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THE C* IMAGE OF A BROWNIAN MOTION
IN THE PLANE

JUHA OIKKONEN

Abstract. We study the image ¢ (b) of a two-dimensional Brownian motion b under a C*
mapping ¢. A decomposition ¢ (b)=>b,+c, is given. Here ¢, is a slow drift and b, is a process
much like a Brownian motion. Especially, it has a kind of elliptic local behaviour. The method
is to use a nonstandard representation of b given in [4]. This yields a discrete structure describing
b, — and ¢. 1t is shown that a C* mapping ¢ corresponds to such a structure, and we thus obtain
discrete geometrical characterizations of C?, K-quasiconformal or conformal mappings.

Introduction

If ¢: G'~G is nonconstant analytic, b is a Brownian motion and u: G'~R
is harmonic, then it is well-known that @ob is a generalized Brownian motion
(with a new clock but coming out from discs with uniform probability when started
from the center); and where ¢ is injective, uo@~' is harmonic (i.e., the value of
uop~1 at the center of a disc is the average of its values taken on the boundary of
the disc). Broadly speaking, one can say that in this case the local behavior of @ob
and uo@~! is circular.

In this paper we look for similar local behavior while ¢ is only assumed to
be C2 It turns out that there exists in a sense elliptic limiting local behavior. Our
method is to use a discrete conformally invariant nonstandard random walk B gen-
erating a two-dimensional Brownian motion as presented in [4]. Using B, we define
a random walk B, generating ¢ (b) by the discrete relation

@(B(t, »)) = B,(t,®)+C,(t, »),
where the drift C, is the sum
';_ At ZZ;Aot [Dll ¢(B(t’ (D)) _-D22¢(B(ta 0)))].

This is slow when compared to B, and B, because the steps of the latter have length
Y24t (~0). We study the analogy of harmonic measure connected with B,+C,
and the local behavior of this random walk.

Finally, we show how ¢ can be recovered from the discrete structure of B,.
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This gives a discrete characterization for C2-, K-quasiconformal and conformal
mappings.

This paper is a continuation of [4]. For a background in nonstandard measure
theory and other aspects of nonstandard theory of Brownian motion, see [1], [2]
and [3].

1. Basic constructions

We first recall our conformally invariant construction of two dimensional
Brownian motion from [4]. Let HEN®™\N and set N=H!. Denote Adt=1/H
and set T={0, 4¢, ..., H}. Let S be the set of the roots of the equation zV=1.
Define

Q = ST\ = the set of internal sequences (w(4?), w(241), ..., w(H)).

Let 3=(Q, 9, P) be the Loeb space obtained by giving every w€Q the weight
4P=1/|Q|=1/N¥". Analogously, T'=(T, #, M) will be the Loeb space obtained
by giving every €T the weight Az. Recall that this space represents the Lebesgue
measure via the map st~1. The internal random walk B is defined in TXQ by

B(0,0) =0 and B(t+4t, w) = B(t, w)+V24t w(t+40).

Linear interpolation extends B to *[0, H]X Q. Finally, a standard process b is
obtained by b(t, w)=°B(t,w) (=the standard x~B(f,w)) for t€R* and weQ.
Denote B, (f, w)=B(t,w)+x and b (¢, ®)=b(¢, w)+x.

1.1. Proposition ([4]). The process b: R* XQ-R® is a Brownian motion;
Jor P-almost every w, b(-, w) is continuous and B(-, ®) is S-continuous.

We shall work with a bounded domain G’ SR? which, for simplicity, is assumed
to contain 0 and to satisfy the following assumptions made also in [4].

(i): There is a continuous function p: G"\G’—~0G” with p|d0G=id; here G”
is a domain with G’U0dG’ SG”.

(i) If x€*G" and °x€0G, then there are r ,~0 and c,~1/2, for which
an arc of length =c,2zr, of the circle with center x and radius r, is contained in
—*G’". Moreover, the function x—(r,, ¢,) is assumed to be internal.

Discs have these properties; they hold also whenever G’ is C2.

