CONVEX INCREASING FUNCTIONS PRESERVE THE SUB-F-EXTREMALITY

T. KILPELÄINEN

1. Introduction

Suppose that $u: G \rightarrow (a, b)$ is a subharmonic function and that $f: (a, b) \rightarrow \mathbb{R}$ is an increasing convex function. It is relatively easy to check that $v=f \circ u$ satisfies the mean-value inequality and hence v is again subharmonic in G. The purpose of this note is to give a generalization of this fact in a non-linear potential theory developed by S. Granlund, P. Lindqvist and O. Martio in [GLM 1-3]; see also [LM 1-2].

1.1. Theorem. Suppose that G is an open set in \mathbb{R}^n and that $u: G \rightarrow (a, b)$ is a sub-F-extremal in G. If $f: (a, b) \rightarrow \mathbb{R}$ is an increasing convex function, then $f \circ u$ is a sub-F-extremal in G.

The cases $a = -\infty$ and $b = +\infty$ are not excluded.

In the classical potential theory Theorem 1.1 is due to M. Brelot [B, p. 16]. He makes use of an approximation method. There is another proof for this result, based on integral means, in the book of T. Radó [R, p. 15]; see also [HK, p. 46]. However, such a method is not available in our case. In a non-linear potential theory P. Lindqvist and O. Martio have recently proved a special case of Theorem 1.1 in [LM 2].

2. Sub-F-extremals

Suppose that G is an open set in \mathbb{R}^n and that $F: G \times \mathbb{R}^n \to \mathbb{R}$ satisfies the following assumptions:

(a) For each open set $D \subset \subset G$ and $\varepsilon > 0$, there is a compact set $C \subset D$ with $m(D \setminus C) < \varepsilon$ and $F \mid C \times \mathbb{R}^n$ is continuous.

(b) For a.e. $x \in G$ the function $h \mapsto F(x, h)$ is strictly convex and differentiable in \mathbb{R}^n .

(c) There are $0 < \alpha \le \beta < \infty$ such that for a.e. $x \in G$

$$\alpha |h|^n \leq F(x,h) \leq \beta |h|^n, \quad h \in \mathbb{R}^n.$$

(d) For a.e. $x \in G$

$$F(x, \lambda h) = |\lambda|^n F(x, h), \quad \lambda \in \mathbb{R}, \quad h \in \mathbb{R}^n.$$

An alternative characterization of the functions F satisfying (a)—(d) is given in [K]. Note that the exponent n in (c) and (d) is essential for applications in conformal geometry; cf. [GLM 1—2]. It is not essential for Theorem 1.1; see Remark 4.4.

A function $u \in C(G) \cap \log W_n^1(G)$, i.e., u is ACL^n in G, is called an F-extremal in G if for all domains $D \subset G$

where

$$I_F(u, D) = \inf_{v \in F_u} I_F(v, D),$$

$$I_F(v, D) = \int_D F(x, \nabla v(x)) dm(x)$$

is the variational integral with the kernel F and

 $F_u = \{ v \in C(\overline{D}) \cap W_n^1(D) | v = u \text{ in } \partial D \}.$

A function u is an F-extremal if and only if $u \in C(G) \cap \log W_n^1(G)$ is a weak solution of the Euler equation

$$\nabla \cdot \nabla_h F(x, \nabla u(x)) = 0.$$

An upper semi-continuous function $u: G \to \mathbb{R} \cup \{-\infty\}$ is called a sub-F-extremal if u satisfies the F-comparison principle in G, i.e., if $D \subset \subset G$ is a domain and $h \in C(\overline{D})$ is an F-extremal in D, then $h \ge u$ in ∂D implies $h \ge u$ in D. A function $u: G \to \mathbb{R} \cup \{\infty\}$ is a super-F-extremal if -u is a sub-F-extremal. For basic properties of F- extremals and sub-F-extremals we refer to [GLM 2].

A sub-*F*-extremal $u: G \to \mathbb{R}$ is called a regular sub-*F*-extremal if u is ACL^n , i.e., $u \in C(G) \cap \log W_n^1(G)$. Note that it follows from [GLM 3, Theorem 4.1] that a sub-*F*-extremal $u: G \to \mathbb{R}$ is regular if $u \in C(G)$. In what follows we shall make use of the following lemma.

