Annales Academia Scientiarum Fennice
Series A. I. Mathematica
Volumen 12, 1987, 69—75

COEFFICIENTS OF BLOCH FUNCTIONS
AND NORMAL FUNCTIONS

J. S. HWANG and PETER LAPPAN

Abstract. We give a number of sufficient conditions for an analytic function f(z)= ¥ (a,+b,)z"
to be a normal function. In particular, we show that if {a,} is a decreasing sequence of non-negative
real numbers, and if {b,} is a sequence which satisfies both b,=0(1/n) and X ;. [b,—b, al=
O(b,), then f(z) is a normal function. Some of our results deal with Bloch functions.

1. Introduction

Let D denote the unit disc {z: |z|]<1}. A function f(z) meromorphic in D is
called a normal function if

sup {(1 =121 /% (2): |2 < 1} <,

where f# (2)=|f(@|/(1+]f(2)?). It is well known that a meromorphic function
which omits 3 values is a normal function, and we will use this fact in what follows.
A function f(z) analytic in D is called a Bloch function if

sup {(1 =1z (2I: 2] < 1} <ee.

It is easily seen that a Bloch function is a normal function.

In [1] and [2], the second author studied conditions on the coefficients {a,}
which are sufficient to make the function f(z)=2 a,z" a normal function. In
particular, the following two results were proved in [1].

Theorem A. If {a,} is a bounded monotone sequence of real numbers, then
f(@=2 a,z" is a normal function.

Theorem B. If{a,}is a sequence of complex numbers such that 3 |a,—a, | <
and lim a,=0, then f(z)=2 a,z" is a normal function.

n—»oo

Here, we investigate a number of results in the spirit of Theorems A and B,
with some consideration of Bloch functions. Essentially, our investigation asks what
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happens when a function whose sequence of coefficients satisfying the hypotheses
of Theorem A is added to a function whose sequence of coefficients satisfies a con-
dition like the hypothesis of Theorem B. In Section 2, we give a number of prelim-
inary results. Some of these results deal with Bloch functions, and some deal with
the behavior of the real and imaginary parts of analytic functions with certain types
of coefficient sequences. Our main results appear in Section 3. Some examples are
given in Section 4.

2. Preliminary results

We begin with some results about Bloch functions.
Lemma 1. If a,=0(1/n), then f(2)=2 a,z" is a Bloch function.
Proof. If a,=0(1/n), then
If' 2l = 2 0M)|z" = 0(D)/(1-|z]),
which means that f(z) is a Bloch function.
Corollary. If f(2)= 3 a,z" is not a normal function, then lim sup,_ ., n|a,|= oo

Theorem 1. If {a,} is @ decreasing sequence of positive real numbers, then
f(@)=2 a,z" is a Bloch function if and only if a,=O0(1/n).

Proof. By Lemma 1, if a,=0(1/n) then f(2) is a Bloch function. Conversely,
if {a,} is a decreasing sequence of positive real numbers, then 37_, ja;=a,(3"_, j)=
[n(n+1)/2]a,. However, |f'(x)|=0(1/(1—-x)) if and only if 3"%_, ja,=0(n) (see
[4, Section 7.51]). Thus, if f(2) is a Bloch function and {a,} is a decreasing sequence
of positive real numbers, then n(n+1)a,/2=0(n), which means that a,=0(1/n).
This proves the theorem.

Next, we prove a result about Bloch functions with an additional restriction on
the coefficients. We say that the sequence {a,} is nearly monotone if 3., la;—a;.,|=

O(la,|) for each positive integer p.

Lemma 2. If {b,} is a nearly monotone sequence of real numbers, and if f(z)=
>'b,z", then | f(2)| is bounded for each z near € for each 0, 0<0<2n. In addi-
tion, if b,=0(1/n) and b,=0 for each n, then both Im f(z) is uniformly bounded
Jor |zl<1 and Re f(2) is bounded below for |z|<l1.

Proof. Let g(2)=(1—2)f(2)=by+32y (bps1—b)2"*". Since {b,} is a nearly
monotone sequence, g(z) is continuous and bounded for |z|=1. Thus f(z) is con-
tinuous at e for each 0, 0<0<2n, which proves the first part of the lemma.

