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COEFFICIENTS OF BTOCH FUNCTIONS
AND NORMAL FUNCTIONS

J. S. EWANG aod PETER LAPPAN

Abstract. We give a number of sufficient conditions for an analytic functionf(z): | (a^* b*) zn

to be a normal function. In particular, we show that if {a"} is a decreasing sequence of non-negalive
real numbers, and if {å"} is a sequence which satisfies both å,:O(1 ln) and Zf,-rlb"-b^rrl:
O(b,), then f(z) is a normal function, Some of our results deal with Bloch functions.

1. Introrluction

Let D denote the unit disc {z: lzl=l}. A function f(z) meromorphic in D is
called a normal function if

sup {(1 -lrl\f# (z): lzl = l} = -,
wherc ffr Q):lf(z)ll(t+lf@)l'). It is well known that a meromorphic function
which omits 3 values is a normal function, and we will use this fact in what follows.

A function f(z\ analytic in D is called a Bloch func:tion if

sup {(1 -lzl\lf'Q)l: lzl -.1} =-.
It is easily seen that a Bloch function is a normal function.

In [] and l2l, the second author studied conditions on the coefficients {a,}
which are sufficient to make the function f(z): Z anzo a normal function. In
particular, the following two results were proved in [1].

Theorem A. If {a,} is a bounded monotone sequence of real numbers, then

f(z): Z an* is a normal function.

Th e or e m B. If {a"J is a sequence of complex numbers such that ) lan- a,*rl =. *
and limn** an:O, then f(z): Z a*4 is a normal function.

Here, we investigate a number of results in the spirit of Theorems A and B,
with some consideration of Bloch functions. Essentially, our investigation asks what
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happens when a function whose sequence of coefficients satisfying the hypotheses
of Theorem A is added to a function whose sequence of coefficients satisfies a con-
dition like the hypothesis of Theorem B. In Section 2, we give a number of prelim-
inary results. Some of these results deal with Bloch functions, and some deal with
the behavior of the real and imaginary parts of analytic functions with certain types
of coefficient sequences. Our main results appear in Section 3. Some examples are
given in Section 4.

2. Preliminary results

We begin with some results about Bloch functions.

Lemma l. If a,:O(lln), then f(z):Z an* is a Blochfunction.

Proof. lf a":9711r1, then

lf' @)l = Z o (r)lzl : o (t) l(r -lzD,
which means that f(z) is a Bloch function.

C o r o llary. If f(z) : ) a,z' is not a normal function, then limsupn*- nlanl : *.

Theorem 1. If {a"} is a decreasing sequence of positiae real numbers, then

f(z): Z anz" is a Bloch function if and only if a^:O(lln).

Proof. By Lemma l, if a,=O(tln) thenf(z) is a Bloch function. Conversely,
if {a"}isadecreasingsequenceofpositiverealnumbers, then )i:, jar=a,()}:, j):
[n(n*l)121a". However, lf@)l:O(ll0-x) if and only if Zi=, jai:O(n) (see

[4, Section 7.511). Thus, ifl(z) is a Bloch function and {a,} is a decreasing sequence
of positive real numbers, then n(n*l)aJ2:O(n), which means that sn:O(lln).
This proves the theorem.

Next, we prove a result about Bloch functions with an additional restriction on
thecoefficients.Wesaythatthesequence {a,}isnearlymonotoneif ZTrloi-ai*rl:
O(lanD for each positive integerp.

Lemma 2. If {b"} is a nearly monotone sequence of real nurnbers, and if f(z):
Zb,z', then lf(z)l is boundedfor each z near eie for each 0, O<.9<2n. In addi-
tion, if b":O(tln\ and bn>O for each n, then both lmf(z) is uniformly bounded

for lzl-.1 and Re/(z) is bounded below for lzl<1.

Proof. Let gQ1:71-z)f(z):$o*Zåo (b,+1-b*)/+1. Since {4} is a nearly
monotone sequence, B:(z) is continuous and bounded for lzl=1. Thus/(z) is con-
tinuous at etq for each,0, O<0<2n, which proves the first part of the lemma.

