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THE CAPACITY METRIC ON RIEVIANN SURFACES

C. DAVID MINDA

1. Introduction

Let cp(Old(l denote the capacity metric on a Riemann surface. In this paper

two basic facts dealing with this metric are established. First, if f: X*Y is an
analytic mapping of Riemann surfaces, then / is distance decreasing relative to the
capacity metric. For X, Y|Oe, a necessary and sufficient condition that f: X*Y
be an isometry is given:/must be injective and fu(X) must be a closed set of
apacity zero. This condition is obtained from an analogous property of the Green's
function. Let g*, g, denote the Green's function on X, Y, respectively. lf gy:grof,
then /must be as before. The second property of the capacity metric that we derive
is an interpretation of this metric in terms of the reduced modulus of a path family
of cycles homologous to a point. This naturally leads to the question of an analogous
interpretation of other metrics. This question is answered for the Hahn metric by
using the family of closed curves homotopic to a point.

2. Definition of the capacity metric

Let X be a Riemann surface. The customary notation for the capacity metric
on X is cp(Old(|, where B represents the ideal boundary of X. This notation is
not convenient because we have need to consider the capacity metric on several
surfaces simultaneously. In order to clearly indicate the dependence on the surface
X, we shall employ the notation c*(Old(l for the capacity metric on X. Now we
define the capacity metric. Suppose (€X and t is a local parametet in a neigh-
borhood of ( such tbat t(O:O. Let .il{(X) denote the family of all multiple-
valued analytic functions F defined on X such that lFl is single-valued, F19:9
and F'(0:1 for one of the branches. Here F'(0 represents the derivative of Fot-l
at the origin. Set

MlFl: suP lr(z)l'
z(.X

Then ([z], [8, pp. 177-178])
I : min l{1F7,

F€d;6)cxG)
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If c*($>0, then the unique minim2ing function is f}:exp (px*ipi), wherep,
is the capacity function with pole at (. The usual notation for this capactty function
is pp, but we need to indicate the dependence on X.

The condition cx(0:0 is independent of the point (€X [8, p. 178]. The
identical vanishing of the capacity metric c*(Old(l is equivalent to X(Ou fi.
Recall that Oo is the class of Riemann surfaces which do not possess a Green's
function. For c*($>0,

px(z,O : kx(A- gx(2,O,

where g*(2, 0 is the Green's function for X with logarithmic singularity at ( and
k*(O:kp(O is the Robin constant defined by

kr(O : riytrtsxp, 0 +log 1t; 1

[8, p. 55]. Thus, if cx(0=0, then

l&l : exp (px) = kxG')

and MIF*l:kr(fl. Consequently,

cx((\ : exp (- lca($).

If X is a hyperbolic simply connected Riemann surface, then it is elementary to
show that cx(Old(l:Xx(Old(1, where ,1"(0ld(l denotes the hyperbolic metric on
Xwith constant curvature -4. An explicit formula for the carpaoty metric of an
annulus is given in [9].

3. Green's function

In the nontrivial case the definition of the capacity metric involves the Green's
function and the Robin constanL In this section we derive a property of the Green's
function that will be basic in establishing a result for the cr;pac;rty metric in Section 4.
Moreover, this property of the Green's function might be of independent interest.

We begin by recalling a precise form of the Lindelöf principle that was estab-
Iished by Heins [2]. Suppose X,YqOc and f: X*Y is an analytic function.
Then for any a(Y,

cy(f@\, a) : Z r<<t =. n((, f) gx(2, $ * u.(z),

where r. is a nonnegative harmonic function on X and n((,f) is ttre order of /
at the point (. Furthermore, u,has the canonical decomposition u-:q.*s,, where
q. is quasibounded and §, is singular. The following dichotomy holds: either q,>0
for all @QY or else 4r,:6 for all ar€L The function/is said to belong to the class
Bl if gr:g for all «r€f. AIso, sr:0 except possibly for a set of al of capacity
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zero. If r.:0 for all aQY, then/is said to be of type Bä. Set

vy(w): ZroFnn(r,f).

