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THE C2 IMAGE OF A BROWNIAN MOTION
IN THE PLANE

JUHA OIKKOMN

Absffact. We study the image 9(b) of a two-dimensional Brownian motion å under a Ct

mapping g. A decomposition g(ä):[r*cn is given. Here c, is a slow drift and å, is a process

much like a Brownian motion. Especially, it has a kind of elliptic local behaviour. The method

is to use a nonstandard represetrtation of ä given in [4]. This yields a discrete structure describing

å, - and p. It is shown that a C2 mapping p corresponds to such a structure, and we thus obtain

dis61ete geometrical characterizations of C', K-quasiconformal or conformal mappings.

Introduction

lf g: G'*G is nonconstant analytic, b is a Brownian motion and u; d*R
is harmonic, then it is well-known that qob is a genaalized Brownian motion
(with a new clock but coming out from discs with uniform probability when started

from the center); and where 9 is injective, ilo(P-L is harmonic (i.e., the value of
uog-t at the center ofa disc is the average ofits values taken on the boundary of
the disc). Broadly speaking, one can say that in this case tle local behaviot of pob

and uog-t is circular.
In this paper we look for similar local behavior while I is only assumed to

be Cz.It turns out that there exists in a sense elliptic limiting local behavior. Our

method is to use a discrete conformally invariant nonstandard random walk B gen-

erating a two-dimensional Brownian motion as presented in [4]. Using B, we defuie

a random walk B, generating q(b) by the disoete relation

E (B (t, a)) x Br(t, o) + cr(t, a),

where the drift Ce is the sum

* t, Z'"-:i'lorrE(a$, o))-DnE(B(r, ar))1.

This is slow when compared to B, and B, because the steps of the latter have length

1ffii 1=01. We study the analogy of harmonic measure connected v,ilth B.,+Ce

and the local behavior of this random walk.

Finally, we show how g can be recovered from the discrete structure of Bn.
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This gives a discrete characterization for C2-, K-qtasiconformal and conformal
mappings.

This paper is a continuation of [4]. For a background in nonstandard measure
theory and other aspects of nonstandard theory of Brownian motion, see [1], [2]
and [3].

1. Basic constructions

We frst recall our conformally invariant construction of two dimensional
Brownian motion from [4]. Let ä(N*\N and set N:Ht!. Denote Åt:llE
and set 7:{0, /t,...,H}. Let § be the set of the roots of the equation zN:|.
Define

O: Sl^(0): the set of internal sequences (a(Åt),aQÅt),...,o)(H)).

Let fr:(Q,9,P) be the Loeb space obtained by giving every ar€O the weight
ÅP:UAl:llNE. Analogously, f:(7, g,M) will be the Loeb space obtained
by glving every tCT the weight 1r. Recall that this space represents the Lebesgue

measure via the map sr-1. The internal random walk B is defined in TXg by

B(0, o) : g and B(t+/t,a): B(t,d+@a(t+/t).
Linear interpolation extends B to *[0, II]XA. Finally, a standard process å is
obtained by b(t,a):"8(t,@) (:the qtandard xxB(t,o) for /€R+ and ar€O.
Denote B *(t, a) : B (t, ro) * x and b *(t, a) : b (t, ar) +x.

l.l. Proposition([a]). The process D: R+XO*R2 is a Brownian motion;

for P-almost eaery a,b(.,a) is continuous and. B(.,ar) is S-continuous.
We shall work with a bounded domain G'c R2 which, for simplicity, is assumed

to contain 0 and to satisfy the following assumptions made also in [4].
(i): There is a continuous function p: G/'\G'*AG'with pl\G:id4 here G"

is a domain with G'U AG'=G".
(ii) If xQ.*G' and ox€äG, then there are r*=0 and crxll2, for which

ant atc of length Zc*2nr* of the circle with center x and radius r* is contained in

-*G'. Moreover, the function x*(r*, cr) is assumed to be internal.
Discs have these properties; they hold also whenever 0G' is C2.