The discrete versions of the interior and boundary of G’ were defined in [4] as

IG’ = {B(t, 0)| t€T, w€Q and B(s, 1)€*G’ as t = s€T}

DG’ = {B(T(w), )| w€Q and T(w) is defined},
where T,(w) is the smallest t€¢T with B,(¢, ®)¢*G’, when such a one exists, and
T(0)=Ty(w).

Next let ¢: G'>G be C? and onto with Jacobian =0 everywhere in G’,
defined in some domain G” with G'cc G”.
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To study the effect of ¢, we define the following analogies of the previous

notions:
B, (0, w) = ¢(0),

B,(t+4t, a) = B,(t, 0)+V241 D, (B(t, ))(w(t+41)).
We also need another internal process, the drift C,(t, 0)=(C,(t, @)1, C,(t, w),) as
C(p(t’ w); = —;‘ At 2::: [Du*go;(B(s, 60)) —Dzz*(Pi(B(S’ w))]
Then let
1,G = {B,(t, )+ C,(t, 0)|tcT, ©€Q and B, (s, w)+C,(s, 0)€*G as t = s€T}
and
D,G = {B,(T,(»), 0)+C,(T,(»), »)|0€Q and T,(w) is defined},

where T,(w) is the smallest €T with B,(7, @)+C,(t, w)¢*G, when such a one
exists.

Basically, B,+C,, I,G and D,G are the @-images of B, IG” and DG’; the only
difference is that the steps have been approximated by the derivative of ¢ and then
corrected by a second order term (see Figure 1).

B, (t+ 41, 0)+Cy(t+41, @)

’ B(t+4t,0)
¢(t +At’ 03) -C,p(t, m)
~ 0mod 24t
B, (1, ) +cq>(t: )
image of C under ’
z - By(t, 0)+C,(t, 0)+Dp(B(5 ®))(z~B(, ))
Figure 1

1.2. Theorem. There is an internal set A with P(4)~1 and *@(B(t, )~
B, (1, 0)+C,(t, w) for w€A when tcT is finite and B(t, w)€IG’'UDG’.

Proof. We use Taylor’s formula representing *@(B(s+4t, w))—*¢(B(s, »))
as in the proof of Theorem 4.2 in [4].
1t suffices to consider the second order term corresponding to ¢;. This has the form

At[ e, (s + 402Dy * @, (B(s, 0))+ 2w, (s + A1) 0, (s + 47) D15 *¢:(B (s, )
+,(s+ 412Dy 0y (B(s, w))]
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(where w=(w;, ®,)). If w=w(s+4t) is taken as a complex number, we have
0= (0+®)/2, w;=(w—®)/2 and |w|*=w®. Thus

wi= %—w2+%cﬁg+%lwlz,

1 1 _
W0y = 70)2—? @2,
and

wi= %co2+71{c7)2———21— |w|2

As in 4.2 of [4], the sums of terms corresponding to w? or @? are liftings of infini-
tesimal stochastic integrals of nonanticipating integrands, because z—z? and z-Zz?
preserve uniform probability measure on {z||z|=1}.

What remains up to =0, when the terms corresponding to s=0, ..., 1 — At
are summed, is

% 4t 3 :;ﬂ’ [Du*‘Pi(B (s, @) —Dzz*q’i(B G, w)]. O

Remark. If ¢ is conformal, complex derivatives are available and it follows
from Taylor’s formula of second order that the drift c, vanishes (see the proof of
Theorem 4.2 in [4]).

The internal random walk B,+C, on (9, *#(Q), P) can be extended from
TXQ to *[0, H]XQ by linear interpolation. Then we get standard processes
b,: R*XQ~R? and ¢,: R* XQ-R® by

b,(t, ) = °B,(t,w) and c,(t, w) =°C,(t, ).

To define versions of B,+C, and b,-+c, started from a given point, we must be
a bit more careful than with B and b. If x=B,(t', ®)+C,(t', ®)EI,G, t’ finite,
and w’€A4 with 4 as in 1.2, we set

(Bp+Cp)(t, w) = B,(t' +1t, )+ C, (' +1, "),

where 0”(5)=w’(s) as s=t’ and 0”(t’+5)=w(s) as s=t. Thus B, (¢, @) will
be defined at least for all finite ¢ (and for all 7€T if B,(¢’+t, »”) is understood in
the obvious way for all 7).

