,

preserves harmonicity. Moreover, if y. and yz arc any two Möbius transformations
with this property, an application of the chain rule shows that the composition yro},
again has this property.

We therefore conclude that

Lemma 2.1. For any Möbius transformation y€lfrR) the transformation T,
defined by 2.4 preseraes harmonicity and positiuity.

Of particular interest is the Möbius transformation y, defined for a:0 by
the identity mapping and for each a€R' with 0<llall=l by

(2.5) y"(x):W,
where sal-a1x1*...*anx, denotes the usual scalar product (see Ahlfors [t]).
The ffansformation y, maps the unit ball B, onto itself, thereby sending the point a
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into zero. Actually the most general ye lly'(n)
form kyo, where k€O(n), as shown in [1].

According to tU (Chapter II, formula 30),

(2.6)

(2.7)

satisfying these conditions is of the

we have

1-ilaf'
lyil ;)l :

wherc a* : alllall'z (a*0).
An application of Lemma2.l therefore yields the following result, which can

also be verified directly:

Corollary 2.2. Let y,, O=llall=l, denote the Möbius transformation defined
by Q.5). Then the transformation To: h-fi, where

maps one positiue harmonic function on the unit ball Bn into another.

Remark. In order to have a better insight into Lemma 2.1, we introduce for
any yef{(R') and any C2-function u on OcR' the notion z, defined by

llo['llx- a*ll' )

(2.9)

(3.1)

ur(x) - ly' @)l 
(n - z) tz u(yx) (x € ? -' p).

Denoting the Laplace operator (\'zl|xN+...+(0'l0xl) by / as usual, we claim that
for any C2-function u on Q we have

(2.9) Å(ur) - ly'l'(Åu)y.

The proof again consists in showing that if formula (2.9) holds for 7r, yr<fr(R')
(for all u(Cz(A)), it also holds for the composition y.oyr. We there use the fact
that urrorr:(urr)rr.

3. Sharp bounds for positive harmonic functions in B, and ä,

We shall now use Lemma 2.1 in order to find sharp bounds for the quotients

h(x)lh(y) if å ranges over all positive harmonic functions, defined on the unit ball
8,, or the upper half space Hn;:{(xr,...,x): r,=0}, respectively. In order to
avoid duplication we shall, however, set it up in such a way that it also serves the
purpose of the next section.

Let O be a domain in R' (n>2) and set for x,y(Q

Dn(x,v) : log sup {ffi: h > 0, harmonic on o} .
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Then we have

(3.2) e-Dt{Y,x) =* 
< eD,,c.,Y)hu)

for all positive harmonic functions h on Q and all x,y(Q. Furthermore, åolå
bounds are attained.

Lemma 3.1. Let y be a Möbius transformation, mapping a domain QcR onto
a domain fr. Then we hatse

(3.3) Do(x, y) : Da(yx,tt)+$t tm
for all x, y€.Q.

Proof. Let u>O be harmonic on O and set

h(z) : ll'@)lt"-z)rzr7r11 kgy
Then, on account of Lemma 2.1, h is harmonic on O.

From
u(Yx) < oDil(rx,t»)
u(vv) - -

we conclude that
h (x) 

= oDtr ox, ty) 1-.1rr(r11tr-zlrzh(v)-" (lv'U)l)

Since the upper bound on the right is actually attained, Lemma 3.1 follows.
Choosing d2:Bo, the unit ball in R', the classical Harnack inequality

(3.4) h(x)=t'ffirtol (x€8,),

valid for all h>0, harmonic on 8,, results in

(3.5) D(x,0) : Dr,(x,o) : log #h
In order to determine D for any pair of points (x, y)€B,XB,, we apply the Möbius
transformation y, defined in (2.5) (with a replaced by y). According to Lemma 3.1

we then have

D(x, y): D(tyx,O\+#rcrm

:'o'r,##+$rceffi'
But ffTrxff=llx*yllllx,yl, where tx,ylz:l-zxy+llxllu llyll'z (see [J, ChaptoII,
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formula 32). Inserting this and the expression Q.6) for l7i(x)l we fuid that

D(x,/) : log

Using the identity (l - ll xll'Xl - Il yll t) : [x, y]' - llx - yll', we get the more convenient

expression

(3.6) Dr,(x,»:tror@-i/d/-.*$r"rffi.
Summarizing we have

Theorem 3.2. Eaery positiue harmonic function h on the unit ball B, (n>2)

satisfies the sharp inequality

f rfffiW- IIx - yll )',' ( r - Ilyil, 1(z-z)/zl6Jt-r-1r14
- h(x) - ( lT -2xyffiP+ llx -yll )"' f t - ilyll' 1(n-z)/a=w=tTmJtr:m,

for arbitrary x, y(.&n.
We emphasize that in this double inequality both sides are attained.