If /is of type Bl, then either v:sup {vy(w): w€I} is flnite and {w: vy(w)=v}

is a closed set of capacity zero or else {w: t y(w)- -} is an Fo set of capacrty zero.

Thus / covers I exactly the same number of times (possibly infinite) except for an

F" set of capacrty zero.If the valence of/is finite, then the exceptional set is closed.

If/is of type Bl1, then vy(w) is constant (possibly infinite).

Recall that the Green's function is a conformal invariant. This means that if
X,YsOc and f: X*Y is a conformal mapping, then sy(f(z),f(A):s*@, $ for

all (2, A€XXX. The following theorem is sort of a converse.

Theorem l. Suppose X,YqOc and f: X*Y is an analyticfunction.If there

exist distinct points, P, e€X such that

sr(f(p),f(q)) - sx(p, q),

then f is injectiae and Y\f(X) is a closed set of capacity zero.

Proof. Webegin by showing that if (l) holds, then f(Q*f@\ for all (e X11r1,

n(q,f):l and gr(f(0,f@)):s*G,4) for all ((X. The sharp form of the Lin-

delöf principle gives

(2) sr!«\,f(q)): )pt=t4tn(z, f)s*(L z)+u(O,

u-uf(et is a nonnegative harmonic function. For C-p equation

gy1@), f(q)) : Z rG)= r(q) n(r, f) gx(p, z) + u(p)

> n(q, f) Ex(p, d + u(p)

z Ex(p, q).

Equation (1) implies that equality holds throughout, so n(q,f):1, u:0 and f(O*
f(q) for all ((x1{4}. Thus, equation (2) becomes

sY(f«),f(q)) - sx(c' q)

for all (eX. lhis establishes the claim made at the beginning of the paragraph.

Now, we complete the proof. From (3) and the symmetry of the Green's func-

tion, we obtain Sv(f@),f(A):g*(q,O for all C(X. The argument given in the

preceding paragraph immediately implies that f(z)*f(O for all zeX\{(},
n(z,f):1 un1

(4) sr(f(r),f(O) : ExQ,0

for all z(X. Brt this also holds for ull (eX. It follows directly that/is injective.

The remainder of the theorem is obtained from the sharp form of the Lindelöf
principle. From equation (4) we conclude that ur:6 for all CI<f(n. In particular,

for (€X, where
(2) yields

(3)
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e.:0 for all aef(x). The dichotomy given in the Lindetöf principle impries that
we actually have q.-0 for all ar€r. Hence,/is of type B/. Because/is injective,
sup {vy(w): w(Yl:1. Then \f(X):{w€Y: v/w)=tl is a closed set of capac-
ity zero.

It is elementary to show that if f: x*Y is injective and \f(x) has capac-
ity zero, then equality holds in (1) for all p, q€X. Just note that f and f§(X)
possess the same Green's function in this situation.

4. Properties of the capacity metric

First, we establish the elementary result that the hyperbolic metric dominates
the capacity metric.

Theorem 2. Let X be a hyperbolic Riemann surface. Then c*(Old$=_lx(Oldfl.
If equality holds at a single point, then X is simply connected.

Proof. There is nothing to prove if X(Oc, so we assume XgOo. Fi* (eX
and a local coordinate t at ( with ,(0:0. Suppose Fx€il{(X) is the unique
extremal function relative to the local coordinate t. Let D denote the open unit
disk and n: D*X an analytic universal covering such that z(0):(. Then
c*(OF*on is a single-valued analytic mapping of D into itself that fixes the origin.
Also, this function vanishes at each point of the set n-'(0.schwarz' lemma gives

cxG)lF;(Ulz'(0)l = 1,

where n'(0) denotes the derivative of ton at the origin. Thus,

cx($ = Uln'(o)l: h(A.
Equality implies that c*(OF*on is a rotation of D about the origin. In particular,
it vanishes just once, so m-r(O:{0}. This implies thatn is univalent, so xmust
be simply connected.

Next, we demonstrate that an analytic function is distance decreasing relative
to the capacity metric.