If x€G is standard and x~x’€I,G, then we define

(bp+ ) (1, @) = °(B, (1, )+ C, (t, ®)),.

Several basic properties of these notions are collected in the following lemma:

1.3. Lemma. (i) The definition of (B,+C,), does not depend on the choice
of o’'.
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(ii) If x€G, then x=B,(t, w)+C,(t, ®) for some finite €T and some @WEQ.

(ii) If x, y€I,G and x=y, then (B,+C,),(t, ®)~(B,+C,),(t, w); especially
(bp+cp)x is correctly defined.

(>iv) °B(t, w)€G” if and only if °B,(t, w)€G.

(V) There is a finite constant k with |C,(t, w)|=k-t.

i) ¢(b.(t, @)=(b,(t, W))+c,(t, ®))gexy Jor P-a.a. o.

(vii) t,(@)=1,, ox)(@) for P-aa. w, where t, and t, o are the times of the
first exits of b, and (b,+¢p)pxy Jrom G' and G, respectively.
(viil) ¢, (t, @)= [4 [Dp@(b(s, ®))—Day0(b(s, ®))] ds for P-a.a. w.

Proof. Apply the arguments of [4]. Some remarks:
(ii) This follows from the analogous fact about G’ and B (i.e., standard
properties of Brownian motion).
(iii) Straightforward induction.
(iv) Straightforward induction.
(vi) Use the same for B and the continuity of ¢.
(vii) Follows from (v) and (vi).
(viii) Follows from the nonstandard representation of Lebesgue measure in the
case B(., ) is continuous. [

The most important part of this is the representation

@ (b(t, w)) = b, (1, w)+c, (¢, @).

Like (B,+C,),, we can of course define B, , and b, =B, ., x~x" and
x’ is of the form B,(¢’, ). If £,  is the time of the first exit of b, ., we have the
following result.

1.4. Theorem. For x€G, the process b, . is a martingale, i.e., a Markov

process with
x = Eb, (t,,(®), ®) dP.

Proof. The Markov property is obvious. We prove the other property by
proving a similar result (that B, , is a hypermartingale) for the discrete version.
Consider B, .. The sets 4, are defined recursively as follows: A4,={x} and 4.4
is obtained from A4, by replacing every point

B, .(t, 0)€4,n1,G
with all the possible values of B, .(t+4¢t, w) and taking these to 4,4 4; if
B, (1, ©)€4,nD, G,

then B,, .(t, ) is taken t0 A, . Intuitively, 4, tells where By, , can be at time .
Clearly,
Ag = {Bw-x(T«p.x(w)’ W)ICOEQ}.
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An induction over ¢ shows that the average over w of 4, is always x. So
EB, (T,,(®), »)dP = x. O
A similar proof gives

1.5. Theorem. For x€G’,
(P(x) =E [¢(bx(tx(w)’ CO)) _f;x(m) [Du(D(bx(s, (D))—D%(p(bx(s, CO))] dS] dP.

The process B,+C, has the following invariance property.

1.6. Theorem. If Y: G—G, is C? then there is an internal set ASQ with
P(A)=~1 and

*lp (Bcp(t’ CD)+C¢(t, CO)) =~ Bq/; o.p(t, w)+C¢o¢(t9 CO)
for finite t€T and wcA. (The Jacobian of Y is assumed to be #0.)

Proof. By 1.2, *lﬁ(B¢+C¢)z*l[/(*(p(B))=*(lp0(p)(B) and B¢°¢+C¢°¢z
*(Yo@)(B), P almost always.

Remark. In this chapter we did not need D,G, wherefore it was enough
to assume that ¢ is defined in G’; in the following chapter we shall need ¢ also on
the boundary.

2. Images of harmonic measures

In [4] we showed how the discrete analogy of Brownian motion provides a
pleasant way of looking at harmonic measures. Here we similarly study measures
connected to b,. We assume throughout this chapter that ¢ is one to one.

