INJECTIVITY, QUASICONFORMAL REFLECTIONS AND THE LOGARITHMIC DERIVATIVE

REUVEN HARMELIN

1. Introduction

Let C be a K-quasicircle in the complete complex plane $\hat{C} = C \cup \{\infty\}$ (i.e., C is the image of the real axis \hat{R} under a K-quasiconformal automorphism of \hat{C} , with $K \ge 1$), and D_1 , D_2 to be the components of $\hat{C} \setminus C$, such that $\infty \in \overline{D}_2 = D_2 \cup C$. Let $\varrho_i(z) |dz|$ be the Poincaré metric in D_i , i=1, 2, with curvature -4. In [2] Ahlfors proved the following injectivity criterion in terms of the Schwarzian derivative

$$S_f(z) = \left[(f''|f')' - \frac{1}{2} (f''|f')^2 \right](z), \quad z \in D_1.$$

Theorem A. If C is a K-quasicircle, then there exists a positive constant $\varepsilon = \varepsilon(K)$, depending only on K, such that f is univalent in D_1 whenever it is meromorphic there, with a nonvanishing derivative and

(1.1)
$$||S_f||_{2,D_1} = \sup_{z \in D_1} \varrho_1(z)^{-2} |S_f(z)| \leq \varepsilon.$$

Moreover, strict inequality in (1.1) implies the existence of a quasiconformal extension of f to \hat{C} .

Writing

$$S_f = T'_f - \frac{1}{2} T_f^2, \quad T_f = f'' / f'$$

and applying Lemma 3 of [9], one can easily show that the correspondence $\pi: T_f \to S_f$ is continuous with respect to the norms $\|S_f\|_{2,D_1}$, defined in (1.1), and

(1.2)
$$||T_f||_{1,D_1} = \sup_{z \in D_1} \varrho_1(z)^{-1} ||T_f(z)|.$$

This observation yields the following analogue for Theorem A.

Theorem B. If C is a K-quasicircle, then there exists a positive constant $\varepsilon_1 = \varepsilon_1(K)$, depending only on K, such that every analytic function f in D_1 , with $f' \neq 0$, is univalent whenever

$$(1.3) ||T_f||_{1, D_1} \leq \varepsilon_1,$$

and if there is a strict inequality in (1.3), f has a quasiconformal extension to \mathbb{C} .

Remark. Martio and Sarvas [11] proved the injectivity part of Theorems A and B, using the uniformity property of quasidiscs. On the other hand, Gehring [8] and Astala—Gehring [5] proved that these injectivity criteria are valid only on quasidiscs.

In this paper, a different quantitative proof for Theorem B is provided, based on Ahlfors' idea of the proof of Theorem A but utilizing a slight modification of his quasiconformal extension formula. First we show that two properties of quasiconformal reflections, which have been proven in [2] under the assumption $\infty \in C$, remain valid also if $\infty \in \overline{D}_2$. Then Theorem B is proved and in the last section it is applied to the universal Teichmüller space.

2. Quasiconformal reflections

An automorphism h of $\hat{\mathbf{C}}$ is a K-quasiconformal reflection at C if

(i) $h|_{c} = id$ and $h \circ h = id$ on \hat{C} .

(ii) The mapping $z \rightarrow \overline{h(z)}$ is a (sense-preserving) K-quasiconformal mapping, i.e.,

$$\left|\frac{\partial h}{\partial z}\right| \leq \frac{K-1}{K+1} \left|\frac{\partial h}{\partial \bar{z}}\right| < \left|\frac{\partial h}{\partial \bar{z}}\right|.$$

Properties (i) and (ii) yield a third one:

(iii) $h(D_i) = D_j$, $i \neq j$, i, j = 1, 2.

Lemma 1 (Ahlfors [2]). If C is a K-quasicircle, C admits a K^2 -quasiconformal reflection.

Lemma 2 (cf [2]). Let $h: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a K-quasiconformal reflection at C. If $\infty \in \overline{D}_2$ and $z_0 \in C$, then

$$(2.1) |h(z)-z_0| \leq \lambda(K)|z-z_0|, ext{ for all } z \in D_2,$$

where

$$\lambda(K) = \left[\mu^{-1}\left(\frac{\pi K}{2}\right)\right]^{-2} - 1$$

and $\mu(r)$ is the conformal module of the Grötzsch extremal ring domain separating the exterior of the unit disc B from the interval (0, r) for $0 \le r < 1$ (see [10], pp. 53, 81).