2.1. Lemma. Let u be an ACLⁿ-function in G. Then u is a regular sub-F-extremal in G if and only if for all non-negative $\varphi \in C_0(G) \cap W^1_{n,0}(G)$

$$\int_{G} \nabla_{h} F(x, \nabla u) \cdot \nabla \varphi \ dm \leq 0.$$

Proof. The result follows from [GLM 2, Theorem 5.17] via an easy approximation procedure.

2.2. Lemma. Suppose that $u: G \to \mathbb{R} \cup \{-\infty\}$ is a sub-F-extremal in G and that $D \subset \subset G$ is a domain. Then there exists a decreasing sequence of regular sub-F-extremals u_i in D which are continuous in \overline{D} such that $\lim_{i\to\infty} u_i = u$ in D. Moreover, for each $\varepsilon > 0$ the sequence u_i can be chosen such that $\sup_D u_1 \leq \sup_D u + \varepsilon$.

Proof. This follows from [GLM 3, Section 4].

2.3. Lemma. Suppose $u: G \to \mathbb{R} \cup \{-\infty\}$ to be a function such that for each domain $D \subset \subset G$ there exist a decreasing sequence of sub-F-extremals u_i in D with $\lim_{i\to\infty} = u$ in D. Then u is a sub-F-extremal in G.

Proof. Clearly u is upper semi-continuous in G. Let $D \subset G$ be a domain and $h \in C(\overline{D})$ an F-extremal in D such that $h \ge u$ in ∂D . Choose a domain $D' \subset G$ and a decreasing sequence u_i of sub-F-extremals in D' such that $D \subset D'$ and $\lim_{i\to\infty} u_i = u$ in D'. Fix $\varepsilon > 0$. Since for every $x \in \partial D$ there is $i_x \in \mathbb{N}$ such that

$$u_{i_x}(x)-h(x)-\varepsilon<0,$$

the upper semi-continuity of $u_i - h - \varepsilon$, together with the compactness of ∂D , implies

$$u_i \leq u_{i_0} \leq h + \varepsilon$$

in ∂D for $i \ge i_0$. Thus the sub-*F*-extremality of u_i yields

$$u_i \leq h + \epsilon$$
 $u \leq h + \epsilon$

in D for $i \ge i_0$. Hence

in D. Letting $\varepsilon \rightarrow 0$ we obtain the desired result.

We close this section with the following lemma, leaving its easy proof to the reader.

2.4. Lemma. Suppose that $u_i: G \to \mathbb{R} \cup \{-\infty\}$ is a sequence of sub-F-extremals in G with $u_i \to u$ uniformly on compact subsets of G. Then u is a sub-F-extremal in G.

3. Approximation lemmas

Let $a, b \in [-\infty, \infty]$. We say that a function $f: (a, b) \rightarrow \mathbb{R}$ preserves the (regular) sub-F-extremality in G if for each domain $D \subset G$ $f \circ u$ is a (regular) sub-F-extremal in D whenever $u: D \rightarrow (a, b)$ is a (regular) sub-F-extremal.

3.1. Lemma. Let $f: (a, b) \rightarrow \mathbf{R}$ be an increasing continuous function. Suppose that for each $\delta > 0$ there is a sequence of functions $f_i: (a+\delta, b-\delta) \rightarrow \mathbf{R}$, f_i preserving the regular sub-F-extremality in G for each i and $f_i \rightarrow f$ uniformly on compact subsets of $(a+\delta, b-\delta)$. Then f preserves the sub-F-extremality in G.

Proof. Let $G' \subset G$ be a domain. Let $u_0: G' \to (a, b)$ be a sub-*F*-extremal. Clearly $f \circ u_0$ is upper semi-continuous in G'. Let $D \subset G'$ be a domain, and write

$$d_0 = \max_{x \in D} u_0(x) < b.$$

Let $0 < 3\varepsilon < b - d_0$. Then $u = u_0 + \varepsilon$ is again a sub-F-extremal in G' and u(x) =