Let x€I,G. The internal ¢-harmonic measure M, . on D,G is defined by the

weights
AM,, () = P({0|(B,+ Cp).(T,, (@), 0) = 3})

for yeD,G. Here T, , is the time of the first exit of (B,+C,),. The correspond-
ing Loeb-measure on D,G, M,, ., is called the discrete @-harmonic measure. Recall
that the internal harmonic measure M,, and the discrete harmonic measure M.,
x’€IG’, were defined similarly in [4]. By analogy with the construction of harmonic
measure 4., x'€G’, define the p-harmonic measure p,, ., x€G, by

Ho,x(C) = M, (st71(C)),
whenever the right side is defined.
Here CS0G and st~*(C)={z¢D,G|°z¢C}. Especially, p,, ,(C) is defined
for Borel sets (see [4]).
Let next f: 0G—R be continuous. Actually, it suffices to assume that f has
a lifting F with respect to the measures M, . (see [4]). It corresponds to a con-
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tinuous function g=fo(¢|dG’) defined on dG’. We can extend *f'to D,G by letting
*(By (T, (), 0) +C, (T, (), ) = *f(B, (1, 0) +C, (1, w)),
where t€*[T,(w)—4t, T,(w)] satisfies By (f, @) +C,(t, w)€*G.

Remark. Using this trick, one could eliminate the assumption concerning
the projection p (also from Chapter 2 of [4]), when continuous boundary values are
considered.

After these remarks we define

u(x) =faGfd,u¢,x for x€G;
Ux) = 2,6 fAM,,, for x€I,G.

These are like their analogies in [4] and so is the proof of the following list of basic
properties.

2.1. Theorem. (i) If x€I,G, then °U(x)=u(’x); especially, u is continuous
and U is S-continuous.
@ii) If x€I,G, then

U(x) = E(f(By+Cpo(Ty, (@), ) dP.
(iii) If x€G, then
U(x) = E(f(by+p)s(lp, (), @) dP.

(iv) If x€I,G and °x€dG, then U(x)~f(’x).
V) If y€0G, then u(x)—~f(y) as x—y inG.
Let ¥ and » be defined as

V(x) = Z’DG' *gAMx
o() = [, 8
where g is the continuous function on dG” defined as g=fo(¢|0G").

2.2. Theorem. (i) If B(t, w)€IG’, then
V(B(t, ) =~ U(B,(t, ®)+C,(t, ®));

and

(i) uop=v;
(iii) vop~'=u.

Proof. (i) Because °B(t’, 0)€G’ if and only if °B,(¢’, ®")+°C,(¢’, 0 )EG by
1.3, also
x =°B(, w)€dG’, if and only if y =°B,(t, ®)+°C,(t, ®)€IG.
In this case ¢@(x)=y, and hence
(+) *2(B(t', o)) ~ g(x) = f() = f(Bo(t', @) +Cp(t", @)
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as B(t,0)€DG and B,(t",0)+C,t", @', €D,G. If (+) is applied to the
definitions of ¥ and U, we get (i).
Assertions (ii) and (iii) follow from (i).

Remark. The result implies that, given continuous boundary values, B,+C,
generates a function # which is an extremal with respect to a variational integral
I, corresponding to ¢ and the Dirichlet integral in G’; hence u is F-harmonic.

3. Local behavior of ¢ob

The characteristic feature of b and a harmonic function » is that they are circular
in the following sense:

when started from the center of a disc, b comes out with uniform probability;

the value of v at the center of a disc is the (uniform) average of values taken on
the boundary.

Moreover, if ¢ is conformal (or just nonconstant analytic), also ¢@ob, and
vop~! with ¢ one to one, have the same properties. Here we look for a similar
local description of b, and u=vo@~! in the more general situation considered in
this paper.

If E is a domain whose boundary is an ellipse, then the elliptic measure, p,,
on JE is obtained from the uniform probability measure on the circumscribed
circle by projection along the shorter axis of dE. (See the figure below.)

%
Nt

We shall show that if E is the image of the unit disc with center at x under
XDy (x)(x’—Xx), then pu, represents the behavior of gob and u=vop~! at ¢(x)
in two senses.