For proving the rest of the lemma, it is no loss of generality to prove the results
fot z : re10, I f2= r <1, 0 = 0 <2n. Henceforth, let bn: O (1 I n), bo=O, dnd Bn:goyn
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for lf2=r<1. We claim that for each such r, {f,} is a nearly monotone sequence'

since

lBo- Bn*rl = lbnrn - bn+..rnl* b,a1(r' *r'+1)

and so = lb,-bn*rlrn*bn+J"(L-r),

Z;-rlB,- B,*rl ' Z7:o {lb,- b,*rl re + bn*9" (l - r)l'

But for q=p, bu:bo+Zl:'r(bn+t*b), so bo:O(bo). Thus

Z;= o lB, - B, * rl : o (b ) rn + o (b 
n) rP (1 - rXZI=o r\ : o (B ).

Now Im/(rett):Z7rB,sinn0 and for each integer p>0,

lm f(r e'0) : Z1:, B, sin n0 + )7* n *, {8, - B,* r) S, (0) - B, a 1 Sp (0),

where,S,(g) :Zi:rsin j|:O(ll0). Fix 0, 0<0=n, letp be such that nl@+1)<
0=nlp, and let ll2=r<1' Then

Zo.:rB,sin z0l = Z\-rB,(n?) : Zl:rOO)e : p?O(l): O(n),

Z7:r*rl(8"-8,*Js, (0)l : o(Bn*)o(U0) : o(U«p+ 1)0)) : o(tln)'

and 
lrp+lsr(a)l : o(U(p+1)0)) : o(Un).

Hence lmf(ret): g(1). Similarly,

Re/(reio) : ZI:oB,cos n0* )i:n*rBncos n0

: Zl=o B n cos n0 * )i= o *, (B n - B, * ) C,(0) - B e + § e(0),

where C,(g):Zr\:ocosi0:O(llg). Thus, if 4=0 for each n, the same argu-

ment as above yields Ref(ret\:2n-oB,cos n9+O(l), where the sum is non-

negative if we take nlQp+l)<l?l=nlQfl and the O(l) is independent of p and 0.

Thus we have that Fief(rei,) is bounded below for Pl=7812, ll2=r<1. But by

the flrst part of Lemma 2, we have that Re/(re$ is bounded below for nl2=
l0l=3n12,0<r=1. Thus, we conclude that Ref(re'o) is bounded below for all0,
A<0=2n. This completes the proof of the lemma.

Lemma 3. tf f(z)--) anzn, r.lhere {a,) it a monotone decreasing sequence with

a,>0, then Imf(z) is bounded below for O=argz<n.

Proof. Fix r>0 and define h(t):anr" for n-112=t=n+112, n>7, t=112.
Then

Imf(reio\ : Z|:ranrn sin 
"0 

: (TlQsin@12\) !*rh(t)sin0t dt

and

!i,,n 1q sh 0 t d t = [:i:' h (r) sin 0 t dt + 2::, I::;"'u h (,) sin 0 t itt.

7t
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The summation term on the right is non-negative, since ,r(r) is a decreasing function
and sin 0r is periodic with period 2n10. Also,

I:'' atrsin o/ dt + I r: h?)sin g/ dt > o

for the same reason. Thus, we have

tmf(ret\ = -!'t' or, sialt dt(llesin(0/2))) 
= -arl2

for 0=g=2, r-0. This completes the proof.

Lemma 4. If f(z):27_obnr"*t and tf bn>bn+t>O for each n>0, then
lmf(reio1=g for O=-0 =n.

Proof. The argument is the same as in the proof of Lemma 3, except that we
let h(t):6oru+t ,o, 2n=t<2n*2, and tmf(ret\:10lsin0) I; n@sin 0tdt.

Lemma 5. Let f(z) be defined and meromorphic in p+ :{zqD: Im z>e} s11gfu

that f(z) has a continuous extension to the interual (-1, l) on the real axis. Let
Imf(z) be boundedbelow inD+ andlet f(r)*t as r*l- (where Lis eitherfinite
or ffinite). For 0<0<n12, let

Du: {z(D+: -0 < arg(1-z) = 0}.