Proof. Let f be a conformal mapping of the upper half plane U onto D_2 , with $f(\infty) = \infty$ if $\infty \in C$, or $f(\infty) = z_0 \in C$ if $\infty \in D_2$. Define

$$\omega(\zeta) = \begin{cases} f(\zeta) & \text{for } \zeta \in U, \\ h(f(\zeta)) & \text{for } \zeta \in L = \mathbb{C} \setminus \overline{U}. \end{cases}$$

Then $C = \omega(\mathbf{R})$ and $\omega: \hat{\mathbf{C}} \rightarrow \hat{\mathbf{C}}$ is K-quasiconformal. Thus, if $z \in D_2$, then

$$z = \omega(\zeta) = f(\zeta)$$
 for some $\zeta \in U$

and

$$h(z) = h(f(\zeta)) = \omega(\zeta), \quad \zeta \in L.$$

First, if $\infty \in C$, take $\zeta_0 = \omega^{-1}(z_0) \in \mathbf{R}$. Then the cross-ratio

$$|(\bar{\zeta}, \zeta, \zeta_0, \infty)| = \left|\frac{\bar{\zeta} - \zeta_0}{\zeta - \zeta_0}\right| = 1,$$

and (2.1) follows by the quasi-invariance of the cross-ratio under quasiconformal mappings (see [1]), and since ω maps $\{\zeta, \zeta, \zeta_0, \infty\}$ onto $\{h(z), z, z_0, \infty\}$, respectively.

Next, if $\infty \in D_2$, let $\omega^{-1}(\infty) = \alpha \in U$. Then

$$|(\zeta, \zeta, \infty, \alpha)| = \left| \frac{\zeta - \alpha}{\zeta - \alpha} \right| < 1 \text{ for } \zeta \in U,$$

and (2.1) is obtained again since $\omega: \{\zeta, \zeta, \infty, \alpha\} \rightarrow \{h(z), z, z_0, \infty\}$, respectively. Q.e.d.

Lemma 3 (cf. [2]). If C admits a K-quasiconformal reflection, then there exists a \mathcal{K} -quasiconformal reflection H at C satisfying

(2.2)
$$\varrho_j(H(z))|dH(z)| \leq \mathscr{L} \cdot \varrho_i(z)|dz|, \quad z \in D_i, \quad i \neq j, \quad i, j = 1, 2$$

for some constants $\mathscr{K} = \mathscr{K}(K)$ and $\mathscr{L} = \mathscr{L}(K)$ depending only on K.

The proof of Lemma 3 is given in [2]. The assumption $\infty \in C$ in it might be dropped, since it was needed only for deriving the corresponding inequality in the Euclidean metric. From Ahlfors' proof in [2] and the estimates in [3] and [7] one gets the following estimates:

(2.3) $\mathscr{K}(K) \leq M^2, \quad \mathscr{L}(K) \leq 4M^2(M+1), \text{ where } M = \lambda(K).$

3. Proof of Theorem B

Assume first that f has the following property:

(*) f is locally conformal on some domain containing $\overline{D}_1 = D_1 \cup C$.

By Lemma 1, C admits a K^2 -quasiconformal reflection, and hence, by Lemma 3, there exists another \mathscr{K} -quasiconformal reflection H at C, with $\mathscr{K} \leq M^2 = \lambda (K^2)^2$, which satisfies Condition (2.2) with $\mathscr{L} \leq 4M^2(M+1)$.

Now, extend f into D_2 as follows:

(3.1)
$$\tilde{f}(\zeta) = f(z) + (\zeta - z)f'(z), \quad \zeta \in D_2, \quad z = H(\zeta) \in D_1.$$

This extension has the complex derivatives

$$\frac{\partial \tilde{f}}{\partial \bar{\zeta}} = (\zeta - z) \frac{\partial z}{\partial \bar{\zeta}} f''(z) \quad \text{and} \quad \frac{\partial \tilde{f}}{\partial \zeta} = f'(z) + (\zeta - z) \frac{\partial z}{\partial \zeta} f''(z), \quad z = H(\zeta) \in D_1,$$

and hence it has the complex dilatation

(3.2)
$$\tilde{\mu}(\zeta) = \frac{(\zeta - z)\frac{\partial z}{\partial \zeta}T_f(z)}{1 + (\zeta - z)\frac{\partial z}{\partial \zeta}T_f(z)}, \quad \zeta \in D_2, \quad z = H(\zeta) \in D_1.$$

But by Lemma 2 we have for all $\zeta_0 \in C$

$$(3.3) \qquad |\zeta - H(\zeta)| \leq |\zeta - \zeta_0| + |\zeta_0 - H(\zeta)| \leq (1 + \lambda(\mathscr{H}))|\zeta - \zeta_0|, \quad \zeta \in D_2.$$

