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CONVEX INCREASING FUNCTIONS PRESERVE
THE SUB-F-EXTREMALITY

T. KILPELAINEN

1. Introduction

Suppose that u: G—(a, b) is a subharmonic function and that f: (a,b)~R
is an increasing convex function. It is relatively easy to check that v=fou satisfies
the mean-value inequality and hence » is again subharmonic in G. The purpose of
this note is to give a generalization of this fact in a non-linear potential theory
developed by S. Granlund, P. Lindqvist and O. Martio in [GLM 1—-3]; see also
[LM 1-2].

1.1. Theorem. Suppose that G is an open set in R" and that u: G—(a, b) is
a sub-F-extremal in G. If f: (a,b)—~R is an increasing convex function, then fou
is a sub-F-extremal in G.

The cases a=— and b=+co are not excluded.

In the classical potential theory Theorem 1.1 is due to M. Brelot [B, p. 16].
He makes use of an approximation method. There is another proof for this result,
based on integral means, in the book of T. Radé [R, p. 15]; see also [HK, p. 46].
However, such a method is not available in our case. In a non-linear potential
theory P. Lindqvist and O. Martio have recently proved a special case of Theorem 1.1
in [LM 2].

2. Sub-F-extremals

Suppose that G is an open set in R” and that F: GXR"~R satisfies the fol-
lowing assumptions:

(a) For each open set Dcc G and &=0, there is a compact set CCD with
m(D\C)<e and F|CXR" is continuous.

(b) For a.e. x€G the function h—F(x, h) is strictly convex and differenti-
able in R".

(c) There are 0<a=f<-<o such that for a.e. x€G

al|h|" = F(x,h) = B|h|", heR™
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(d) For a.e. x€G
F(x, Ah) = |AI"F(x,h), A€R, hER™

An alternative characterization of the functions F satisfying (a)—(d) is given
in [K]. Note that the exponent 7 in (c) and (d) is essential for applications in con-
formal geometry; cf. [GLM 1—2]. It is not essential for Theorem 1.1; see Remark 4.4.

A function u€C(G)nloc Wi(G), i.e., uis ACL" in G, is called an F-extremal
in G if for all domains Dcc G

Ie(u, D) = inf Ir(v, D),
where *
(D)= [ L F(x Vo(x)dm(x)

is the variational integral with the kernel F and
F, = {veC(D)nW,}(D)|v = u in AD}.

A function u is an F-extremal if and only if u€ C(G)nloc W(G) is a weak solution
of the Euler equation
V.V, F(x,Vu(x)) = 0.

An upper semi-continuous function u: G—~Ru{— <} is called a sub-F-extremal
if u satisfies the F-comparison principle in G, i.e., if Dcc G is a domain and he C(D)
is an F-extremal in D, then h=u in oD implies h=u in D. A function u: G—Ru
{e=} is a super-F-extremal if —u is a sub-F-extremal. For basic properties of F- ex-
tremals and sub-F-extremals we refer to [GLM 2].

A sub-F-extremal u: G—R is called a regular sub-F-extremal if u is ACL",
ie., u€C(G)nloc W,(G). Note that it follows from [GLM 3, Theorem 4.1] that a
sub-F-extremal u: G—R is regular if u€C(G). In what follows we shall make
use of the following lemma.

2.1. Lemma. Let u be an ACL"-function in G. Then u is a regular sub-F-extremal
in G if and only if for all non-negative ¢€Cy(G)nW} ,(G)

f  ViF(x, Vi) - Vo dm = 0,

Proof. The result follows from [GLM 2, Theorem 5.17] via an easy approxima-
tion procedure.

2.2. Lemma. Suppose that u: G-~Ru{—<} is a sub-F-extremal in G and
that DCC G is a domain. Then there exists a decreasing sequence of regular sub-
F-extremals u; in D which are continuous in D such that lim,,_ w;=u in D. More-
over, for each &>0 the sequence u; can be chosen such that supyu,=supyu+e.

Proof. This follows from [GLM 3, Section 4].
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2.3. Lemma. Suppose u: G—~Ru{—} to be a function such that for each
domain Dcc G there exist a decreasing sequence of sub-F-extremals u; in D with
lim, _=u in D. Then u is a sub-F-extremal in G.

Proof. Clearly u is upper semi-continuous in G. Let Dcc G be a domain
and h€C(D) an F-extremal in D such that h=u in dD. Choose a domain D’cC G

and a decreasing sequence u; of sub-F-extremals in D’ such that Dcc D’ and
lim, _ w;=u in D’. Fix &>0. Since for every x€dD there is i,¢N such that

u, (x)—h(x)—e <0,
the upper semi-continuity of u;—h—e, together with the compactness of D,

implies
u=u, =h+e

in 0D for i=i,. Thus the sub-F-extremality of u; yields

u; = h+e
in D for i=i,. Hence
u=h+e

in D. Letting ¢—~0 we obtain the desired result.

We close this section with the following lemma, leaving its easy proof to the
reader.

2.4. Lemma. Suppose that u;: G—~RU{— o} is a sequence of sub-F-extremals
in G with w;—~u uniformly on compact subsets of G. Then u is a sub-F-extremal
in G.

3. Approximation lemmas

Let a, b€[— oo, «=]. We say that a function f: (a, b)>R preserves the (regular)
sub-F-extremality in G if for each domain DCG fou is a (regular) sub-F-extremal
in D whenever u: D-(a, b) is a (regular) sub-F-extremal.

3.1. Lemma. Let f: (a,b)—~R be an increasing continuous function. Suppose
that for each 5=0 there is a sequence of functions f;: (a+6,b—38)—R, f; pre-
serving the regular sub-F-extremality in G for each i and f;—~f uniformly on compact
subsets of (a+38,b—0). Then f preserves the sub-F-extremality in G.

