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ON A DISTANCE INVARIANT UNDER MOBIUS
TRANSFORMATIONS IN R’

HEINZ LEUTWILER

1. Introduction

The distance referred to in the title is the following: Let 2 be a domain in R”
and set
sup {h(x) : h = 0, harmonic on Q}

h(y)”
(L.1) 0o(x, y) = log
’ {6

h(y)

for all x,y€Q. Then g, defines a (complete) distance on €, provided the positive
harmonic functions separate the points of Q.

In case Q2=B,, the unit ball in R*, g, is — up to a factor n — equal to the
distance function dp , defined by the Poincaré metric ds=2(1—|x||®~1|dx| (Theo-
rem 4.2).

The distance gq has the following invariance property: For any Mobius trans-
formation y, we have g,o(yx, yy)=0o(x,y) for all x,y€Q, where yQ denotes
the image of Q under y (see Theorem 4.1). The invariance of g, is based on a gen-
eralization of Kelvin's transformation to arbitrary Mgbius transformations 7y
(Lemma 2.1).

In Section 3 we establish sharp bounds for the positive harmonic functions
in B, and the upper half-space H,. These will be used in Sections 4 and 5, in the
latter to find an explicit expression for the so-called Harnack distance dy_of B,, a
distance generally introduced by J. Kohn in [4].

The generalization of Definition 1.1 given in Section 6 incorporates other
invariant distances such as the classical Cayley—KIlein distance or the well-known
Carathéodory distance.

: h >0, harmonic on Q}
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2. Transformation-preserving harmonicity

In R” all similarities preserve harmonicity. So, according to Kelvin’s theorem,
does the transformation 7T: h-h, where

- 1 x
@.1) hx) = s b (W) :

The following lemma is based on the observation that, with these two special
cases, any Mobius transformation in R" gives rise to a transformation of this sort.

Recall that the full M&bius group M(R") is the group generated by all simi-
larities together with the inversion

2.2) Jix - xt =

=W-

As in Ahlfors [1], for any y€M(R"), we denote by |y’(x)| the unique positive real
number such that

Y (x)
'——,————EO n).
Gar <0
Here O(n) denotes the orthogonal group and y’(x) the Jacobian matrix of y at the
point x. Observing now that |J’(x)|=|x|~2, (2.1) reads as follows:

(2.3) h(x) = |J7(x)|"-P2h(Jx).

Hence, if y denotes either a similarity or the inversion J, we have the following
result: The transformation

2.4 T,: h—~h, where h(x)=|y/(x)|"22h(yx),

preserves harmonicity. Moreover, if y, and y, are any two Mdbius transformations
with this property, an application of the chain rule shows that the composition y;07,
again has this property.

We therefore conclude that

Lemma 2.1. For any Mobius transformation y€ M(R") the transformation T,
defined by 2.4 preserves harmonicity and positivity.

Of particular interest is the Mobius transformation y, defined for a=0 by
the identity mapping and for each a€R” with O<|a|<1 by

(I-la])(x=a)—|x—a]a
1-2ax+[al?[x[* 7

(2.5) Ya(x) =

where ax:=a,;x;+...+4a,x, denotes the usual scalar product (see Ahlfors [1]).
The transformation y, maps the unit ball B, onto itself, thereby sending the point a
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into zero. Actually the most general y€M(R" satisfying these conditions is of the
form ky,, where k€O(n), as shown in [1].
According to [1] (Chapter II, formula 30), we have

bent 1—[a|? __ 1-]al?
(2.6) @l = T2axt oo = TaFl—F

where a*=a/|a]|? (a=0).
An application of Lemma 2.1 therefore yields the following result, which can
also be verified directly:

Corollary 2.2. Let y,, O<|lall<1, denote the Mébius transformation defined
by (2.5). Then the transformation T,: h—h, where

1

= m‘,;‘:g‘h()’ax) (x€B,),

.7 h(x)

maps one positive harmonic function on the unit ball B, into another.