The disctete versions of the interior and boundary of G' were defined in [4] as

16' : {B(t,@)lt€T, ar€o and B(s,t)(*G' as I > s€7}

DG' : {r(r1a1, a)lacQ and 
"(ar) 

is defined},

where Ir(ar) is the smallest tCT with .4,(t, a)$*G', when such a one exists, and
T(a):7o1r;.

Next let Ez G'*G be Cz and onto with Jacobian #0 everywhere in G',
defined in some domain G" with G'ccG".
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To study the effect of g, we define the following analogies of the previous

notions:
B*(0,a): q(0),

Be(t+ Åt, a) : B*(t, a)+lzlt o*(a1t, a1)(cn(t+ Åt)).

We also need another internal process, the drift Cq(t,a):(Ce(t,a)r,C*(t,oiz) as

cr(t, a)i : f, lt Z'"-=.'[arr*g,(.a(s, a\)-Drr*q,(a1s, at1)1.

Then let

IrG: {B*(t,co)+cr(t,a)ltcT, ar€o and B*(s,a)*C*(s, c,r)€*G as , > §€7}

and

D*G: {a*(r*(a),a)+c*(rrkD,a)lra,(Q and rr(a) is defined},

where Tr(ar) is the smallest /€7 with Be(/, ot)+Cr(t,@)(*G, when such a one

exists.

Basically, B*+C*, IrG and D*G aretheg'images of B, IG' and DG'; the only

difference is that the steps have been approximated by the derivative of g and then

corrected by a second order term (see Figure l).

P r(t * Åt,@).+ C r$ * At, d)

B(t + Åt, @)

'*(t*Åtro)) -CEQre»)

§Omod]ffi
'Br(!,ar) + Cr$ra)

image of C under

/,,+. B*(!,ro)+ Q *(t, @) + ne(A $rar)) (z *' B (t,ar»

Figure I

1.2. Theorem. There is an internal set A with P(A)xl and *rp(a(r,a1)-

Be(t,o)+CaQ,co) for a€A when tQT is finite and B(t,@)€IG'vDG'.

Proof. We use Taylor's formula representing *E(A$+/t,ar))-*E(B(s, ur))

as in the proof of Theorem 4.2 in l4l.
It suffices to consider the second order term correspondingto Ei. This has the form

Å t lC|,, (s + Å t)z D rr* E,(B (s, ro)) + 2ar, (s + / t) a 2$ * / t) o rr* E t(B (s, a\)

+ @ z$ + Å t\2 D o* E,(B (s, a))f
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(where a:(o\,o)). If a:a(s+Åt) is taken as a complex number, we have

art: (co*6) 12, @z: @t-ra-)12 and larlz:6d. Thus

and

,,t: f,o*+f,.'-!wr.
As in 4.2 of [4], the sums of terms corresponding to crrz or 62 are liftings of infini-
tesimal stochastic integrals of nonanticipating integrands, because z*zz and z*Zz
preserve uniform probability measure on {zllzl:ll.

What remains up to =0, when the terms corresponding to J:0,...,t-Åt
are summed, is

* l, Z';J' fDrr" e,(B (s, a\) - Drr* q,(B(r, r». D

Remark. If g is oonformal, complex derivatives are available and it follows
from Taylor's formula of second order that the drift c, vanishes (see the proof of
Theorem a.2inPl).

The internal random walk B**C* on (O, *@(Q),P) can be extended from
TXQ to *[0, ä]XO by linear interpolation. Then we get standard processes

br: R+XO*Ra and cr: R+XO*R8 by

be(t, co1 : oB*(t, a) and cr(t, a) : oCq(t, a).

To define versions of Be+Cq and b*+c, started from a given point, we must be
a bit more careful than with B and b. lf x:Bo(t', a')+Cr(t', a)(InG, t' finite,
and o»'€Å with I as in 1.2, we set

(Be+ c),(t, a) : Bo(t' + t, @') + ce$' + t, at),

where ar"(s):ar'(s) as s=t' and a"(t'+s):c,r(s) as s<r. Thus Bn,*(/, al) will
be defined at least for all finite t (and for all tQT if Be(t'+t, ar") is understood in
the obvious way for all t).

If x€G is standard and xxx'€I*G, then we define

(br+ c*)*(t, a) : o(Br(t, a) + cr(t, a))*, .