Introducing the distance function ä8, with respect to the Poincard metric

ds:+§# (x€ Bn),(3.7)

i.e., the function

(3.8) ö(x, v) = ö"^(x,./) : ros ffi (x, vcBo),

the inequality in Theorem3.Z an also be written as follows:

(3.e) s-(n!z)ö(x,v) (++*l[)"-z)tz < ffi = a,,tz)o(x,i(+Ui[,,,,Jt'-"" .

This form is especially convenient if one wants to transfer the estimate to the upper

half-space f/,.
To this end we consider the Möbius transformation 7 defined by

I(3.10) y(x): 
16=er 

(2xr,...,2x,-r,l-llxil'), r: (xr, ...,x,),

where en denotes the nth coordinate vector. It maps B, bijective§ onto äo. Intro-

ducing the distance är" defined in ä, by the Poincard metric

(3.1l) ds : W, z : (zr, ..., zn)(H,,
zn
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i.e., the function

(3.12) ör^(u,u): los ffif*ffi,
where u,u(Hn, u:(ttr, ...,un), a=(tsr, ...,ar) and D:(or,...,Q)n_1, -oa), we
know that

(3.13) öu^(x,y): ös^(yx,yy)

for all x,!(Bo.
The application of Lemma 3.1 now yields

D r^(x, y) : D a^(yx, til + $r"u #8.|-.
Since fy'(x)l:2llx-e,ll-2, we conclude from (3.6) and (3.8) that

D *^(y*, y » : + ö,^(x, y) + ff bg#*ffi+5ftr
Hen@, setting il:.1x, a:Ty, we infer from (3.10) and (3.13) that

(3.14) Du,(o,d:tör^(u,qa "f rcrlz.
So we have proved

Theorem 3.3. Eaery positioe harmonic function h on the upper half-space Ho
(n=2) satisfies the sharp inequality

ffi+Eg+J,,' (r), 
- "'' 

= W;= fiffi,4 )" (+)* 
- o' 

"fo r arbi trary x : (xt, ..,, xn), ! : (!t, ..., yn)e Hn.

4. The invariant distance qo

The function De(x,y), defined under (3.1) for an arbitrary domain ocRo
(n=2), is nonnegative and satisfies the triangle inequality: For all x,!,l€e we
have Do(x, z)=Do(x,l)+oo1r,z). However, it is not necessarily symmetric. we
therefore consider the sum

(4.1) qa(x, y) : Da(x, y)+Do(y, x)

for x,/(O. Then go defines a pseudo-distance,which of course can also be intro-
duced by (1.1).

It is a distance if and only if the positive harmonic funciions on O separate the
points. If thelatteristhecase,thenin faclgsdefines acompletedistance,wbich
always induces the euclidean topology on o (see the remark in section 5).



On a distance invariant under Möbius transformations in R'

The main feature of this seemingly new distance is, as already mentioned in
the introduction, the following inaariance property:

Theorem 4.1. For any Möbius transformation y mapping a domain OcRo
onto a domain Ö we haae

(4.2) Qo(x, .y) : Qa(yx, yy)

for all x, y€Q.

Proof. Immediate consequence of Lemma 3.1 and Definition (4.1).

From (3.6) and (3.8) we conclude

Theorem 4.2. In the unit ball Bn fu=2) we haae

(4.3) QB,. : fröu,,

where ör- denotes the Poincarå distance (3.8).

Analogously we infer from (3.14):

Theorem 4.3. In the upper half-space Hn @=4 v,e haue

(4.4) Qnn: fröHn,

where ö*^denotes the Poincarö distance (3.12).