Choose $\zeta_0 \in C$ such that $|\zeta - \zeta_0| = d(\zeta, C)$ and apply the inequality $d(\zeta, C) \leq \varrho_2(\zeta)^{-1}$, $\zeta \in D_2$ (by Schwarz' lemma). Thus

(3.3')
$$|\zeta - H(\zeta)| \leq (1 + \lambda(\mathscr{K})) \varrho_2(\zeta)^{-1}, \quad \zeta \in D_2.$$

On the other hand, Property (2.2) of H implies

(3.4)
$$\left|\frac{\partial H(\zeta)}{\partial \overline{\zeta}}\right| \lesssim \mathscr{L} \cdot \varrho_2(\zeta)/\varrho_1(H(\zeta)), \quad \zeta \in D_2,$$

and since $\zeta \rightarrow \overline{H(\zeta)}$ is \mathscr{K} -quasiconformal, it follows that

(3.5)
$$\left|\frac{\partial H(\zeta)}{\partial \zeta}\right| \leq q \left|\frac{\partial H(\zeta)}{\partial \overline{\zeta}}\right| \text{ with } q = q(K) = \frac{\mathscr{K} - 1}{\mathscr{K} + 1} < 1.$$

From (3.2), (3.3'), (3.4) and (3.5) we conclude

(3.6)
$$|\tilde{\mu}(\zeta)| \leq \frac{A(K)\varrho_1(z)^{-1}|T_f(z)|}{1-q(K)A(K)\varrho_1(z)^{-1}|T_f(z)|}, \quad \zeta \in D_2, \quad z = H(\zeta) \in D_1,$$

where $A(K) = 4M^2(M+1)(1+\lambda(M^2))$, $q(K) = (M^2-1)/(M^2+1)$, $M = \lambda(K^2)$. Thus $\|\tilde{\mu}\|_{\infty} \leq k < 1$ whenever f satisfies

(3.7)
$$\|T_f\|_{1,D_1} \leq A(K)^{-1} \frac{k}{1+q(K)k} < \varepsilon_1 = \frac{A(K)^{-1}}{1+q(K)} = \varepsilon_1(K).$$

Hence, the mapping

(3.8)
$$F(z) = \begin{cases} f(z) & \text{for } z \in \overline{D}_1 = D_1 \cup C, \\ \tilde{f}(z) & \text{for } z \in D_2 \end{cases}$$

is a local homeomorphism all over $\hat{\mathbf{C}}$, and therefore it is an automorphism of $\hat{\mathbf{C}}$, thus proving the theorem whenever f satisfies (*).

Now, if f does not satisfy (*), let $\{G_n\}$ be any decreasing sequence $-\overline{G}_{n+1} \subset G_n$ -of simply-connected hyperbolic domains, such that $D_1 = \bigcap_{n=1}^{\infty} G_n$. Let $g_n: G_n \to D_1$ be the conformal mapping with $g_n(z_0) = z_0$ and $g'_n(z_0) > 0$ for some fixed $z_0 \in D_1 \subset G_n$. Then $\{g_n\}$ converges to the identity mapping locally uniformly on D_1 . Define

$$\psi_n = (T_f \circ g_n) g'_n, \quad n \ge 1.$$

Then $\{\psi_n\}$ converges to T_f locally uniformly on D_1 . Note that each ψ_n is analytic on $\overline{D}_1 \subset G_n$, and by

$$\varrho_{G_n}(z) \leq \varrho_1(z), \quad z \in D_1 \subset G_n$$

(which is a consequence of Schwarz' lemma) it follows that

$$\begin{split} \varrho_1(z)^{-1} |\psi_n(z)| &\leq \varrho_{G_n}(z)^{-1} |g_n'(z)| \left| T_f(g_n(z)) \right| \\ &= \varrho_1(g_n(z))^{-1} |T_f(g_n(z))| \leq \|T_f\|_{1,D_1}, \quad z \in D_1. \end{split}$$