Let B,+C, and U be as in the previous chapter. Then the distribution of
B, (t+4t, 0)+C,(t+4t, ) is like p, for x=B(f, w), and actually generates u,
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via an obvious Loeb measure construction. Also,

U0) =+ 25,000,

where y=B,(t, w)+C,(t, ) and yy, ..., yy are the possible values of B, (¢+4¢, w)+
C,(t+4t, w). In other words, B,+C, and U behave locally exactly like a discrete
version of pu,. We feel that this form of ellipticity is the more basic one.

The other sense is a limiting one. Some notation is needed for it. Fix x€G’
and let #=0. Denote

A, =0 |Ix" —x] <1},
B, =%¢4,,
C = {fe()+D "o (x)(x’—x)|x'€4,}.
3.1. Theorem. If ¢ is one to one and u=vo =1 withv harmonic, then u(p(x))=
lim, ., [¢ udpy,.
Proof. Let r=~0 and let v be as in Chapter 2. By harmonicity,

— — * — *
u(p(x)) = v(x) = fA, vdp = fBr udp,,
where p is the uniform probability measure on 4, and p, is its image on B,.

Claim. With notation as above, [, *udu,~ [ *udy,.
If the claim holds, we have

wlo@) ~ [ *udp,.
Thus for standard eé=0 and r=0,
(o)~ [ *udn,

This implies the result of the theorem by overflow. So it is enough to prove the
claim.

< &.

Xiv1 X

Figure 3
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Consider the points x-+rscAd, for s€S. List these as x, ..., x5 in the posi-
tive direction starting from x;=x+4r-(1,0). Let y;=¢(x)+D,(x)(x;—x), and let
¥yi=¢(x) and y,,...,yy be chosen such that the u,-measure of the arc of B,
between y; and y;,, equals the p.-measure of the arc between y; and y;,, of C,.
(Actually, y;=¢(x).)

We compare the integrals on the arcs (y;, ;41 and (y;, y;,,). Because these
have the same measure, it is enough to compare the integrands. But since ¢ is dif-
ferentiable and r=~0, we obtain a uniform bound 6a0 not depending on i for
[*u(y)—*u(y")], where y€arc(y;,y;4+1) and y’€arc(yj, y;,,). Thus

Ifc, *u d‘u"—fzz, *u dﬂ"l = farc(vuym) dp, =~ 0,

where the indices are understood mod N. This completes the proof.

A standard calculation gives the following corollary which needs some nota-
tion. The exits of b, ,xy+Cp,py from C, generate a @-subharmonic measure
Ho,o(0,c, 00 OC,. This homothetically generates a measure on 9C, , which will be

denoted by p, . .
3.2. Corollary. If ASOC, is Borel, then
o) = B ().

Theorem 3.1 and Corollary 3.2 are generalizations of a classical result about
analytic functions.

4. A construction of a C*-mapping from its derivative

In this chapter we shall show how ¢ can be recovered from our representa-
tion of the image of a Brownian motion under ¢; i.e., essentially from the deriva-
tive of ¢.

It turns out to be important to be able to discuss all w€Q, not just almost all
as is the case in Theorem 1.2. For this reason we define D, to be the sum of those
second order terms (corresponding to s=0, ..., t — At) omitted in the definition of
C,. Let G, G and ¢ be as before.

4.1. Lemma. If t€T is finite and B(t, 0)€IG'UDG’, then *@(B(t, )~
B, (1, 0)+C,(t, ®)+D,(t, w).

The assertion follows essentially from the proof of Theorem of 1.2.

The main concept in this chapter is an abstract version of the representation
B,+C,+D,.