Several basic properties of these notions are collected in the following lemma:

1.3. Lemma. Q) fhe definition of (B**Cq)* does not depend on the choice

of c»'.

a?: f,*r++0)z+l@p,

o){Dz : 
+(Dz -*.',
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(ii) If x€G, then 76x,Br(t,o)+Cr(t,co) forsomefinite t€T otd some ooQQ,

(iii) If x,y(.InG and xxy, then (Br+Cr),(t,@)-(Be+C)r(t,o); especially

(bn+cr)* is correctly defined.

(iv) 0B(r, @)eG' if and only tf oBn(t, a)€G.
(v) There is a fi.nite constant k with lC*(t, r»)l=k't.
(i) q(b,(t,a)):(br(t,a))+cr(t, o))et,l for P-a.a. a.

(vii) r,(al): tr,r61(a) for P-a.a. clt, where t* and ts,qe1 are tlrc times of the

first exits of b, and (br*ca)qe1 from G' and G, respectiaely.

(viii) cn(r, a):li[orrg(å(s, o))-Drrq(b(s, a1)1 ds for P'a.a. a.

Proof. Apply tle arguments of [4]. Some remarks:
(ii) This follows from the analogous fact about G' and B (i.e., standard

properties of Brownian motion).
(iii) Straightforward induction.
(iv) Straightforward induction.
(vi) Use the same for B and the continuity of E.
(vii) Follows from (v) and (vi).
(viii) Follows from the nonstandard representation of Lebesgue measure in the

case B(., ar) is continuous. tr

The most important part of this is the representation

E (b (t, a)) : b *(t, co) + c*(t, ot).

Like (B**Cr)*, we can of course define Br,, and br,r:oBr,*,, x={ and

x' is of the form Be(t', @'). lf t;,,is the time of the first exit of br,*, we have the

following result.

1.4. Theorem. For x(G, the process br,* is a mafiWdle, i.e.,4 Markw
process with

x : Eb r, *(tr, *(a), at) il P.

Proof, The Markov property is obvious. We prove the other property by
proving a similar result (that Br,, is a hypermartingale) for the discrete version.

Consider Br,*. The sets l, are defined recursively as follows: Ao:{xl and Ara7,

is obtained ftom Å, by replacing every point

Bq,x(t, a)(ArnInG

with all the possible values of Be,,Q+År, ar) and taking these to AraTr; if

then Br,*(f, ar) is taken
Clearly,

Br,*(t, co)(ArnD*G,

to Ar+Åt. Intuitively, A, tells whers Bs,x can be at time t.

Äu = {Br,*(Te,*(ar), ar)lar€o}.
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An induction over I shows that the average over al of l, is always x. So

EBe,*(Te,,(a),a)dF : x. D

A similar proof gives

1.5. Theorem. For xCG',

q (x) : E 
f«o 

(b.(t -(c»), r» -.f;-"' [ar, e (å, (s, a)) - D rsE (b,, (s, crr))] al a r.

The process Bq+Ce has the following invariance property.

1.6. Theorem. If rlt: G*Gt. is C2, then there is an internal set AeQ with
P(Å)xl and

** (Br(t, @) + ceb, a\) x Bs 
" e(t, a) * cs 

" *(t, a)

for finite t(T and a€A. (The Jacobian of {, is assurned to be *0,)

Proof. By 1.2, *$(Br+C*)x*ry'(*E(B)):*(tod(B) and Bq,oe*Ctr,oqx
*(t"q)(B), F almost always.

Remark. In this chapter we did not need DrG, wherefore it was enough

to assume that q is defined in G'; in the following chapter we shall need g also on

the boundary.