Remark. In order to have a better insight into Lemma 2.1, we introduce for
any y€M(R") and any C2function » on QCR” the notion u,, defined by

(2.8) u,(¥) = [y (DI Pupx)  (x€y71Q).

Denoting the Laplace operator (9%/0x%)+...+(02/0x2) by 4 as usual, we claim that
for any C2-function u on Q we have

(2.9) A(u) = [y'(du),.

The proof again consists in showing that if formula (2.9) holds for y,, y,€ M(R")
(for all ueC?(Q)), it also holds for the composition y,07,. We there use the fact
that uy1°y==(uyl)y'.

3. Sharp bounds for positive harmonic functions in B, and H,

We shall now use Lemma 2.1 in order to find sharp bounds for the quotients
h(x)/h(y) if h ranges over all positive harmonic functions, defined on the unit ball
B,, or the upper half space H,:={(xy, ..., x,): x,>0}, respectively. In order to
avoid duplication we shall, however, set it up in such a way that it also serves the
purpose of the next section.

Let Q be a domain in R* (n=2) and set for x, yeQ

3.1 Dy (x, y) =logsup {% h = 0, harmonic on Q}
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Then we have

(3.2 e—Daln,x) = YTEo) = eDax»)

h(x)
6
for all positive harmonic functions £ on @ and all x,yc€Q. Furthermore, both

bounds are attained.

Lemma 3.1. Let y be a Mébius transformation, mapping a domain QCR" onto
a domain Q. Then we have

3.3) Do(x, ) = Da(yx, ) +— log
Jor all x,ycQ.

Iy’ ()]
Iy )l

Proof. Let u=>0 be harmonic on & and set

h(2) =y D" 2Pu(yz) (2€9Q).

Then, on account of Lemma 2.1, h is harmonic on Q.

From
u(yx) = eDg(vx,vy)
u(yy)
we conclude that
h(x) = Patxm) ( [y’ (x)] ](n—z)/z.
hO) ~ Iy Ol

Since the upper bound on the right is actually attained, Lemma 3.1 follows.
Choosing Q=B,, the unit ball in R”, the classical Harnack inequality

1+ x]

(€X)) h(x) = =D~ h@©) (x€B,),
valid for all A=0, harmonic on B,, results in

14|
(3.5) D(x,0) = Dg (x,0) = log =y

In order to determine D for any pair of points (x, y)€éB,XB,, we apply the Mobius
transformation y, defined in (2.5) (with a replaced by y). According to Lemma 3.1
we then have

— n—2 h’y(x)l
D(x, y) = D(y,x, 0)+ 5 log a0
14y, x| 2 by, ()

= log o ST+ e

But [ly,xll=lx—yl/lx,y], where [x,y*=1-2xy+[x]|*|y|* (see [1], ChapterII,
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formula 32). Inserting this and the expression (2.6) for |y,(x)| we find that

(Ix, Y1+ Ix =y (1 =y} -2
(be, y1=lx— yll)"‘ )

Using the identity (1—|x]|2(1 =yl =[x, y]*— |x—yl|?, we get the more convenient
expression

60 Dute) = Flos ISt M g T

D(x, y) =log

Summarizing we have

Theorem 3.2. Every positive harmonic function h on the unit ball B, (n=2)
satisfies the sharp inequality

[Vl —2xy+[x[PIylP—]x— ] }"’2( 1—yl? ]("'2”2
VI=2xy+[x[*|yl*+]x—l 1= |lx|?

_h® _ [ VT=2xy + [xPly[P+]x~y] "’2[ l—llyllz)(”"”’2
hO) T WY T=2xy + Xy - |x -yl I=x)®
for arbitrary x, y€B,.

We emphasize that in this double inequality both sides are attained.
Introducing the distance function 6, with respect to the Poincaré metric

2| dx]
1—]x[®

3.7 ds =

i.e., the function

(3-8) 5(.7&', y) = 5Bn(x9 y) =

(x€B,),

V1=2xy+[xPlyl*+]x— i
V1=2xy+[x[*]y[*—lx—yl
the inequality in Theorem 3.2 can also be written as follows:
(3.9) e~ D=y (__.1 —ly[? )(n_m = hx) = /D) [L:ﬂlﬂi)(n_m .
1—]x[? h(y) 1—|x|?