 $u_0(x) + \varepsilon > a + \varepsilon/2$ in G'. By Lemma 2.2 we may choose a decreasing sequence of sub-F-extremals $u_i \in C(\overline{D})$ in D such that $\lim_{i \to \infty} u_i = u$ in D and that

$$\sup_{x\in D} u_1(x) \leq d_0 + 2\varepsilon < b - \varepsilon.$$

Observe that $u_i: D \to (a+\varepsilon/2, b-\varepsilon/2)$ is a regular sub-*F*-extremal in *D* and choose a sequence f_k such that $f_k \to f$ uniformly on compact subsets of $(a+\varepsilon/2, b-\varepsilon/2)$ and that $f_k \circ u_i$ is a sub-*F*-extremal in *D* for each *k* and *i*. Fix *i*. Then $f_k \circ u_i \to f \circ u_i$ uniformly on compact subsets of *D* as $k \to \infty$. Now Lemma 2.4 implies that $f \circ u_i$ is a sub-*F*-extremal in *D* and $f \circ u_i$ is a decreasing sequence of sub-*F*-extremals in *D* which tends to $f \circ u$. Then $f \circ u = f \circ (u_0 + \varepsilon)$ is a sub-*F*-extremal in *D*. Letting $\varepsilon \to 0$ Lemma 2.3 yields that $f \circ u_0$ is a sub-*F*-extremal in *G'*.

Next we shall consider smooth convex functions f.

3.2. Lemma. Suppose $f: (a, b) \rightarrow \mathbb{R}$ to be a convex increasing function such that $f \in C^2(a, b)$. Then f preserves the regular sub-F-extremality in G.

Proof. Let $D \subset G$ be a domain. Suppose that $u: D \to (a, b)$ is a regular sub-F-extremal. Clearly $v=f \circ u \in C(D) \cap \log W_n^1(D)$. Choose $\varphi \in C_0^{\infty}(D), \varphi \ge 0$. It suffices to show that

$$\int_{D} \nabla_{h} F(x, \nabla v) \cdot \nabla \varphi \, dm \leq 0;$$

see Lemma 2.1. Let $\psi(x) = f'(u(x))^{n-1}\varphi(x)$. Then $\psi \in C_0(D) \cap W^1_{n,0}(D)$ and $\psi \ge 0$. Furthermore,

(3.3)
$$\nabla \psi(x) = (n-1)f''(u(x))f'(u(x))^{n-2}\varphi(x)\nabla u(x) + f'(u(x))^{n-1}\nabla\varphi(x)$$

a.e. in D. Since the homogeneity assumption (d) of F implies for a.e. $x \in G$

$$\nabla_h F(x, \lambda h) = |\lambda|^{n-2} \lambda \nabla_h F(x, h)$$

for $\lambda \in \mathbf{R}$ and $h \in \mathbf{R}^n$, we obtain

$$(3.4) \quad \nabla_h F(x, \nabla v(x)) = \nabla_h F(x, f'(u(x)) \nabla u(x)) = f'(u(x))^{n-1} \nabla_h F(x, \nabla u(x))$$

a.e. in D. Now (3.4) and (3.3), together with the regular sub-F-extremality of u, yield

$$0 \ge \int_{D} \nabla_{h} F(x, \nabla u) \cdot \nabla \psi \, dm = (n-1) \int_{D} f''(u) f'(u)^{n-2} \varphi \nabla_{h} F(x, \nabla u) \cdot \nabla u \, dm$$
$$+ \int_{D} f'(u)^{n-1} \nabla_{h} F(x, \nabla u) \cdot \nabla \varphi \, dm \ge \int_{D} \nabla_{h} F(x, \nabla v) \cdot \nabla \varphi \, dm,$$

since $\nabla_h F(x, \nabla u) \cdot \nabla u \ge 0$ a.e. in D by the assumptions (b) and (c).

4. Final steps

4.1. Proof for Theorem 1.1. We make a convolution approximation. Choose $\eta_j \in C_0^{\infty}(\mathbf{R}), \ \eta_j \ge 0$ such that spt $\eta_j = [-1/j, 1/j]$ and $\int_{\mathbf{R}} \eta_j(y) \, dy = 1$. For $x \in (a+1/j, b-1/j)$ define

$$f_j(x) = \int_{\mathbf{R}} f(x-y)\eta_j(y) \, dy,$$

where $f(x-y)\eta_j(y)=0$ if $y \notin \operatorname{spt} \eta_j$. In the light of Lemma 3.2, f_j preserves the regular sub-*F*-extremality in *G*. Hence Lemma 3.1 implies the desired result.