2. Images of harmonic measures

In [4] we showed how the discrete analogy of Brownian motion provides a
pleasant way of looking at harmonic measures. Here we similarly study measures

connected to ä*. We assume throughout this chapter that q is one to one.
Let x€IqG, The internal g-harmonic rne(Nure Mr,* on D*G is defined by the

weights
aVe,*(y): P(a{(4+ cr)*(T*,*(@),r) : y})

for yQDrG. Here Tr,*is the time of the first exit of (Br*Cr)*. The correspond-
ing Loeb-measure on DrG, Mr,*, is called the discrete E-harmonic measure. Recall
that the internal harmonic measure M,, and the discrete harmonic measure M*,,
x'CIG', were defined similarly in [ ]. By analogy with the construction of harmonic
measure p*,, /€G', define the g-harmonic measure Fq,*, x€G, by

FE,*(C) : Mq,r(t/-t(C»,

whenever the right side is defined.
Here C=0G and st-t(C) -{z€.D*Gloz€C}. Especially, lte,*(C)

for Borel sets (see [4]).
Let next f: åG*R be continuous. Actually, it sumces to assume

a lifting F with respect to the measures M*,* (see [4J). It corresponds

is defined

that / has

to a con-
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tinuous function g:fo(El\G) defined on 0G'. We can extend *f to DeG by letting

*f(an(Tr(c»), a)+cr(T*(a), ,)) : *f(BeO, a)+cn$, a)),

where /€ *[r, (a) - / t, Tn@)l satisfies B a(t, @) + C q(t, a)(.* 0G -

Remark. Using this trick, one could eliminate the assumption concerning

the projectionp (also from Chapter2 of[4]), when continuous boundary values are

considered.
After these remarks we define

u(x) : I rof drr,* for x€.G;

tl(x): )o,o*fÅMr,* for x(IrG.

These are like their analogies in [4] and so is the proof of the following list of basic

properties.

2.1. Theorem.(i) If xQfnG, then o(J(x):u(ox); especially, u is continuous

and U is S-contiruous.
(ii) If x(IrG, then

tJ (x) : E(*f(B e + c ) *(Tr, *(a), a)) dP.

(iii) If xC.G, then

u(x) : E (f(b q + c ),(t *,,(a), @) d r.
(iv) If x(IrG and ox(\G, then U(x)xf(ox).
(v) If y<\G, then u(x)*f1y} 4s 25*y in G.

Let V and o be defined as

and 
v(x): Zre'*gÅM*

u(x) = {uosdu*,

where g is the continuous function on 0G' defined as g:fo(ElilG').

2.2. Theorem. (i) If B(t,ro)(IG', then

y (B (t, a\) = u(B*(t, a) + Cr(t, a));
(ii) uocP=11'
(iii) aocP-t:Y,

Proof. (i) Because oB(t',o)XG' if and only if 0Bq(t',@)+oce(t',@')€G by

1.3, also

x : oB(t',.CI')e\G', if and only if y : oBq(t,ro)+oC*(t,co)eilG.

In this case g(x)-yo and hence

(+) *g(n(,ar')) 
= g(x) : f(y) * *f(Be((,a')+Cr(t",a'))
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as B(t',a)QDG' and Br(t',a)+Cr(t',cD',€DaG. If (+) is applied to the
definitions of V and U, we get (i).

Assertions (ii) and (iii) follow from (i).

Remark. The result implies that, given continuous boundary values, Bq+Ce
generates a function n which is an extremal with respect to a variational integral
.I, corresponding to g and the Dirichlet integral in G'; hence a is F-harmonic.

3. Local behavior ol pob

The characteristic feature of ä and a harmonic function o is that they are cirsular
in the following sense:

when started from the @nter of a disc, ä comes out with uniform probability;
the value of o at the center of a disc is the (uniform) average of values taken on

the boundary.
Moreover, if g is conformal (or just nonconstant analytic), also go|, apd

ooe-a with q one to one, have the same properties. Here we look for a similar
local description of b, and u,:,t)o(p-r in the more general situation considered in
this paper.

If .E is a domain whose boundary is an ellipse, then the elliptic tnea$tre, pe,
on 0E is obtained from the uniform probability measure on the circumscribed
circle by projection along the shorter axis of åE (See the figure below.)

Figure 2

We shall show that if .E is the image of the unit disc with center at x under
x'-Dr(x)(x'-x), then p" represents the behavior of Eob and u:ooE-r at q(x)
in two senses.