This form is especially convenient if one wants to transfer the estimate to the upper
half-space H,.
To this end we consider the Md&bius transformation y defined by

(x, y€B,),

(3.10) 7(%) = T

1
————W(le, e 2Xpo1s L= [X]%), X = (%, ..0s X)),
where e, denotes the n'® coordinate vector. It maps B, bijectively onto H,. Intro-
ducing the distance 6, defined in H, by the Poincaré metric

(3.11) as =144 (.. 2)eH,,

Zn
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i.e., the function

(3.12) 5, () = log L=l +]u—0]

lu—a] —Ju—v]

where u,v€H,, u=(uy, ...,u,), v=(vy,...,»,) and 17=(vl,...,vn_1, -2,), we
know that

(3.13) 05, (x, ) = 0y, (yx, 7y)

for all x,y€B,.
The application of Lemma 3.1 now yields

n—2 ly’ ()|
Dy (x, y) = Dy (yx, yy)+ log -—— .

Since [y'(x)|=2|x—e,|~% we conclude from (3.6) and (3.8) that

P ) = S5+ 52 g L

Hence, setting u=yx, v=yy, we infer from (3.10) and (3.13) that

n-—2 log L2
2 %8 u,

(3.14) Dy, (1, 0) = 5 b, (1 0) +
So we have proved

Theorem 3.3. Every positive harmonic function h on the upper half-space H,
(n=2) satisfies the sharp inequality

=31 =l =yl \"* (22 )" _ @) _ (lx=31+]x—p] \* (32"
(le—i|l+l!x—yll) (x) = h(») :[ux—yn_ﬁx_y”) (x—] ’
for arbitrary x=(x1’ RRRE] xn)a y=(y19 Ty yn)EH,,.

4. The invariant distance g,

The function Dy(x,y), defined under (3.1) for an arbitrary domain QcR”
(n=2), is nonnegative and satisfies the triangle inequality: For all x,y,z€Q we
have Dg(x,z)=Dg(x, y)+Do(y, z). However, it is not necessarily symmetric. We
therefore consider the sum

4.1 0a(%, ¥) = Do(x, ) +Dg(y, x)

for x, y€Q. Then g, defines a pseudo-distance, which of course can also be intro-
duced by (1.1).

It is a distance if and only if the positive harmonic functions on Q separate the
points. If the latter is the case, then in fact g, defines a complete distance, which
always induces the euclidean topology on € (see the remark in Section 5).
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The main feature of this seemingly new distance is, as already mentioned in
the introduction, the following invariance property:

Theorem 4.1. For any Mobius transformation y mapping a domain QcR"
onto a domain G we have

(4.2) 0o (%, ) = 0a(yx,y)
Sfor all x, ycQ.

Proof. Immediate consequence of Lemma 3.1 and Definition (4.1).
From (3.6) and (3.8) we conclude
Theorem 4.2. In the unit ball B, (n=2) we have
(43 s, = ndg,,
where 0 B, denotes the Poincaré distance (3.8).
Analogously we infer from (3.14):
Theorem 4.3. In the upper half-space H, (n=2) we have
(4.9) 0w, = Noy,,,

where 3, denotes the Poincaré distance (3.12).

In R' the harmonic functions are the affine-linear ones. Defining the Poincaré
distance on the open interval (—1, 1) as in (3.7) by the differential 2(1—x%)~1|dx],
Theorem 4.2 remains true for the case n=1. Indeed, considered on the open interval
I=(a, b), the positive affine-linear functions define the distance function

xX—a

X
Ql(xa y) = lOg = IlOg (x: Y, a, b)l’

y—a

y—b
where (x,y, a,b) denotes the cross-ratio of the four points x, y, a, b. This is not
surprising, since in the case of the unit disc in R2, the Poincaré distance can also
be defined as a cross-ratio:

05, (%, ) = llog (x, y, &, ).