In Rr the harmonic functions are the affine-linear ones. Defining the Poincard
distance on the open interval (-1, 1) as in (3.7) by the differential 2(l-x2)-1ldxl,
Theorem 4.2 remains true for the case n: I . Indeed, considered on the open interval
I:(a,b), the positive affine-linear functions define the distance function

Qr(x, Y) : - llog (x, y, a, b)1,

where (x, y,a,b) denotes the cross-ratio of the four points x, !, d, ä. This is not
surprising, since in the case of the unit disc in R2, the Poincard distance can also
be defined as a cross-ratio:

öro(x, y) - llog (x, y, €, q)1.

Here x, y(8, and ( and 4 denote the points on the unit circle C lyng also on the
circle orthogonal to C, and passing through the points x and y (see e.g. [1], Chapter I,
and Chapter II for an extension to B,).

It is an obvious but important fact that for any two domains O, and OrcR,
(n=2) we have

(4.5) Q, c Q, + go,(r, y) = Qor(x, y), for all x, y(Qr,

I x -a I

['"*ElI v-b I
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Consequently, we find for example that for any mapping / which maps B" onto a

subdomain Q of B, and satisfies the condition

(4.6) sr(f(x),f(y)) 5 qr"(x, t)(: n6s^(x,y))

for all x, y€8,, we have

(4.7) öu"(f(*),fb)) = ä3"(x, y) (x,y€B).

If, in addition, "f(0)=0, it follows from the monotonicity of the function

r*ös^(r,o) that

(4.s) ll/(x)ll = llxll,

for all x€8,.
Assuming further that the function / which maps B, onto the subdomain O

of B, and satisfles (4.6) is differentiable, we infer from (4.7) that for all x(Bo

(4.e) ll.f'(r)ll =#.
Here, as usual, we define the norm of the Jacobian matrix A:f(x) by lllll:
:sup {lllzll : u€R', Iloll:1}.

In case n:2, the condition (a.6) is automatically satisfied, provided/is holo'
morphic. Indeed, given any nonconstant holomorphic function f: Bs*82, we know

that its image Q:f(Br) is open. Furthermore, for every positive harmonic function

h on Q the composition hof is positive and harmonic on 82, so that (4.6) follows

immediately from Definition (4.1). The inequalities (4.7){4.9) therefore imply

Schwarz's lemma,

In R' (n=3), (4.O is satisfied, according to Theorem 4.1, at least if/denotes
a Möbius transformation which maps Bn into 8,.

5. The Harnack distance

Another possibility to "symmetrize" the function Dsr(x,y), defined in Sec-

tion 3 for an arbitrary domain OcR' (n=2), is to set

(5.1) do(x,Y): max[Do(x,Y),Do(Y,x)7

for x, y( O. Then do defines a pseudo distance already introduced by J. Köhn [4]

under the name Harnacft (pseudo-) distance for o. Indeed, for all x, y(Q, we have

(5.2) do(x,y):toginf{al*=ffi=a: vhedr+@t

: sup tllog [ (x) -log hQt)l: he lf * (o)],

where ,f+(A\ denotes the set of positive harmonic functions on O.
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From the inequality ma:r (a, b\=a+b=2max'(a, å), valid for all positive

real numbers a, b, we immediately deduce

Lemma 5.1, On etsery domain g in R', the pseudo'distances 8a and ds are

equiaalent. More precisely, we haae

(5.3) do* Qo 5 Zdn.

Remark. In [4] (Korollar 3) it has been shown that in case the positive har-

monic functions separate the points of Q, do defines a complete metric which induces

the usual topology on O. Consequently, by Lemma 5.1, the same is true for the

distance qe. Combining (5.3) with (4.2) yields

Corollary 5.2. Let y be a Möbius transformation, mapping a domain OcR'
onto a domain fr. Then

* do@, y) 
= ds(yx,yy) =2ds(x, 

y)

for all x,y€.Q.

On the other hand, it follows from Lemma 5.1 and Theorem 4.2 (and Theo-

rem 4.3) that in B, (and ä,) the Harnack distance dr.(and drr,) is equivalent to the

Poincard distance är, (and ä, ). More precisely, we have

(5.4) tu"^= drn= nö'n, respectively tur^= ds^* rtös^.