For proving the rest of the lemma, it is no loss of generality to prove the results
for z=re", 1/2=r<1, 0=0 <2r. Henceforth, let b,=0(l/n), b,=0, and B,=b,r"
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for 1/2=r<1. We claim that for each such r, {B,} is a nearly monotone sequence,
since
|By— By 41| = |by1" — by 4 by (" ="t

= [bn_bn+1| rn+bn+1r"(1 —r),
2:;,, [By—By41l < Z:;p {lbn—bn+1] "p+bn+17'"(1"")}-
But for g=>p, b,=b,+ 372} (bys1—b,), so b,=0(b,). Thus
Znep | Bi—Busal = O )rP+0M)rPF(1-n(Z._, 1) = O(B)).
Now Imf(re)=>7:, B,sinnf and for each integer p=>0,
Imf(re"’) = :-_-1 Bn sin n9+Z°° (Bn—Bn+1)Sn(0)_Bp+1Sp(0)$

n=p+1

and so

where S,(0)=27_, sin j=0(1/0). Fix 0, 0<0=m, let p be such that n/(p+1)<
O0=n/p, and let 1/2=r<1. Then

?_ |B,sinnfl < 37 _| B,(n0) = P_,0()6 = poo(1) = O(m),

S i1 [(Bi=Bui)) S, (0)] = 0(B,:1) 0(1/0) = O(1/((p+ 1)) = O(1/x),

and
IB,+15,(0) = 0(1/(p+1)6)) = 0(1/x).

Hence Imf(re®®)=0(1). Similarly,
Ref(ré®) = 3%  B,cosnf+>. . . B,cosnd

=p+1
= 2:=0 Bn cos n0+2:=p+1 (Bn_Bn+1) Cn(e)_Bp+]Cp(9)s

where C,(0)=27_,cosj0=0(1/0). Thus, if b,=0 for each n, the same argu-
ment as above yields Ref(re®)=2>7_, B, cos nf+0(1), where the sum is non-
negative if we take n/(2p+1)<|0|<n/(2p) and the O(1) is independent of p and 6.
Thus we have that Ref(re) is bounded below for |0|=n/2, 1/2=r<1. But by
the first part of Lemma 2, we have that Ref(re’) is bounded below for n/2=
|0|=3n/2, 0=r<1. Thus, we conclude that Re f(re”) is bounded below for all 6,
0=0=2xn. This completes the proof of the lemma.

Lemma 3. If f(z2)=> a,z", where {a,} is a monotone decreasing sequence with
a,=0, then Imf(2) is bounded below for O=argz=m.

Proof. Fix r=0 and define h(t)=a,r" for n—1/2=t=n+1/2, n=1, t=1/2.
Then
Imf(ré®) = 3 a,r"sin nd = (0/2sin (0/2))) [ ;2 h(f) sin 0z dt
and
2n(n+1)/0
2nn/0

co . 27/0 . oo :
S k@ sin0rdt = fm h()sin Ot dt+ 37 h(f) sin 0t dt.
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The summation term on the right is non-negative, since h(¢) is a decreasing function
and sin 0¢ is periodic with period 2r/0. Also,

1/2 . 21/6 . -
fo a,rsin (9tdt+fll2 h(H)sin6tdt =0
for the same reason. Thus, we have
Im f(re) =~ [ ;’ * ay7 sin 0f d(0/(2 sin (6/2))) = —ay/2

for 0=0<m, r=0. This completes the proof.

Lemma 4. If f(2)=23,b,2>""" and if b,=b,,,=0 for each n=0, then
Im f(re®)=0 for 0=0=n.

Proof. The argument is the same as in the proof of Lemma 3, except that we
let h(¢)=b,r**' for 2n=t<2n+2, and Im f(re®)=(6/sin 6) [& h(t) sin 6t dt.

Lemma 5. Let f(2) be defined and meromorphic in D* ={z¢D: Im z=>0} such
that f(z) has a continuous extension to the interval (—1,1) on the real axis. Let
Im f(2) be bounded below in D* and let f(r)—~L as r—1— (where L is either finite
or infinite). For 0<0<mn/2, let

Dy = {zeD*: —0 < arg(1—z) <0}.
Then for each 0, 0<0<mn/2, f(z)~L as z—1 within D,.