Here x, y€B, and ¢ and 5 denote the points on the unit circle C lying also on the
circle orthogonal to C, and passing through the points x and y (see e.g. [1], Chapter I,
and Chapter II for an extension to B,).

It is an obvious but important fact that for any two domains @, and Q,cR”
(n=2) we have

4.5) Q, C Q= 0,(x,y) = 0g,(x,y), for all x,yeQ,.
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Consequently, we find for example that for any mapping f which maps B, onto a
subdomain Q of B, and satisfies the condition

4.6) 02(F(x), f(1)) = s, (%, ¥)(= ndp, (%, )
for all x, y€B,, we have
4.7 85, (f(), f(0) = 65,(x,¥) (x,YEB,).

If, in addition, f(0)=0, it follows from the monotonicity of the function
r—~éy (r, 0) that

4.8) LGl = I,

for all x€B,.
Assuming further that the function f which maps B, onto the subdomain Q
of B, and satisfies (4.6) is differentiable, we infer from (4.7) that for all x€B,

@9) ool = AL

Here, as usual, we define the norm of the Jacobian matrix A=f"(x) by [A4l=
=sup {||4v]: v€R", |l =1}.

In case n=2, the condition (4.6) is automatically satisfied, provided f is holo-
morphic. Indeed, given any nonconstant holomorphic function f: B,—~B,, we know
that its image Q=f(B,) is open. Furthermore, for every positive harmonic function
h on Q the composition ho f is positive and harmonic on B,, so that (4.6) follows
immediately from Definition (4.1). The inequalities (4.7)—(4.9) therefore imply
Schwarz’s lemma.

In R* (n=3), (4.6) is satisfied, according to Theorem 4.1, at least if f denotes
a Mdbius transformation which maps B, into B,.

5. The Harnack distance

Another possibility to “symmetrize” the function Dg(x,y), defined in Sec-
tion 3 for an arbitrary domain QcR”" (n=2), is to set

(5'1) dﬂ(x: )’) = max [Dﬂ(x9 y), Dﬂ(ya x)]

for x, y€Q. Then d,, defines a pseudo distance already introduced by J. K&hn [4]
under the name Harnack (pseudo-) distance for Q. Indeed, for all x, y€Q, we have

(5.2) do(x, y) = loginf{a|% = Z—%;— =a: VhGéi’*(Q)}

= sup {llog h(x)~log h(»)|: hE#+(@D)},

where #*(Q) denotes the set of positive harmonic functions on Q.
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From the inequality max (a, b)=a+b=2 max (a, b), valid for all positive
real numbers a, b, we immediately deduce

Lemma 5.1. On every domain Q in R", the pseudo-distances gq and dg are
equivalent. More precisely, we have

(5.3) dg = 00 =2dg.
Remark. In [4] (Korollar 3) it has been shown that in case the positive har-
monic functions separate the points of Q, d, defines a complete metric which induces

the usual topology on Q. Consequently, by Lemma 5.1, the same is true for the
distance g,. Combining (5.3) with (4.2) yields

Corollary 5.2. Let y be a Mébius transformation, mapping a domain QCR"
onto a domain Q. Then

Ldo(x, ) = da(yx, yp) = 2dg(x, )
for all x, yeQ.

On the other hand, it follows from Lemma 5.1 and Theorem 4.2 (and Theo-
rem 4.3) that in B, (and H,) the Harnack distance d, (and dy ) is equivalent to the
Poincaré distance 5 (and d, ). More precisely, we have
n

(5.4) .

0p, = dg, = ndg,, respectively —;—61," =dy, = noy,.

On account of (3.6) and (3.14) we can in fact explicitly compute dp and dy .
Theorem 5.3. The Harnack distance dy_of the unit ball B, (n=2) is given by

1-|x|?|

IR

for x,y€B,, whereas the Harnack distance dy_of the upper half space H, (n =2)

is given by

n—2
(5:5) dy, (%, ¥) = 5 65,(x, )+

log

n -2
(5.6) A, (5, ) = 58, (%, )+

b

X,
log—=~
g)’n

where x=(x1, ..., Xp), Y=(V1, ..., VIEH,.