On account of (3.6) and (3.1a) we can in fact explicitly compute dr^ and dr^'

Theorem 5.3. The Harnack distance dr^of the unit ball B* (n=2) is giaen by

11

(5.5)

for x,y(Bn, whereas the Harnack distance dr,of the upper half space H* (n>-2)

is giaen by

(5.6) duno, y) : + öun',, y)++1,", *1,
where x:(xt, ..., xn), y:(yr, ..., yr)(Hn.

For general domains OcR' with a boundary 0A*0 we can easily estimate

the Harnack distance from below in terms of the euclidean distance dist (a åO)

from the point z€Q to the boundary åO:

Lemma 5.4. If Q is a proper subdomain of R" (n>3), then

(5.7)

for all x, y€§2.

dn(x,y)=(n-zllr"sffil
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Proof. Let x,/€O, where w.l.o.g. dist(y,äO)=dist (x,l0). Choose a point
p€åO such thatlly-pll:dist (.7, åg). Then, by definition, we also have dist (x,0Q)=

=llx-pll.
Consider next the Newtonian kernel k(z):llz-pll2-' (zcR1fu)). Since k is

positive and harmonic on O, we conclude from (5.2) that

do(x, y) 
= loglly - pll,-'-log llx-pllr-"

= 
(2 - n) log dist (y, 0O) +(n - 2) log dist (x, åO),

and (5.7) hence follows.
From (5.3) and (5.7) we then get

Corollary 5.5. If Q is a praper subdomain of R' (n=3'1, then

(5.8) Qa(x,y)=(n-2)h"* 1i'1!''?9Jl'| -e dist(y, åg) |

for all x,y(Q.

We finally mention that equality holds in (5.7) and (5.S) in case O:R\{o}.
Thus both estimates are sharp.

6. A general definition of g

In this last section we are going to extend Definition (l.t) of the distance go
in two ways. On the one hand, it is important to consider additional distances defined
by subsets of the set **(O) of all positive harmonic functions on OcR,, on the
other hand it becomes necessary to incorporate, besides the Laplace equation, further
partial differential equations.

The most general setting in which our distance makes sense is the following one.
Let Q be an abstract set and I an arbitrary class of (strictly) positive, real-valued
functions, deflned on O, with the property that the following Harnack+ype inequal-
fiy holds: For any pair of points x, y€Q there is a constant a:a(x,/)=0 such that

(6.1)

for all h< g .

Definition. For all

h(x) = ah(y)

x, !€O we set

(6.2) Qo,s@, y): rnc 
t'{ffi' neul

- tog

Then qo,u, defines a pseudo-distance, which is a distance if and only if the family g
separates the points of O (linearly it 1§f).
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Parallel to Qa,s we also introduce the Harnack pseudo-distance

(6.3) ito,r(x,y):losinf {r,*=ffi=o, vner},

already introduced in this generality by J. Köhn in [4]. It is clear tbat again go,s,

and de,s, are equivalent pseudo-distances. Also, many properties proved in [4] for
ds,se remain true for Oo,cF. Observing for example that for any two families 9,
and 9, of positive functions on O, satisfying the condition (6.1), we have

(6.4) frrcfrr+ Qst,er S Qo, ezt

we immediately conclude that the following generalization of the "principle of hyper-
bolic length" must hold:

Lemma 6.1. Let g(g) denote a class of positiae functiow, defined on sorne

abstract set A (ö). Assume further that I and I satisfy (6.1). Then, for any

mapprng F: Q-fr with the property thatfor each h($,hoF is an elementof g,
we haae

(6.s) an,&tF(x), PU)l = ea.o(x, y)

for all x,y(Q.

Our first choice for a subset of the classical harmonic functions is the family
of all positive, affine functions on a convex domain OcR'. Here we have basically
the same situation as in the one-dimensional case treated in Section 4.

Theorem 6,2. Let Q be a conaex open subset of R", containing no straight line,

and let F be the set of positiae affine functions on Q. Then we haae

Qo,s(x, Y) - llog (x, Y, a, b)1,

where (x, !, a,b) denotes the cross-ratio of x, y€Q ard the points a, b, in which the

straight line through x and y intersects the boundary 0Q.