An elliptic structure L on G consists of an element z,cG and a family of linear
mappings L,, where the mappings adjoin to x, the coefficients of L, are finite
and have finite S-continuous partial derivatives, and which satisfy conditions (i}—(iv)
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below. Before the conditions we shall define some notation. First an analogy of B,:
B0, ») = zp;
B(t+4t, 0) = B(t, 0) +V241 Ly, 5y (t + i),

when Ly, ., is defined. Similarly, C and D are analogies of C, and D, and they
are defined as follows: C=(C,, C,) and D=(D,, D,) where

Ci(t, 0) = + At ST (s, 0) —LP(s, 0)];
and

Butt, ) = At 34 (L 1G5, )+ L2, )+ L2 (s, )| s+ A2
4 4

s=0
+4t 3 [-‘IT L1 (s, ) — L (s, w) + -4-1‘— LE(s, a))) @ (s+ A1),

when all the terms appearing in the sums are defined; here L (s, w) denotes the
(s—)derivative along the 1’th coordinate axis of the coefficient of Ly, ) in the same
place as D,¢; is in the Jacobian of a function ¢: R*-R2 The conditions are:
(i) if Lpg,o) is defined and t>s€T, then Ly, is defined;

(ii) if Lpg, o) is defined, then B(s, w)+C(s, w)+D(s, w) is defined and lies
in *G when t+A4t=s€T;

(iii) for all x€G there is (¢, ) with B(f, ®)+C(t, w)+D(t, w) defined
and =~x;

(v) if B(t, 0)+C(t, w)+D(t,w) and B(t, @)+C(, 0)+D(t', ') are
defined and B(f, w)=~B(t’, »’), then

B@t, 0)+C(t, )+ D, 0) =~ B(¢', 0)+C(, o)+ D(7, o).

The elliptic structure (L,, o) is an elliptic G’-structure, if in addition

W) B(t, 0)+C(t, 0)+D(t, w) is defined, if and only if B(f, @)€IG'UDG’.

The name elliptic structure refers to the fact that the image of the unit circle
under a linear mapping is an ellipse. (See also Figure 1.)

An elliptic structure is K-quasiconformal if the eccentricity of the image of
the unit circle under each L, lies between 1/K and K. The structure is conformal,
if all these ellipses are circles.

4.1. Example. The representation of ¢(b(#, w)) in terms of B,+C,(+D,)
is an elliptic G-structure. It is K-quasiconformal or conformal, if ¢ is.
The converse holds in the following sense.

4.2. Theorem. If L is an elliptic G’-structure on G, then there is a C*-mapping
¢@: G'~G onto with
(i) @(°B(t, @))=B(t, w)+°C(t, w) for all finite t€T and almost all »;
(ii) Dp(°B(t, ®))="Lp,a)
(iii) if L is K-quasiconformal or conformal, then ¢ is, too.
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Proof. Define
e(°B(t, w)) = °B(t, 0) +°C(t, w)+°D (1, w),

¢ finite. Because B comes infinitesimally close to every x€G’, ¢ is defined for all
x€G’. Condition (iv) implies that the definition of ¢ does not depend on the choice
of t and w. We prove assertion (ii); it follows then directly from the assumptions that
¢ is C? and that assertion (iii) holds. Finally, assertion (i) follows from the argument
of the proof of Theorem 1.2.

Let x,€G” and x;~x;=B(t, w)€IG’. Thus

¢ (%) = B(t, 0)+°C(t, 0)+°D (¢, w).

We consider first some fixed s€S and the half-line x{+hs, h=0. For x"=x|+
1Y24t on this half-line, let

F(x") = B(t+kdt, o)+ C(t+kAt, o)+ D (t +k4t, o),

where o’(t)=w(?) for =t and w'(t)=s as t’>t. If x"=x]+ky24t and
kV24t~0, we have

F(x")— F(x)) = V241 3;_, Lys+(C+D)(t+kAt, o) —(C+D)(t, o)),
where x{=B(t+(i—1)4t, '), o as above. We first observe that
V24t 3, Lys = kY241 Lys +V241 3;_, (Ly—L,)s
=k VELx;+k V24t-a, a=~0
because x;~x;, and hence (Ly; —Ly)s~0, as k Y24¢~0. Next observe that
I(C+D)(t+kt, )~ (C+D)(t, o) = % At-k-a’ = k J24ta”,

where o’ is finite and a”~0. Hence for h=k V24t~0 we have

~ 0.

l—l}; (F(x") - F(x{)) - Lx;s

Given standard ¢>0, overflow gives a standard 6=0 which satisfies for all s€S,

<€

l% F(") = F(x)~Lys

as h=ky24i<4.
Next consider x,€G” with |x,—x;|=h<6. Assume that h is small enough
for the line segment joining x,; and x, to liec in G’. There are s and k with
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Then Lys~(1/h)L, (x,—x,). Because ¢(x)="F(x;) and ¢(xp)= OF (x]+k V24ts)
and h is standard, we obtain

%(fp (%) — @ () — Ly, (2 —x1)| < &

Hence ¢ is differentiable and (ii) holds.