For general domains QCR” with a boundary 0Q#0 we can easily estimate
the Harnack distance from below in terms of the euclidean distance dist (z, Q)
from the point z€Q to the boundary 0Q:

Lemma 5.4. If Q is a proper subdomain of R* (n=3), then

dist (x, 09Q)

67 dg(x, y) = (n—2) log -0 50)

Jor all x,yeQ.

log
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Proof. Let x,y€Q, where w.lo.g. dist (y, 0Q)=dist (x, d2). Choose a point
€O such that || y—p| =dist (y, Q). Then, by definition, we also have dist (x, Q)=
=[x—p|.

Consider next the Newtonian kernel k(z)=|z—p|*~" (zéR™\{p}). Since k is
positive and harmonic on Q, we conclude from (5.2) that

dq(x,y) = log |y —p|*~"—log [ x—p[*~"
= (2—n) log dist (y, Q) +(n — 2) log dist (x, 0Q),

and (5.7) hence follows.
From (5.3) and (5.7) we then get

Corollary 5.5. If Q is a proper subdomain of R* (n=3), then

dist (x, 0Q)

(5.8) 0a(%, y) = (n=2) llog ~oromaey

Jor all x,ycQ.

log

We finally mention that equality holds in (5.7) and (5.8) in case Q=R"\{0}.
Thus both estimates are sharp.

6. A general definition of ¢

In this last section we are going to extend Definition (1.1) of the distance g,
in two ways. On the one hand, it is important to consider additional distances defined
by subsets of the set s#1(Q) of all positive harmonic functions on QcR”", on the
other hand it becomes necessary to incorporate, besides the Laplace equation, further
partial differential equations.

The most general setting in which our distance makes sense is the following one.
Let Q be an abstract set and & an arbitrary class of (strictly) positive, real-valued
functions, defined on Q, with the property that the following Harnack-type inequal-
ity holds: For any pair of points x, y€ Q there is a constant a=a(x, y)=0 such that

(6.1) h(x) = ah(y)
for all he #.

Definition. For all x, y€Q we set

h(x) .

sup {W hEg"}

(6°2) Qn,f(xs y) = log h(x)
'nf{

- hég"}
h(y)

Then ¢, 5 defines a pseudo-distance, which is a distance if and only if the family #
separates the points of Q (linearly if 1¢%).
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Parallel to ¢, 5 we also introduce the Harnack pseudo-distance

. 1 h(x
6.3) dg, #(x, y) = loginf {a: - = 71—%% =aq, Vhe.?'"},
already introduced in this generality by J. Kéhn in [4]. It is clear that again ¢q &
and d, & are equivalent pseudo-distances. Also, many properties proved in [4] for
do, 7 remain true for gq &. Observing for example that for any two families %

and %, of positive functions on €, satisfying the condition (6.1), we have
6.9 FICH, = 00,7, = 00,5,

we immediately conclude that the following generalization of the “principle of hyper-
bolic length” must hold:

Lemma 6.1. Let (%) denote a class of positive functions, defined on some
abstract set Q (Q). Assume further that ¥ and % satisfy (6.1). Then, for any
mapping F: Q- with the property that for each h¢ %, hoF is an element of &,
we have

(6'5) QQ}[F(X), F(y)] = QQ,?(x: y)
for all x,yeQ.

Our first choice for a subset of the classical harmonic functions is the family
of all positive, affine functions on a convex domain QcR”. Here we have basically
the same situation as in the one-dimensional case treated in Section 4.

Theorem 6.2. Let Q be a convex open subset of R", containing no straight line,
and let F be the set of positive affine functions on Q. Then we have

(6.6) 00,7 (x,y) = |log (x, y, a, b)|,

where (x,y, a, b) denotes the cross-ratio of x, y€Q and the points a, b, in which the
straight line through x and y intersects the boundary 0%.

Clearly, in case the straight line through x and y has only one intersection point,
say a, we set b=-o.