Thus if f_n is any solution of the equation

(3.9)
$$y'' - \psi_n y' = 0$$
 in G_n ,

then f_n satisfies property (*) in addition to the assumptions of the theorem and $T_{f_n} = \psi_n$. Furthermore, since the general solution of (3.9) is of the form $af_n + b$, we can choose the solution f_n that fixes two given points on C. Hence, the sequence $\{F_n\}$ of mappings defined by

$$F_n(\zeta) = \begin{cases} f_n(\zeta) & \text{for } \zeta \in \overline{D}_1, \\ f_n(z) + (\zeta - z)f'_n(z) & \text{for } \zeta \in D_2, \quad z = H(\zeta) \in D_1 \end{cases}$$

form a normal family of quasiconformal automorphisms of \hat{C} . We conclude that $\{F_n\}$ contains a subsequence converging locally uniformly on \hat{C} to

$$F_0(\zeta) = \begin{cases} f_0(\zeta) & \text{for} \quad \zeta \in \overline{D}_1, \\ \tilde{f}_0(\zeta) & \text{for} \quad \zeta \in D_2, \end{cases}$$

where $f_0 = \lim_{n \to \infty} f_n$ is conformal and univalent in D_1 , with $T_{f_0} = \lim_{n \to \infty} T_{f_n} = T_f$, and

$$\tilde{f}_0(\zeta) = \lim_{n \to \infty} F_n(\zeta) = f_0(\zeta) + (\zeta - z)f_0'(z), \quad \zeta \in D_2, \quad z = H(\zeta) \in D_1$$

has the complex dilatation $\tilde{\mu}(\zeta)$ given in (3.2).

Finally, $T_f = T_{f_0}$ implies $f = af_0 + b$ for some constants $a, b \in C$, so that f is also univalent in D_1 and has the quasiconformal extension to \hat{C} , given by (3.1). Q.e.d.

4. Universal Teichmüller space

For n=1, 2, let $B_n(D)$ be the Bers' space of analytic functions ψ in a hyperbolic domain D, bounded in the norm

$$\|\psi\|_{n,D} = \|\psi\|_n = \sup_{z \in D} \varrho_D(z)^{-n} |\psi(z)|.$$

Let M(D) be the open unit ball in the Banach space $L^{\infty}(D)$ of all complexvalued measurable functions μ supported in D and bounded in the norm

$$\|\mu\|_{\infty, D} = \|\mu\|_{\infty} = \operatorname{ess\,sup}_{z \in D} |\mu(z)|.$$

Let C, D_1 , D_2 be as before. For each $\mu \in M(D_2)$ let f_{μ} be the unique homeomorphic solution of the Beltrami equation

$$\frac{\partial w}{\partial \bar{z}} = \mu \frac{\partial w}{\partial z}$$

fixing the points $\{0, 1, \infty\}$. Since $\mu|_{D_1} = 0$, f_{μ} is conformal in D_1 , so we may define the two mappings

and

$$\eta_c^{(1)}: \ M(D_2) \to \mu \to T_\mu = T_{f_\mu} \in B_1(D_1), \quad T_f = f''/f$$
$$\eta_c^{(2)}: \ M(D_2) \to \mu \to S_\mu = T'_\mu - \frac{1}{2} T^2_\mu \in B_2(D_1),$$

the second of which is known (see [6]) as Bers' embedding of the universal Teichmüller space $T(D_2)$ of D_2 in $B_2(D_1)$. The image $T_1(D_2)$ of the first mapping $\eta_c^{(1)}$ in $B_1(D_1)$ may also be considered a representation of $T(D_2)$. Bers proved in [6] the following properties of the embedding $\eta_c^{(2)}$:

Theorem C. Let C be a quasicircle in $\hat{\mathbb{C}}$. The mapping $\eta_c^{(2)}$: $M(D_2) \rightarrow B_2(D_1)$ is holomorphic (as a mapping between two complex Banach spaces). Its derivative at the origin is

(4.1)
$$D\eta_c^{(2)}(0): \mu \to -\frac{6}{\pi} \iint_{D_2} \frac{\mu(\zeta)}{(\zeta-z)^4} d\zeta d\eta, \quad z \in D_1, \quad \mu \in L^{\infty}(D_2).$$

and $D\eta_c^{(2)}(0)$ has the right-inverse

(4.2)
$$\Lambda_{c}^{(2)}: \psi \to \frac{1}{2} \left(\zeta - H(\zeta) \right)^{2} \frac{\partial H(\zeta)}{\partial \zeta} \psi \left(H(\zeta) \right), \quad \zeta \in D_{2}, \quad \psi \in B_{2}(D_{1}),$$

i.e., each $\psi \in B_2(D_1)$ satisfies the reproduction formula

(4.3)
$$\psi(z) = -\frac{3}{\pi} \iint_{D_2} (\zeta - H(\zeta))^2 \frac{\partial H(\zeta)}{\partial \overline{\zeta}} \psi(H(\zeta))(\zeta - z)^{-4} d\zeta d\eta, \quad z \in D_1$$