Let Be+Ce and U be as in the previous chapter. Then the distribution of
Be«+Ät,@)+CaQ+Å/,ar) is like p" for x=B(t,ar), and actually generates pe
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via an obvious Loeb measure construction. Also,

u(t): { Zi=,rt ,>,

where y:Br(t, (D)+CaU. ar) and !1, ..., yN are the possible values of Br(t+Åt, a)*
Ce(t+Åt,ar). In other words, Be+Ce and U behave locally exactly like a discrete

version of p". We feel that this form of ellipticity is the more basic one.

The other sense is a limiting one. Some notation is needed for it. Fix x€G'
and let r>0. Denote

A, : *0 {x'llx' -xl < rl,
Br: *EA,

C, : {* q (x)* D * 
E @) @' - x)l x' €A,\.

3.1. Theorem. If Eisonetooneand u:uog-L withaharmonic, then"(E@)):
li-,*o ! g,u dF".

Proof. Let r=0 and let o be as in Chapter 2. By harmonicity,

u(E@)): u(x): f n,*rdp: f r,*udr*,
where pr is the uniform probability measure on Ä, and pr, is its image on 8,.

Claim. With notation as above, l r,*u dur* I ""*u 
dp".

If the claim holds, we have

P(E(x)) = t"*udP"-
Thus for standard e >0 and r=0,

lu(v 
(i) - I 

"," 
u dtrt"l = e'

This implies the result of the theorem by overflow. So it is enough to prove the
claim.

x.;+1 xi

Xg

Xt

"4"

4L

Figure 3

!t+t Ii
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Consider the points x*rsQA, for s€§. List these ?s 11, ..., x,y in the posi-
tive direction starting from xr:y+r.(1,0). Let yr:9(x)*Dr(x)(xrx), and let
yi:q@) and y2,...,.yr be chosen such that the pr-measure of the arc of B,
between yi and yi*, equals the p,-measure of the arc between .y, and ytal of Cr.
(Actually, yi:q@;)

We compare the integrals on the arcs (y,, .yr+J and (yi, yii. Because these

have tle same measure, it is enough to compare the integrands. But since g is dif-
ferentiable and r=0, we obtain a uniform bound ä=0 not depending on i for
l*u(y)-*u(y)f, where !€arc (y.,.vr+J and y' €arc(yi, yi*r). Thus

ll ,,*u dp"

where the indices are understood mod ff. This completes the proof.
A standard calculation gives the following corollary which needs some nota-

tion. The exits of br,q6y*cq,q(r) from C, generate a g-subharmonic measure

ItE,q(x),c, on 0C,. This homothetically generates a measure on \Cro, which will be
denoted by h*;

3.2. Corollary. If A=|C,o is Borel, then

p"(A): Mp,,,o(l).

Theorem 3.1 and Corollary 3.2 are generalizations of a classical result about
analytic functions.

4, A construction of a C?-mapping from its derivative

In this chapter we shall show how q an be recovered from our representa-
tion of the image of a Brownian motion under g; i.e., essentially from the deriva-
tive of g.

It turns out to be important to be able to discuss all aQQ, not just almost all
as is the case in Theorem 1.2. For this reason we define D, to be the sum of those
second order terms (corresponding to r:0, ...,t-/t) omitted in the definition of
Cr. Let G', G and g be as before.

4.1. Lemma. If t<T is finite and B(I,@)(IG'VDG', then *cp(AQ,a|)o

Be(t, @)+Ce(t, @)+DE(t, @).

The assertion follows essentially from the proof of Theorem of 1.2.

The main concept in this chapter is an abstract version of the representation
Bq+CE+Dq.

An elliptic sffucture L on G consists of an element zr(G and a family of linear
mappings I*, where the mappings adjoin to x, the coefficients of I, are finite
and have finite §-continuous partial derivatives, and which satisfy conditions (iHtv)

-.f u,*u 
d|ql= { *"(ft,} *r)d4" = o,
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below. Before the conditions we shall define some notation. First an analogy of Br:

B(0,r'o7: 7o;