Proof. Let g denote the straight line passing through the points x,y€Q. On
account of what has been said in Section 4 about the one-dimensional case it clearly
suffices to show that every non-constant, affine function / on g, which is positive
on gnQ, is the restriction of an affine function on R”, which is positive on Q.
To this end we consider the supporting hyperplane E for the convex set Q in that
intersection point a or b€0RQ, in which / assumes the smaller value. The unique
affine function on R" which extends / and is constant on E then has the desired
properties.

For the case where QCR? is defined by a conic, the distance (6.6) has already
been introduced by Cayley in 1859. However, it was F. Klein (see his collected
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works) who noticed in 1871 that if Q denotes the unit disc, the distance (6.6) agrees
— up to a constant factor — with the non-euclidean metric used in his (non-con-
formal) model of hyperbolic geometry. Therefore, transforming this distance with
the aid of the mapping {=z/(1+}1—|z|?) from B, onto itself, one again gets — up
to a factor 2 — the distance (3.8) (for n=2).

Note also that the distance (6.6) is obviously invariant under projectivities.

Remark. Theorem 6.2 indicates that for any convex lineless subset K of a
linear space V one might also look, besides the so-called part metric (see e.g.
H. S. Bear [2] for its definition), at the following distance function. Let x, y be two
points of the same part of K. We say that the segment [x, y] extends in K by the
pair of positive numbers («, f) if and only if x+a(x—y) and y+p(y—x) are
elements of K. Then

6.7) ok(x, y) =inf {log (1+%]+log (1+%): [x, y] extends in K by (a, B)}
defines a distance on the parts of K which is equivalent to the part metric di. In fact,
we have dy=o0y=2dy, similar to (5.3).

In C" identified with R*, every domain Q has its invariant distance g, defined
according to (1.1) by the set #1(Q) of all positive harmonic functions on Q. This
distance, however, is not invariant under the class of holomorphic mappings on Q.
In order to define a distance of this sort, we must consider a subclass & of #1(Q)
which is invariant under such mappings. Hence a natural choice for % in this situa-
tion is the following one:

6.8) ZF = {Re f|f: @ - C holomorphic, Ref > 0}.

This set & is actually meaningful on any domain Q of a complex manifold M of
dimension n. We therefore formulate the following proposition in this generality.

Proposition 6.3. Let Q be a domain in a complex manifold M of dimension n
and let F be defined as in (6.8). Then we have

6.9 Q0,7 = 2dg,f = 2c¢q,

where cg denotes the classical Carathéodory (pseudo-) distance, defined by

(6.10)  co(x, y) = sup {6,,(f(x), f()|f: € ~ C holomorphic, |f] < 1}
for all x,yeQ.

Proof. Since ¢=2d (analogously to the proof of (5.3)), it suffices to show
that ¢o=2c¢ and d=c.

In order to prove that g¢=2c¢ we take a function f holomorphic on Q with
|fl<l and apply Lemma 6.1 with % ={Reg|g holomorphic on 2, Re g=0},
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Q=B,={z¢C: |z|<1}, F=#"*(B,) and F=f. There results
05,(f(3), /() = e(x, ), for all x,yeQ.
By Theorem 4.2, QB==2(SB=, and hence we have

265,(f(x), ) = (%, »)

for all holomorphic functions f on Q with |f|<1. Consequently, by (6.10), we
must have 2cq,(x, ¥)=0(x, ), for all x, y€Q.

For the proof of the remaining inequality d=c, we first note that for all x, y€ H,
we have

’

8, (%, ¥) = flog 2=

Yn
as we easily conclude from (3.12). In case n=2, this yields the following estimate
for the Poincaré distance Jg, of the right half plane H,={weC: Re w>0}:

Rew,

log Re Wo

5H,(W19 W2) =

for all wy, w,c H,.