(cf. Lemma 6 in [9]), where H is the quasiconformal reflection at C of Lemma 3. It appears that the embedding $\eta_c^{(1)}$ has similar properties: Theorem D. Let C be a quasicircle in $\hat{\mathbf{C}}$, and D_1 and D_2 its interior and exterior domains, respectively (i.e., $\infty \in \overline{D}_2$). The mapping $\eta_c^{(1)}$: $M(D_2) \rightarrow B_1(D_1)$ is holomorphic. Its derivative at the origin is the linear mapping

(4.4)
$$D\eta_c^{(1)}(0): \ \mu \to -\frac{2}{\pi} \iint_{D_2} \frac{\mu(\zeta)}{(\zeta-z)^3} d\zeta d\eta, \quad z \in D_1, \quad \mu \in L^{\infty}(D_2),$$

and $D\eta_c^{(1)}(0)$ has the right inverse

(4.5)
$$\Lambda_c^{(1)}: \psi \to (\zeta - H(\zeta)) \frac{\partial H(\zeta)}{\partial \bar{\zeta}} \psi(H(\zeta)), \quad \zeta \in D_2, \quad \psi \in B_1(D_1),$$

i.e.,

(4.6)
$$\psi(z) = -\frac{2}{\pi} \iint_{D_2} (\zeta - H(\zeta)) \frac{\partial H(\zeta)}{\partial \zeta} \psi(H(\zeta))(\zeta - z)^{-3} d\xi d\eta,$$
$$z \in D_1, \quad \psi \in B_1(D_1).$$

Proof. The holomorphicity of $\eta_c^{(1)}$ and Formula (4.4) are proven exactly as the corresponding part of Theorem C (see [6] and also [9]). The rest of the theorem follows from Formula (3.2), which means that the mapping

$$\tilde{A}_{c}^{(1)}: \psi \to \mu(\zeta) = \frac{\left(\zeta - H(\zeta)\right) \frac{\partial H(\zeta)}{\partial \zeta} \psi(H(\zeta))}{1 + \left(\zeta - H(\zeta)\right) \frac{\partial H(\zeta)}{\partial \zeta} \psi(H(\zeta))}, \quad \psi \in B_{1}(D_{1}), \quad \zeta \in D_{2},$$

is a local cross-section for $\eta_c^{(1)}$: $M(D_2) \rightarrow B_1(D_1)$ near the origin, i.e.,

(4.7) $\eta_c^{(1)} \circ \widetilde{\Lambda}_c^{(1)} \psi = \psi \quad \text{for} \quad \psi \in B_1(D_1) \quad \text{with} \quad \|\psi\|_{1, D_1} \quad \text{small.}$

But direct computation easily yields

(4.8)
$$D\tilde{\Lambda}_{c}^{(1)}(0) = \Lambda_{c}^{(1)},$$

and (4.6) is derived by applying the chain rule to (4.7). Q.e.d.

References

- AGARD, S.: Distortion theorems for quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 413, 1968, 1–12.
- [2] AHLFORS, L. V.: Quasiconformal reflections. Acta Math. 109, 1963, 291-301.
- [3] AHLFORS, L. V.: Lectures on quasiconformal mappings. D. Van Nostrand Company, Inc., Princeton, N. J.—Toronto—New York—London, 1966.
- [4] AHLFORS, L. V., and G. WEILL: A uniqueness theorem for Beltrami equations. Proc. Amer. Math. Soc. 13, 1962, 975–978.
- [5] ASTALA, K., and F. W. GEHRING: Injectivity criteria and the quasidisc. Complex Variables Theory Appl. 3, 1984, 45–54.

- [6] BERS, L.: A non-standard integral equation with applications to quasiconformal mappings. -Acta Math. 116, 1966, 113-134.
- [7] BEURLING, A., and L. V. AHLFORS: The boundary correspondence under quasiconformal mappings. - Acta Math. 96, 1956, 125-142.
- [8] GEHRING, F. W.: Univalent functions and the Schwarzian derivative. Comment. Math. Helv. 52, 1977, 561—572.
- [9] HARMELIN, R.: Invariant operators and univalent functions. Trans. Amer. Math. Soc. 272, 1982, 721-731.
- [10] LEHTO, O., and K. I. VIRTANEN: Quasiconformal mappings in the plane. Springer-Verlag, Berlin—Heidelberg—New York, 1975.
- [11] MARTIO, O., and J. SARVAS: Injectivity theorems in plane and space. Ann. Acad. Sci. Fenn. Ser. A I Math. 4, 1979, 383-401.

Technion Department of Mathematics Haifa 32000 Israel

Received 20 December 1985