E1t + Åt, a) : B(t, @ +@ L"6,qa(t * at),

when 2r,,,,, is defined. Similarly, Cand 2*" analogies of C*and D, and they

are defined as follows: A:(Ao, C) and D:(Do,Dr) where

C r(t, a) : f, lt Z'"X' V,r,, (t, ot) - L!2 (s, a)l;
and

D,(t,a): Ät Z';!o'(|+G, ar)+.1|2(s, r)+It-f $,a))a@+/)z

+ / t Zt 1' (]- rr. U, a) - LLiz (s, a1 + f, 4' 6, co)) a 6 + Å t)2,

when all the terms appearing in the sums are defned; here .Lfl(s, o) denotes the

(s-)derivative along the l'th coordinate axis of the coefficient of La6,.1in the same

place as DyEiis in the Jacobian of a function g: R2*R2. The conditions ate:
(i) if ,L311,,1 is defined and t>s€T, then 2s1",,; is defined;
(ii) if Zu(,,,) is defined, then 6(s, a)+C(s,ar)+D(s, o) is deflned and lies

in *G when t+/t=s<T;
(iii) for all x(G there is (t,tt) with B(t,t»+A(t,co)+D(t,a) defined

and xx;
(iv) if 81t,rl1+C1t,a)+b(t,a) and B1t',a1+e(t',c»)+b!', a) are

defined and B(1, a)=B(t', al), then

B (t, d + A (t, a) + b (t, a) x B (t', ra'1 + C (t', a) + D (t', a'1.

The elliptic structure (L*, zr) is an elliptic G''structure, if in addition
(v\ B(t,o)+C(t,@+b(t,a1 is defined, if and only if B(t,a)€IG'vDG'.
The name elliptic structure refers to the fact that the image of the unit circle

under a linear mapping is an ellipse. (See also Figure 1.)

An elliptic structure is K-quasiconformal if the eccentricity of the image of
the unit circle under each L* lies between llK and K. The structure is conformal,

if all these ellipses are circles.

4.1. Example. The representation of E(b(t,ar) in terms of BE+Cq(+De)
is an elliptic G-structure. It is K-qua§conformal or conformal, if g is.

The converse holds in the following sense.

4.2. Theorem. If L is an elliptic G'-structure on G, then there is a Cz'mapping

E: G'*G ontowith

Q\ E?BU,a)):o9(t,rn)+oC$,a) for allfinite t(T and almost all c»;

(ii) D q e B G, a)) :o L r<,,.>;
(iiD if L is K-quasiconforrnal or conformal, then q is, too.

43
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Proof, Define

w(n1t' ')) 
: o$(t' oi +oC(t' a)+ob(t' a)'

r finite. Because B comes infinitesimally close to every xeG', E is defined for all
x€G'. condition (iv) implies that the definition of g does not depend on the choice
of r and rry. We prove assertion (ii); it follonc then directly from the assumptions that
tp is C2 and that assertion (iii) holds. Finally, assertion (i) follows from the argument
of the proof of Theorem 1.2.

Let x1€G' and xrxxl-B(r, @)€.fG'. Thus

E (x) : E (t, d +oC (t, a) +o b (t, ot).

We consider first some fixed s€,S and the half-line xi+hs, ft>0. For x":xl*
l@ on this half-line, let

F(x) : B g + klt, a,) + öe + kÅt, @) + b (t + k/t, @,),

where ar'(l):al(r) for t'=t and r»'(t'):s as t'>t. lf x":xi+k@ and
k{ilix\, we have

F(x")- F(xi): 1Di 2!:,t .,s+((C+DXt+k/t, a,)-(C+D)(t, a,)),

where xf :B(r+(i-l)/t,o), crr'as above. We first observe that

lfit 2!*, p4, : k 1/ili L*is + 1Di 2! =, 
(L.i_ L) s

:k@L*i*k{ili.a, axo

because xiox!, and hence @*;-L*7)sx0, as k Elt-O Next observe that

l(A + »O + kt, a) - (A + b) (t, r)l 
= f, 

t t . k . a' : k 1Etri a",

where a' is finite and a" :'-O. Hence fot h:k @=O we have

l*eor-r(xo)-2.;,1 - o.