Proof. Let &: D—~D* be a conformal mapping, with ®(1)=1. Then & () —~1
as 0—-0—. Consider the function g(z)=f(P(2)) for z€D. Then Img(z) is
bounded below in D, so g(z) is a normal function. Further, g(z) has the asymptotic
value L at z=1. Thus, by a result of Lehto and Virtanen [3, Remark, p. 53], g(z)—~L
in the region Dj={z€D: —d6<arg(1—z)} for each choice of §, 0<5<n/2. But
this means that f(z)—~L in each D,, for given 0, 0<f<n/2, there exists a §, 0<
6<m/2, such that Dy #(D}). This completes the proof of the lemma.

3. The main results

We now state and prove our main results.

Theorem 2. If f(2)=2 a,2" and g(z)=3b,z" where {a,} is a decreasing
Sequence of positive real numbers, and {b,} is a nearly monotone sequence of non-
negative real numbers, and if h(z)=f(z)+g(z), then h(z) is a normal function.

Proof. By Lemma 2, g(z) is bounded near z=—1, so z=e" is a normal
point for h(z) for 0<0<2m, that is, if {z,} is any sequence of points in D con-
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verging to ¢, then sup {(1—|z,|2h ¥ (z,)} <. Thus, we need only to consider a
sequence of points {z,} in D which converges to z=1.

By considering a subsequence, if necessary, we note that there are three pos-
sibilities to consider: (a) z,—~1 tangentially, and Imz,=>0 for each n; (b) z,~1
non-tangentially; and (c) z,—~1 tangentially and Im z,<0 for each n. In case (a),
we note that both Im f(z,) and Img(z,) are bounded below in D by Lemmas 3
and 2, respectively, so that the family {h,(z)=h((z,+2)/(1+Z,2)): z€D} satisfies
the condition that {Im h,(z)} is uniformly bounded below on each compact sub-
set of D. It follows that {h,(z)} is a normal family in D, so hf ©)=0—|z,|Dh*(z,)
is uniformly bounded. This proves the result in case (a). The proof in case (c) is an
easy modification of the proof in case (a), since Im h(re’®)= —Im h(re~%). Now,
to handle case (b), we use Lemma 5 to conclude that 4 (z) has the angular limit equal
toitsradiallimitatz=1.(We can apply Lemma 5bothto D* andto D~ = {z€D: z¢ D*}
where Im h(z) is bounded above.) It follows that (1—|z,|)h ¥ (z,) is bounded in
this case also (see [3, Theorem 5, p. 57]). Thus, we conclude that (1—|z[)h ¥ (2) is
uniformly bounded in D, and the proof is completed.

Theorem 3. If f(2)=2 a,z""*" and g(2)=23b,z"", where {a,} is a monotone
decreasing sequence of positive real numbers and {b,} is a nearly monotone sequence
of non-negative real numbers such that b,=O0(1/n), and if h(z)=f(2)+g(z) has
a radial limit at z= —1, then h(z) is a normal function.

The proof of Theorem 3 is essentially the same as the proof of Theorem 2,
except that Lemma 4 is used in place of Lemma 3 and the reasoning involving
Lemma 5 must be used at both z=1 and z=—1.

Theorem 4. If f(z2)=23 a,z" and g(z)=2b,z", where {a,} is a monotone
decreasing sequence of positive real numbers converging to a=0, b,=0, and
= 1 |bu—by_1|=bo+a, then h(z)=f(2)+g(2) is a normal function.

Proof. Since (1-2)f(2)=ap+2,2,(@,—a,-1)z" and (1-2)g(2)=b,+
o (by—b,_1)z", then

h(z) = {ao+bo+ 3, ((an—an-1) 2"+ (by— b,_1)2")} /(1 —2) = d(2)/(1-2).
Now
Red(z) = a0+b0+(a—a0)—2':°=1 |b,—b,—1| = b0+a—2:°=1 |b,—b,-1] = 0.