Clearly, in case the straight line through x and y has only one intersection point,
say a, we set å: -.

Proof. Let g denote the straight line passing through the points x,y(Q. On
account of what has been said in Section 4 about the one-dimensional case it clearly
suffices to show that every non-constant, affine function I on g, which is positive

on gn0, is the restriction of an affine function on R', which is positive on O.

To this end we consider the supporting hyperplane .E for the convex set O in that
intersection point a or b(\Q, in which / assumes the smaller value. The unique
affine function on R" which extends / and is constant on .E then has the desired

properties.

For the case where OcR2 is defined by a conic, the distance (6.6) has already

been introduced by Cayley in 1859. However, it was F. Klein (see his collected

13

(6.6)
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works) who noticed in 1871 that if O denotes the unit disc, the distance (6.6) agrees

- up to a constant factor - with the non-euclidean metric used in his (non-con-

formal) model of hyperbolic geometry. Therefore, transforming this distance with
the aid of the mapping (:zl(l+l@) from B, onto itself, one again gets - up
to a factor 2 - the distance (3.8) (for n:2).

Note also that the distance (6.Q is obviously invariant under projectivities.

Remark. Theorem 6.2 indicates that for any convex lineless subset K of a
linear space V one might also look, besides the so- called part metric (see e.g.

H. S. Bear [2] for its definition), at the following distance function. Let x, y be two
points of the same part of K. We say that the segment [x, y] extends in K by the
pair of positive numbers (u, fi) if and only if x*a(x-y) and y*§(y-x) are

elements of K. Then

(6.7) Qx(x, y) : lx, yl extends in K

defines a distance on the parts of Kwhich is equivalent to the part metric dy.ln fac/",

we have d*=p*=2d*, similar to (5.3).

In C', identified with R2', every domain O has its invariant distance q32, defined
according to (1.1) by the set tr+(Q) of all positive harmonic functions on O. This
distance, however, is not invariant under the class of holomorphic mappings on Q.
In order to define a distance of this sort, we must consider a subclass fi of /f,+(A)
which is invariant under such mappings. Hence a natural choice for I in this situa-
tion is the following one:

(6.8) g: {Rleflf:8*C holomorphic, Re/>0}.

This set I is acttally meaningful on any domain O of a complex manifold rl1 of
dimension n. We therefore formulate the following proposition in this generality.

Proposition 6.3. Let Q be a domain in a complex manifuld M of dimension n
and let 3 be defined as in (6.8). Then we haae

(6.9) ea,s :2de,s, : 2cs,

where cs denotes the classical Carathöodory (pseudo-) distance, defined by

(6.10) co(x, v): sup {är,(.f(x) ,flil)lf, Q * c holomorphic, l"f I = l}

for all x,y€Q.

Proof. Sincn O=-2d (analogously to the proof of (5.3)), it suffices to show
that p>2c and d=c.

In order to prove that p>2c we take a function / holomorphic on g with
lfl=l and apply Lemma6.l with gr:{R:eglg holomorphic on O, Reg>0},

bv fo,f)linr{ro*(,.*) *rog (,*å) 
'
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fr:Bz:{zeC: lzl=l}, @:/f+(B) and p-f There results

sr,(f(x),f(y)) € Q(x, y), for all x, YCQ.

By Theorem 4.2, prr:2öa,r &Ild hence we have

zö o,(f(x),fU)) = q (x, v1

for all holomorphic functions f on Q with l/l<1. Consequently, by (6.10), we

must have 2co(x,y)=O(x,/), for all x,y€Q.
For the proof of the remaining inequality d< c, we first note that for all x, y ( H,

we have

ör^(x,rl = lr"g'u-1,t - Yol'

as we easily conclude from (3.12). In case n:2, tlis yields the following estimate

for the Poincard distance äs" of the right half plane frr: lwQC: Re w>0):

äa,(wr, rrt = l.rffil
for all w1, w2QE2.