Theorem 3. suppose x and Y are Riemann surfaces and f: X*y is an anarytic
function. Then

f* (r, (O ld(l) = c *(0 ld(|,

where f*(cr(Old(l) denotes the putl-back to x oia f of the capacity metric on y.
If XqOc and equality holds at a point, then f is injectiae and y\1f(X) is a closed
set of capacity zero.

Proof. Fi* (e X and set a:f(0. Letube a local coordinate at ar with n(«r):6.
lf n((,f)>2, then the pull-back of any metric via/vanishes at (. There is nothing
to prove in this case, so we may assume that n((,f): l. In this situation/is univalent
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in a neighborhood of ( so that t:uof is a local coordinate at ( with l(0:0. Let

/'($ denote the derivative of uofot-l at the origin. Again, there is nothing to
prove if Y€Oe, so we assume cr(ar)=O. Let Fr(.d§(D be the unique extremal

for c"(ro) relative to the local coordinate a. Then (Fr"fllfG)<At(X) so that

1 - ..., - 4\ t t, /Al - MlFrl 1

@ = Ml(F,of)lf, (Ol = ffi @I@or 
cy@)lf'G)l = cx(C).

This establishes the inequality in the theorem.

Next, assume that X|Oo and that equality holds at (. Then Y{Oo and

f(0*0. Since equality holds at (,

exp (- lcr(c1)lf ' «)l : exp (- kx(O)
or 

kv(ar)-log lf'G)l: k*(O'

Also, when equality holds at ( the work in the preceding paragraph shows that
(Fy"fllf(O€At(x) is a minimizing function, so it equals Fy. This gives pa:
prof-loglf(01, or

kx(O - gxQ, A : kr(a) - sr(f(z\,f(A) -loe lf '(Ol,

gx@,e): sr(f(z),fG)).

By applying Theorem l, we obtain the desired conclusion.

Observe that if X€Ou and Y( 06, then Theorem 3 implies that every ana-

lytic function f: X*Y must be constant. Also, if X§Oo,f: X*Y is injective and

f\,f(X) is a closed set of capacity zero, then it is not difficult to show that equality

holds in Theorem 3 at every point of X.

5. Reiluced modulus interpretation of the capacity mehic

We start by defining the reduced modulus of a special type of family of paths

on a Riemann surface that always leads to a metric on the surface.

Let X be a Riemann surface and I a family of paths on X. Suppose (€X
and r is a local coordinate at ( such that ,(0:0. Assume that the range of this
local coordinate contains the disk of radius R centered at the origin. For 0<r<s<4,
assnmethatthefamily,il(r,s)ofclosedJordancurvesinA(r,s):{z€X:r<.lt(z)l<s}
which separate the boundary eomponents is a subset of F. The symbol .{(r)
denotes the set of paths in F which lie in \{zeX: ltQ)l=r}. W" show that
a(rr0)+(ll2n)logr incteases as r decreases, where tt(fir(r)) denotes the
modulus of the path family .{(r). Note that Fg(s)v.il(r,s)cFEQ) for 0=r=
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s<R. Because the families 4G) ana,ilQ,s) have disjoint support [8, p.321]

a(rg?))+M(.il(r, s\) = a(rr1r1).

Now, M(*/(r,s)):(112n) log(s/r) [8, p.325], so that

Define

This quantity is called the reduced modulus of the family F at the point (. The value
ofthe reduced modulus does depend on the choice ofthe local coordinate at (. It is
not difficult to verify that exp (-2nfr(g))ld(l is an invariant form, or metric,
on X; see [4] for analogous results.

Our goal is to express the capacity metric in terms of the reduced modulus of
a path family.

Definition. Let X be a Riemann surface and (€X. A l-cycle c on \{(}
is said to be homologous to ( if for every neighborhood U of (, c is homologous
to a closed Jordan curve in [I\{(} which winds around ( once in the positive
direction. Let lf,, denote the family of all l-cycles on X\{(} that are homolo-
gous to (.

Theorem 4. Let X§Os. Then

c x (0 ld(l : exp (- 2rE fr (/r)) ld(|.