Proof. Let G’cG be a domain. Let u,: G'~(a,b) be a sub-F-extremal.
Clearly fou, is upper semi-continuous in G’. Let DCC G’ be a domain, and write

= max u, b.
do 1}‘16%‘ o(x) <

Let 0<3e<b—d,. Then u=u,+¢ is again a sub-F-extremal in G’ and u(x)=
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uy(x)+e>a+e¢/2 in G’. By Lemma 2.2 we may choose a decreasing sequence of
sub-F-extremals #,€C(D) in D such that lim, _ #;=u in D and that

sug w(x) =dy+2e <b—e.

x€

Observe that u;: D—~(a+¢/2, b—eg/2) is a regular sub-F-extremal in D and choose
a sequence fi such that f;—f uniformly on compact subsets of (a+e/2, b—g/2)
and that fiou; is a sub-F-extremal in D for each k and i. Fix i. Then fiou;—~fou;
uniformly on compact subsets of D as k—<. Now Lemma 2.4 implies that foy;
is a sub-F-extremal in D and fou; is a decreasing sequence of sub-F-extremals in

D which tends to fou. Then fou=fo(u,+¢) is a sub-F-extremal in D. Letting
¢—0 Lemma 2.3 yields that fou, is a sub-F-extremal in G’.

Next we shall consider smooth convex functions f.

3.2. Lemma. Suppose f: (a,b)—~R to be a comvex increasing function such
that f€C2(a, b). Then f preserves the regular sub-F-extremality in G.

Proof. Let DCG be a domain. Suppose that u: D--(a, b) is a regular sub-
F-extremal. Clearly v=fouc C(D)nloc W}(D). Choose ¢€Cg (D), p=0. It suffices
to show that

fDV,,F(x, Vv)-Vodm = 0;

see Lemma 2.1. Let ¥/(x)=f"(4(x))""*¢(x). Then Y€Cy(D)nW?: (D) and ¥ =0.
Furthermore,

(B3 W) = 0= () ()20 @) Vux)+f ()~ Vo(x)
a.e. in D. Since the homogeneity assumption (d) of F implies for a.e. x€G
Vo F(x, Ah) = |A|"~2 AV, F(x, h)
for AR and h€R", we obtain
(3.4 V,F(x, Vo(x)) = V, F(x, f/(u(x)Vu(x)) = f'(u(x))"~*V, F(x, Vu(x))
a.e. in D. Now (3.4) and (3.3), together with the regular sub-F-extremality of u, yield
o=f VW F(x, Vi)- Vi dm = (n—1) [ L@ f w29V, F(x, Vi) Vudm
+ [ F @'V F G, Vi) - Vo dm = [V, F(x, Vo) - Vo dm,

since V,F(x,Vu)-Vu=0 a.e. in D by the assumptions (b) and (c).
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4. Final steps

4.1. Proof for Theorem 1.1. We make a convolution approximation. Choose
n;€Ce(R), n;=0 such that sptn;=[—1/;1/] and frn;(»)dy=1. For
x€(a+1/j,b—1Jj) define

510 = [ fx=ym;,0) dy,

where f(x—y)n;(»)=0 if ydsptn;. In the light of Lemma 3.2, f; preserves the
regular sub-F-extremality in G. Hence Lemma 3.1 implies the desired result.

4.2. Remark. Suppose that f: [a, b)~[— <o, =) is convex and increasing. If
f(@)=—oo, then f(t)=— o for each t€[a,b) or f(t)>—o- for each €(a,D).
Thus we can use Theorem 1.1 to prove the following slight extension: Suppose
that f: [a,b)—~[—es, =) is convex and increasing and that u: G~Ru{—=} is a
sub-F-extremal in G with u(G)C[a, b). Then fou is a sub-F-extremal in G.

4.3. Remark. It is clear that fou is a super-F-extremal if # is and if fis con-
cave and increasing. Also, it is evident that if » is a sub-F-extremal and if fis con-
cave and decreasing, then fov is a super-F-extremal.

4.4. Remark. Theorem 1.1 holds also when the exponent z in (c) and (d)
is replaced by a more general constant p€(l, ). For p#n the proof is similar to
that above. Observe that the continuity of the solution to an obstacle problem,
needed in the proofs of 2.1 and 2.2, is established in [MZ].

4.5. Corollary. Suppose that u: G—~R is an F-extremal in G and p€[l, «).
Then |ul? is a sub-F-extremal in G.

Proof. Note that |u|=max (4, —u) is a sub-F-extremal and ¢—*, =0, is
convex and increasing. The result follows from Remark 4.2.

4.6. Corollary. Suppose that u is a non-negative super-F-extremal in G. Then
uP is a super-F-extremal for p€[o0, 1].
We close with a remark on quasiregular mappings, which have an important

role in a non-linear potential theory; see [GLM 2, Sections 6 and 7]. Suppose that
G and G’ are domains in R” and f: G—G’ is a quasiregular mapping. Then

TGN @R i J(x, f) # 0,
Flx, ) = {lhl" otherwise,

satisfies (a)—(d) in G; see [GLM 2, 6.4]. Here J(x,f) stands for the Jacobian
determinant of f at x and 4* denotes the adjoint of the linear map A4: R"-R".
Now log|f| is a sub-F-extremal in G [GLM 2, Theorem 7.10]. Thus, using the
convex increasing function ¢ for p=0, we obtain

4.7. Corollary. Suppose that f and F are as above. Then |f|? is a sub-F-
extremal in G for p=0.
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