Thus, |Argd(z)|<mn/2 and |Arg (1 —2)|<mn/2 for z€D, so |Argh(z)]<n. Hence
h(z) omits all negative values, so h(z) is a normal function. This completes the proof.

Finally, we prove a theorem about analytic functions for which the sequence
of coefficients is an increasing sequence. Note that by [1, Example 3, p. 340] the
sequence of coefficients can be increasing for a non-normal function.
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Before we can state the theorem, we require another definition. A sequence
{a,} of positive real numbers is called naturally convex if there exist two positive
numbers a and f such that both O<oa=a,,, —a,=f< and a,—2a,,,+a,,,=0 for
each non-negative integer n. Thus, a naturally convex sequence behaves somewhat
like the sequence of natural numbers.

Our final theorem is related to [1, Theorem 4, p. 340].

Theorem 5. If {a,} is a naturally convex sequence of positive real numbers,
then f(z)=2 a,z" is a normal function.

Proof. Let g(2)=(1-2)*/(2)=2,b,2z" Then

g(2) = ap+(a1—2a0)z+ 23, _ (@ —2ay 41+ ap 1) 2" 2
Let
g.(2) = a0+(a1—2ao)z+2'::§ (a;—2a;41+a;.9)2%% n=2.
Note that
oIl = laol+lay=2a|+ 3725 (a;—2a;1,+ ;)
= |a;—2ay| +2ay—a,+a,—a,_,
=2 Izao"aﬂ +an_an—1
§2|2¢10—a1|+ﬂ.

Thus we have shown that > |b,|<<-, so g(2) is continuous on the closure of D.
Further, for n=2, g,(1)=a,—a,_.,=a>0. Thus, g(1)=«=0. It follows that f(z)=
g(2)/(1—z2)* can be extended continuously to the boundary of D (with f(1)=co),
so f(2) is a normal function.

4. Some examples

We give two examples showing that Theorem 5 fails if either aspect of the
definition of a naturally convex sequence is missing.

Example 1. Let g(z)=exp {1/(1—2)?} and let f(z)=g(2)/(1—2)2=] a,z"
Then g(2) is not a normal function, but a,—2a,,,+a,,,=0 and a,—a,_,>0 for
each n.

Proof. Clearly f(z) has the radial limit « at z=1, but also f(z)=~0 as z—1
along the ray Arg(1—2)=3n/8. Hence, by a result of Lehto and Virtanen [3, Theo-
rem 2, p. 53], f(2) is not a normal function. Now if g(z)=2>b,z", then

@) =3 b,2)(3 (n+1)z") = Z [(n+1)by+nby+... +b,] 2",
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so a,=(n+1)by+nb,+...+b,, and hence
a,,—a,,_l = b0+b1+...+bn and a,,—2a,,+1+a,,+2 = bn+2.

By an easy calculation, b,>0 for each n, so f(z) satisfies both a,—a,-;>0 and
Ay — 20y 1+ 42>0.

Example 2. There exists a sequence {a,} of positive real numbers such that
O<o<a,,,—a,<f<oco, where o and P are constants, but f(2)=2 a,z" is not a
normal function.

Proof. By [1, p. 339] there exists a function g(z)=2 b,z" with 0=b,=1/2
and b,~0 such that g(z) is not a normal function because of its behavior near
z=i. If h(z2)=1/(1—2)? and f(z)=g(2)+h(z), then f(2)=2 a,z", where a,=
n+1+b,. Thus f(2) is not a normal function but 1/2<a,,,—a,<3/2.

We conclude by asking a basic question suggested by our results.

Theorems 2 and 3 raise questions about whether all the hypotheses are nec-
essary. For example, we raise the following question: If {a,} is a monotone decreasing
sequence of positive real numbers, and if {b,} satisfies both b,=0 and b,=O0(1/n),
is the function f(2)=3 (a,+b,)z" a normal function? If the answer is affirmative,
then this would greatly simplify Theorem 2 (and probably Theorem 3 also). The
condition given in Theorem 2 that 277 ) |b,—by44l =0(|b,) for each p is a strong
restriction on the sequence {b,}. It is natural to ask if this can be replaced in the
statement of Theorem 2 by some weaker condition.
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