Let now g be holomorphic on P with Re g>0 and denote by I the two-dimen-

sional Möbius transformation p*(uz-1)(w+1)-1, which maps the right half-plane

Fi, onto the unit disc 82. Setting f:Eog yields a holomorphic function f lvf{th

l"fl=l. Hence, according to Deflnition (6.10) of c:cs; we have

c(x, v) = ör,(f(x), f(!)) : öa,(g(x), cO)) =l,"t ml
Setting å:Reg weconclude that e-'$'v)=h(x)h(y)-L=ec(x'v) and hence d(x,y)=
c(x,y) for all x,y€Q.

Another reasonable choice for a set 3, provided O is again a domain on a
complex manifold M of dimension n, is the following one:

(6.11) 9r': {hlh =0, pluriharmonic on O}.

By (6.a) the correspondingpseudo-distance go,so, dominates qe,s;, defined with
respect to the set (6.8). On the other hand, qo,ro, itself is dominated by a multiple
of the so-called Kobayashi pseudo-distance ks (see e.g. [3], p. 45, for its definition).

Indeed, on a@ount of Lemma 6.1, every holomorphic mapping f: Br*9 satisfies

the estimate

sa,s'(f(x),f(Y)) = on,@, Y), for x, Y(Bz'

The inequality qo,s,,=4&o therefore follows from the maximality property (frop-
osition 1.4 of Chapter IV in [3]) of ko.

A further class of harmonic functions that one might consider is the set of
multiply harmonic functions. Here we immediately conclude for example from the

one-dimensional (complex) case :

15
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Proposition 6.4. Let q denote the distance defined on the polydisc

{(zr, ..',zn\€C; lz,l=1, i:1,...,n} by the positiae multiply hatmonic functions and
let d be the corresponding Harnack distance, Then we haae

sQ, O : 2d(2,0 :2[ö(zr, (r)*... *ö(z*, (,)1,

where z:(zt, ...,2o), (:((r, ...,(,) and U-ärr.

Turning finally to differential equations other than the Laplace equation, we
only recall that the Harnack inequality (6.1) holds for instance for the positive
C2-solutions of any linear elliptic partial differential equation of second order,
provided the coefficients are locally Hölder-continuous. More generally, if (Q, lf,)
denotes any harmonic space in the sense of M.'Brelot, the positive harmonic func-
tions /f,+(Q) satisfy the Harnack inequality.

Remark. It is important to note that in case (O, tr) denotes a harmonic
space in the sense of M. Brelot and E a (strict§) positive continuous function on O,
the distance Qa,x* defined with respect to sf,+(Q) does not change if one replaces
the sheaf tr by the quotient sheaf lf,r:{hlE: h€#}. This sheds some light on
Theorem 4.1.

It is known that on any Riemannian manifold the C2-solutions of the cor-
responding Laplace-Beltrami equation define a harmonic space in the sense of
M. Brelot. An interesting example of such an equation is the so-called Weiwtein
equation,

(6.t2)

defined on the upper half-space Hn @=3). It includes the classical harmonic func-
tions (/r:0), as well as the hyperbolic ones (k:2-n). The proof of the following
result will appear in [6].

Proposition 6.5. Let q denote the distance defined on Hn (n>3) by the posi-
tiae Cl-solutions of the Weinstein equation (6.12). Then we haue

(6.13) a - (n- 1+lk- 1l)är,.,

where öu.denotes the Poincarö distance (3,12),

We conclude with the followingtwo remarks:
1) There are interesting connections between qo and the class BMO (O) of

all harmonic functions of bounded mean oscillation, defrned on the domain OcR'.
This topic will be dealt with in [5].

2) Besides the distance qa(Q a domain in R'), it will also be worthwhile to
study the differential metric oj,, defined on OXR, by

(6.14) oo(x,u): sup W, h€/f+@)|-hf(WL. h</f+@t,

Åu**#-o &€R),



On a distance invariant under Möbius transformations in R"

wherc dh(x) denotes the differential of the harmonic function h at the point x€O.
It is easy to see that o' gives rise to a pseudo-distance, which is also invariant under

Möbius transformations.
In case Q:Bn, oo is equal to n times the Poincard differential metric (3.7).

It would be interestin g to charucterize all the domains O in R" whose differential

metric is Riemannian. We also do not know on what domains Q the distance 4o fu

the "integrated form" of oe.
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