Let now g be holomorphic on Q with Re g=0 and denote by ¢ the two-dimen-
sional Mébius transformation w—(w—1)(w+1)~?, which maps the right half-plane
H, onto the unit disc B,. Setting f=¢og yields a holomorphic function f with
| fl<1. Hence, according to Definition (6.10) of c=c,, we have

Re g()
0 —
# Reg()
Setting h=Re g we conclude that e~ *®»=h(x)h(y)"1=e“™? and hence d(x, y)=
c(x,y) for all x,ycQ.
Another reasonable choice for a set &, provided Q is again a domain on a
complex manifold M of dimension n, is the following one:

6.11) &’ = {h|h > 0, pluriharmonic on Q}.

c(x, ¥) = 65,(f(x), f() = 0a,(2(x), () = |1

.

By (6.4) the corresponding pseudo-distance gg, & dominates @q, g, defined with
respect to the set (6.8). On the other hand, gg, &- itself is dominated by a multiple
of the so-called Kobayashi pseudo-distance kq, (see e.g. [3], p. 45, for its definition).
Indeed, on account of Lemma 6.1, every holomorphic mapping f: B,—~Q satisfies
the estimate

00,5 (f(x), f(?)) = ¢5,(x,»), for x,y€B,.

The inequality ggq, & =4k, therefore follows from the maximality property (Prop-
osition 1.4 of Chapter IV in [3]) of kq,.

A further class of harmonic functions that one might consider is the set of
multiply harmonic functions. Here we immediately conclude for example from the
one-dimensional (complex) case:
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Proposition 6.4. Let ¢ denote the distance defined on the polydisc
{z1, ..., 2)EC™: |z <], i=]1, ..., n} by the positive multiply harmonic functions and
let d be the corresponding Harnack distance. Then we have

0(z,0) = 2d(z,0) = 2[6(z1, () + ...+ (2, L)),
where z=(zy, ..., 2,), (=4, ..., () and 5=5B,.

Turning finally to differential equations other than the Laplace equation, we
only recall that the Harnack inequality (6.1) holds for instance for the positive
C?solutions of any linear elliptic partial differential equation of second order,
provided the coefficients are locally Holder-continuous. More generally, if (Q, #)
denotes any harmonic space in the sense of M. Brelot, the positive harmonic func-
tions #*(Q) satisfy the Harnack inequality.

Remark. It is important to note that in case (£, #) denotes a harmonic
space in the sense of M. Brelot and ¢ a (strictly) positive continuous function on @,
the distance ¢, ,. defined with respect to H#*(Q) does not change if one replaces
the sheaf s# by the quotient sheaf #,={h/p: h€ #}. This sheds some light on
Theorem 4.1.

It is known that on any Riemannian manifold the CZsolutions of the cor-
responding Laplace—Beltrami equation define a harmonic space in the sense of
M. Brelot. An interesting example of such an equation is the so-called Weinstein
equation,

k ou
(6.12) Aut—e
defined on the upper half-space H, (n=3). It includes the classical harmonic func-
tions (k=0), as well as the hyperbolic ones (k=2—n). The proof of the following
result will appear in [6].

=0 (k€R),

Proposition 6.5. Let ¢ denote the distance defined on H, (n=3) by the posi-
tive C2-solutions of the Weinstein equation (6.12). Then we have

(6.13) ¢ =(n—1+lk—1))6y,,
where 0y denotes the Poincaré distance (3.12).

We conclude with the following two remarks:
1) There are interesting connections between g, and the class BMO(Q) of
all harmonic functions of bounded mean oscillation, defined on the domain QcR”
This topic will be dealt with in [5].
2) Besides the distance go(2 a domain in R"), it will also be worthwhile to
study the differential metric oq, defined on QXR" by
dh(x)v dh(x)v

(6.14)  0o(x,v) = sup {_h_(z—c)_ hE.%’+(Q)}—inf{ )

he @),
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where dh(x) denotes the differential of the harmonic function h at the point x€®.
It is easy to see that o, gives rise to a pseudo-distance, which is also invariant under
Mébius transformations.

In case Q=B,, ogq is equal to n times the Poincaré differential metric (3.7).
It would be interesting to characterize all the domains Q in R" whose differential
metric is Riemannian. We also do not know on what domains € the distance g is
the “integrated form” of ag.
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