4.2. Remark. Suppose that $f: [a, b) \rightarrow [-\infty, \infty)$ is convex and increasing. If $f(a) = -\infty$, then $f(t) = -\infty$ for each $t \in [a, b)$ or $f(t) > -\infty$ for each $t \in (a, b)$. Thus we can use Theorem 1.1 to prove the following slight extension: Suppose that $f: [a, b) \rightarrow [-\infty, \infty)$ is convex and increasing and that $u: G \rightarrow \mathbb{R} \cup \{-\infty\}$ is a sub-F-extremal in G with $u(G) \subset [a, b)$. Then $f \circ u$ is a sub-F-extremal in G.

4.3. Remark. It is clear that $f \circ u$ is a super-F-extremal if u is and if f is concave and increasing. Also, it is evident that if v is a sub-F-extremal and if f is concave and decreasing, then $f \circ v$ is a super-F-extremal.

4.4. Remark. Theorem 1.1 holds also when the exponent n in (c) and (d) is replaced by a more general constant $p \in (1, \infty)$. For $p \neq n$ the proof is similar to that above. Observe that the continuity of the solution to an obstacle problem, needed in the proofs of 2.1 and 2.2, is established in [MZ].

4.5. Corollary. Suppose that $u: G \rightarrow \mathbb{R}$ is an F-extremal in G and $p \in [1, \infty)$. Then $|u|^p$ is a sub-F-extremal in G.

Proof. Note that $|u| = \max(u, -u)$ is a sub-F-extremal and $t \mapsto t^p$, $t \ge 0$, is convex and increasing. The result follows from Remark 4.2.

4.6. Corollary. Suppose that u is a non-negative super-F-extremal in G. Then u^p is a super-F-extremal for $p \in [0, 1]$.

We close with a remark on quasiregular mappings, which have an important role in a non-linear potential theory; see [GLM 2, Sections 6 and 7]. Suppose that G and G' are domains in \mathbb{R}^n and $f: G \rightarrow G'$ is a quasiregular mapping. Then

$$F(x, h) = \begin{cases} J(x, f) | f'(x)^{-1*}h|^n & \text{if } J(x, f) \neq 0, \\ |h|^n & \text{otherwise,} \end{cases}$$

satisfies (a)—(d) in G; see [GLM 2, 6.4]. Here J(x, f) stands for the Jacobian determinant of f at x and A^* denotes the adjoint of the linear map $A: \mathbb{R}^n \to \mathbb{R}^n$. Now $\log |f|$ is a sub-*F*-extremal in G [GLM 2, Theorem 7.10]. Thus, using the convex increasing function e^{tp} for $p \ge 0$, we obtain

4.7. Corollary. Suppose that f and F are as above. Then $|f|^p$ is a sub-F-extremal in G for $p \ge 0$.

References

[B]	BRELOT, M.:	Étude des fonctior	is sous	sharmonio	ques au v	oisinage d'u	in point	Actualités
	Sci. Ind.	139, 1934, 1—55.					-	
LOT M 11	C		10.1		77 1			

- [GLM 1] GRANLUND, S., P. LINDQVIST, and O. MARTIO: F-harmonic measure in space. Ann. Acad. Sci. Fenn. Ser. A I Math. 7, 1982, 233–247.
- [GLM 2] GRANLUND, S., P. LINDQVIST, and O. MARTIO: Conformally invariant variational integrals. - Trans. Amer. Math. Soc. 277, 1983, 43-73.
- [GLM 3] GRANLUND, S., P. LINDQVIST, and O. MARTIO: Note on the *PWB*-method in the nonlinear case. - Pacific J. Math. 125, 1986, 381—395.
- [HK] HAYMAN, W. K., and P. B. KENNEDY: Subharmonic functions, Volume I. Academic Press, London-New York-San Francisco, 1976.
- [K] KILPELÄINEN, T.: Homogeneous and conformally invariant variational integrals. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 57, 1985, 1–37.
- [LM 1] LINDQVIST, P., and O. MARTIO: Two theorems of N. Wiener for solutions of quasilinear elliptic equations. Acta Math. 155, 1985, 153-171.
- [LM 2] LINDQVIST, P., and O. MARTIO: Regularity and polar sets for supersolutions of certain degenerate elliptic equations. To appear.
- [MZ] MICHAEL, J. H., and W. P. ZIEMER: Interior regularity for solutions to obstacle problems. -To appear.
- [R] RADÓ, T.: Subharmonic functions. Ergebnisse der Mathematik und ihrer Grenzgebiete. Chelsea Publishing Company, New York, 1949.

University of Jyväskylä Department of Mathematics SF—40100 Jyväskylä Finland

Received 3 December 1985