4.3. Remark. If L is the representation B,+C,, then the mapping ¢, con-
structed in the proof of Theorem 4.2 is the original ¢.

Part (ii) of Theorem 4.2 implies that to L and ¢, corresponds a representation
G and DG of G and dG. They can be defined in terms of B+C exactly like I,G
and D,G were defined before. Actually,

1,,G=1G and D,,G = DG.

In a sense, G and DG are the essence of the elliptic structure L.

The following is a continuous analogy of our notion of an elliptic structure.

A stochastic process (with almost all paths continuous) moving in G is called
elliptic if it has the property of b, stated in Corollary 3.2 for some continuously
differential family of linear mappings (i.e., ellipses). Moreover, our elliptic process
is simple if it is defined on R* X Q where Q is as in Chapter 1. (See Keisler [3] for a
discussion of this kind of restrictions.)

Likewise, a continuous function #: G—R is elliptic, if it has the property
stated in Theorem 3.1 for some continuously differentiable family of linear mappings.

An elliptic process or function is K-quasiconformal, if the eccentricities of all
the corresponding ellipses are between 1/K and K. If all the ellipses are circles,
then the elliptic process or function is conformal. In this sense, Brownian motion
and harmonic functions are conformal.

4.4. Example. If L is an elliptic structure on G, then
b=°B+C+D)

is an elliptic process. Elliptic functions # can be defined in terms of expectations
of the values of continuous functions in dG at the exit points of b from G. The same
result is achieved by use of the hyperfinite random walk B+C and a corresponding
hyperfinite lifting. Clearly b and # are K-quasiconformal or conformal, if L is.

On the other hand, the family of linear functions corresponding to an elliptic
process or function gives rise to something very much like an elliptic structure. But
it is possible that condition (iv) fails to hold.

We say that b or @ is unambiguous, if condition (iv) holds, too.

Before putting all our results together, we make the following observation.

4.5. Theorem. If L is an elliptic structure on G, then there is a domain G” for
which L is G"-elliptic.
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Proof. Denote
G” = int {°B(t, w)|(t, w)€dom B and °B(t, w)+°C(t, w)+°D (1, 0)EG}.

Our aim is to show that 5B is G”-elliptic. It suffices to show that actually °B(z, »)€G”
whenever °(B+C+D)(t, )€G. Assume °(B+C+D)(t, w)€éG. Then there is a
standard r=>0 with z€G for |(B+C+D)(t, w)—z|<r. Consider the points
B(t+1t', o) where w,(t)=w(t) for t'<t and w,(t+t")=s for some s€S. There
is some #, with ¢, /24t %0 for which |(B+C +D)(t +1,, o) —(B+C+D)(t, w)|<r. Let

= °m€i§1 t,)24z.
s

It follows that every x with |x—°B(f, w)|<r’ is of the form °B(z+1t’, w,) for some
s€S and t'<i,.
Now we have the following representation theorem.

4.6. Corollary. (i) If L is elliptic on G, then there is a domain G” and a C®-
mapping @: G”—~G onto with properties (i)—(ii) of 4.2. Moreover, ¢ is one to one
if the implication from right to left holds in condition (iv) of the definition of the notion
of an elliptic structure.

(i) If b is simple, elliptic and unambiguous, then B=bq, Jfor a C?mapping ¢.

(iii) If @ is elliptic and unambiguous and if L satisfies the implication from right
to left in condition (iv) of the definition of an elliptic structure, then there is a domain
G” and a C*-mapping ¢: G”~G one to one onto and a harmonic mapping v: G” ~R
with i: vogp™,

In addition, in all these statements, ¢ is K-quasiconformal or conformal if £, b
or # is K-quasiconformal or conformal.
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