Given standard e>0, overflow gives a standard ö>0 which satisfies for all s(s,

as h:k{ili=ö.
Next consider xr(G' with lxr-xrl:h-6. Assume that h is small enough

for the line segment joining x1 and xrto lie in G'. There are s and & with

xz- xtx, k@lil

l* ro) - F(x)-L*lsl =,
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Then l.,*'rs= (1 lh) L*r(r, - xr).
and h is standard, we obtain

Because E(x):oF(xi) and E(xz)-oF(xi+k l/mt)

.< 8.

Hence g is differentiable and (ii) holds.

4.3. Remart<. t L is the representation Be+Ce, then the mapping E1con'
structed in the proof of Theorem 4.2 is the original 9.

Part (ii) of Theorem 4.2 implies that to L and E, corresponds a representation

Ie and bC of G and 0G. They can be defined in terms of B+C exactly like IrG
and D*G were defined before. Actually,

I*rG: IG and Dr"G: bG.

In a sense, IG and DG are the essence of the etliptic structure -0.

The following is a continuous analogy of our notion of an elliptic structure.

A stochastic process (with almost all paths continuous) moving in G is called

etliptic if it has the property of å, stated in Corollary 3.2 for some continuously

differential family of linear mappings (i.e., ellipses). Moreover, our elliptic process

is simple if it is defined on R+XO where O is as in Chapter 1. (See Keisler [3] for a

discussion of this kind of restrictions.)
Likewise, a continuous function fr: G*R is elliptic, if it has the property

stated in Theorem 3.1 for some continuously differentiable family of linear mappings.

An elliptic process or function is K-quasiconformal, if the eccentricities of all

the corresponding ellipses are between llK and K. If all the ellipses are circles,

then the elliptic process or function is conformal.In this sense, Brownian motion

and harmonic functions are conformal.

4.4. Example. lf L is an elliptic structure on G, then

6:o(B+C+D)

is an elliptic process. Elliptic functions fr an be defined in terms of expectations

of the values of continuous functions in 0G at the exit points of 6 from G. The same

result is achieved by use of the hyperfinite random wak B+C and a coffiesponding

hyperfinite lifting. Clearly 6 and il are K-quasiconformal or conformal, if Z is.

On the other hand, the family of linear functions corresponding to an elliptic
process or function gives rise to something very much like an elliptic structure. But

it is possible that condition (iv) fails to hold.
We say that b or r2 is unmtbiguous, if condition (iv) holds, too.

Before putting all our results together, we make the following observation.

4.5. Theorem. If L is an elliptic structure on G, then there is a domain G" for
which L is G'-elliptic.

l+ 
* @,) - E(xJ) - L*,(x, -t,l
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Proof. Denote

G" : int { B (t, a)l (t, ar) e dom .6 and o B (t, a) +o e (t, a) +o b (t,ar) € c}.

our aim is to show thx B is G"-elliptic. It suffices to show that actually oB(t, ot)(G"
whenever o@+e+D)(t,a)(G. Assume o(B+e+b)(t,co)eG. Then there is a
standard r>0 with z(G for l(B+A+D(t,a)-zl<r. Consider tle points
B(t+t', aro) where ar(t):@711 for t'<t and a4(tqt):s for some s€§. There
is some r" with t 

",1DZi 
* 0 for which l(B + A + D (t * t 

", 
co ) - (B + ö + D) (t, a)f < r. Let

r,: oTS t"{ili.
It follows that every x with lx-oB(t, @)l=r' is of the form oB(ral', o:") for some
s€§ and t'<t".

Now we have the following representation theorem.

4.6. Corollary. (i) If L is elliptic on G, then there is a domain G,' and a Cz-
mapping E: G" *G onto with properties (r-(it) of 4.2. Moreouer, E is one to one
if the implicationfrom right to left holds in condition (iv) of the definition of the notion
of an elliptic structure.

(ii) If 6 is simple, elliptic and unambiguous, then 6:bE for a Cz-mapping E.
(iii) If fr is elliptic and unambiguous and if L satisfies the implication from right

to left in condition (iv) of the definition of an elliptic structure, then there is a domain
G" and a Cz-mapping E: G" -G one to one onto and a harmonic mapping a: G, *R
with fr: l)oq-t.

In addition, in all these statements, 9 is K-quasiconformal or conformalif L, b
or il is K-quasiconformal or conformal.
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