Proof. Fix (€X. It suffices to demonstrate equality at (. In fact, it is enough
to show equality relative to some fixed local coordinate at (. We begin by selecting
a local coordinate that will make it easy to demonstrate equality. Let g(z):g*(2, ()
be the Green's function for X with logarithmic singularity at (. ln a deleted neigh-
borhood of ( let g* denote a harmonic conjugate for g. Of course, g* is not single-

valued; it is only determined up to an additive multiple of 22. However, in a small
neighborhood of ( the function t(z):svp(-Se)-ir*(r)) is a local coordinate
that satisfies ,(O:0. We shall establish equality in terms of this special local
coordinate at (.

Next, assume that X is the interior of a compact bordered Riemann surface X.
Let B((, r):{zQX: lt(z)l'=r}, where r>0 is sufficientlysmall. Assumethat DB((,r)
is positively oriented. Then g is harmonic on I:X\B((r), has the constant value
O on 0X and the constant value log (1/r) on 0B((, r). Thus, ar:g/log (1/r) is
the harmonic measure of 0B((, r) with respect to the surface Y.lt follows that da
is the i-o-reproducing differential for any l-cycle c on Y which is homologous to

M(seG)) +*loss < M(,q€(r)) +*logr.

fr(s): t,i'r' M(se(r)) +*logr.
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LB(q, r) [6, p. 135]. That is,

f "o 
: (o, ila), : [lro x*da

for any squaxe integrable harmonic differential o on Y, where c is as above. The

set of such l-cycles is simply trEQ). A result of Accola [1] implies that

M(tr((r)): lldiuollr'.

By making use of Stokes' theorem, we find that

lldcoll]l - { I r@7* *il dx dY

: -f uurr,,r*a*: ffi'
Consequently, a(/fr(r)): -(ll2n) log r, so that frr(zr):O and

exp(-2nfr(tr)): L.

All that remains is to show that the capacity metric at ( also has the value 1

relative to the local coordinate l. Now,

k*(O : 
1I$ 

(sk, 0+log ltl) : o

since g(a 0: -log lrl, where t:t(z). Thus, c*($:exp (-&x(0):1. This com-

pletes the proof in case X is the interior of a compact bordered Riemann surface.

The general case follows by making use of an exhaustion of X by compact bor-
dered surfaces. This method has been employed frequently, see [4] and other re-

ferences mentioned there. For this reason we omit all details in the general case.

6. Reduced modulus interpretation of other metrics

It is possible to give a similar reduced modulus interpretation of the Hahn

metric. For basic properties of this metric on a Riemann surface, see [5].

Definition, Let X be a Riemann surface and eex. A closed path c on

X\{p} is said to be homotopic to ( if for every neighborhood U of (, c is free§

homotopic to a closed Jordan curve in U\{(} which winds around ( once in the

positive direction. Let /{, denote the family of all closed paths on I1{(} that are

homotopic to (.

Theorem 5. Let X be a Riemann surface. Then Sxf)ld\l:exp(-znfr(t{r\),
where Sy(Old(l denotes the Hahn metric on X.

Proof.In [5] it was shown that Sx«)ld\l:exp (-fr*(A@(l), where fr*(o
denotes the foltowing extremal value. For any hyperbolic simply connected region

31
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Q on X that contains (, frr(A denotes the reduced modulus of O at (. Then

fr*(q 
= 

sup fro(O,

where the supremum is taken over all hyperbolic simply connected regions O on
X that contain (. In [5] the modulus of the annulus {w: r1=lwl=rr) was taken
to be log (rJrr); note the absence of the factor ll2n in front of the logarithm.
Now, it is known that fr*1q1:2nfr(trg) [3], so Theorem 5 is established.

If X is a hyperbolic Riemann surface, then

cx(A W4 = lx()ldcl = sx()ld(|.

Theorems 4 and 5 give reduced modulus interpretations for both the capacity metric
and the Hahn metric. The preceding inequality naturally suggests the following
question: Is there a reduced modulus interpretation of the hyperbolic metric? Of
course, the same question can be asked for other metrics on a Riemann surface.
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