Thenfor each 0, 0-0-nl2,f(z)*L as z*l within Ds.

Proof. Let iD: D*D+ beaconformalmapping,with O1t;:1. Then iD(eiey*1
as 0*0-. consider the function g(z):f(o(z)) fu z(D. Then rmg(z) is
bounded below in D, so s:(z) is a normal function. Further, g(z) has the asymptotic
value Z at z:1. Thus, by a result of Lehto and Virtanen [3, Remark, p. 53J, S@)-L
in the region Dl:{zQD: -ä=arg (l-il for each choice of ä, 0=ä=n12. But
this means that f(z)*L in each D6, for given 0, O=0=n12, there exists a ä, 0=
ö=n12, such that DtcO(D§} This completes the proof of the lemma.

3. The main results

We now state and prove our main results.

Theorem 2. If f(z):Zanz" and g(z):)bn* where {o"l it a decreasing
sequence of positiae real nwnbers, and {b^} is a nearly monotone sequence of non-
negatfuie real numbers, and if h(z):f(z)qg(z), then h(z) is a normal function.

Proof. By Lemma 2, g(z) is bounded near z: -1, so z:ei| is a normal
point for h(z) for 0<0<2n, that is, if {2"} is any sequence of points in D con-
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verging to eio, then sup {(1 -lz,l\h* Q)\=-. Thus, we need only to consider a
sequence of points {2"} in D which converges to z:1.

By considering a subsequence, if necessary, we note that there are three pos-

sibilities to consider: (a) zn*1 tangentially, and Im zo>O for each n; (b) zn*1
non-tangentially; and (c) zo-1 tangentially and Im zn<Q fot each n.In case (a),

we note that both lmfQ) and Img(2,) are bounded below in D by Lemmas3
and 2, respectively, so that the family {h"(21:n11U"+z)l(o*2,2)): z(D} satisfies

the condition that {lmh,(z)\ is uniformly bounded below on each compact sub-
set of D. It follows that lh,(z)\ is a normal famity in D, so ft+ (0):(1 -lz,lz)hfr (2,)

is uniformly bounded. This proves the result in case (a). The proof in case (c) is an
easy modiflcation of the proof in case (a), since Imh(reio): -lmh(re-te). Now,
to handle case (b), we use Lemma 5 to concludethat h(z) has the angular limit equal
toits radiallimitatz:1.(We can apply Lemma 5 bothto D+ andto p- : {z(D: Z€D+}
where Im h(z) is bounded above.) It follows that (1 -lz,l)h# 1z) is bounded in
this case also (see [3, Theorem 5, p. 5Z). Thus, we conclude that (l -lzl\hf, (z) is
uniformly bounded in D, and the proof is completed.

Theorem 3. If f(z):)dozzn+t and g(z):)bozz", where {r,} is amonotone
decreasing sequence of positiae real numbers and {b"} is a nearly monotone sequence

of non-negatiae real numbers such that b,:O(lln), and if hQ):f(z)agQ) has

a radial limit at z: -1, then h(z) is a normal function.

The proof of Theorem 3 is essentially the same as the proof of Theorem 2,

except that Lemma 4 is used in place of Lemma 3 and the reasoning involving
Lemma 5 must be used at both z:l and z: -1.

Theorem 4. If f(z):Zanz" and g(z):)bnzo, where {a") is a monotone

decreasing seqilence of posith;e real nurnbers conaerging to a>0, br>Q, and

Z7:, lb"- b n -rl= b o + a, then h (z) :f(z) * S @) is a normal function.

Proof. Since (l -z)f(z):ao*Zf:r(ao-an-r)2" and (l -z)g(z):Sr1
Z7:r(b"-bn-r)2", then

h (z) : {ao + b o + )7r((o, - o, - 1) z" * (b, - b 
" 

- ) z\) I 0 - z) : d (z) I 0 - z).

Now

Re d(z) > ao*bs+(a-ai- Z7:rlb,-bn-tl = bo*a- Z:=rlbn-bn-rl > 0.

Thus, fArg d(z)l<nl2 and lArg (l-z)l<nl2 for z€D, so lArg h(z)l=n. Hence

å(z) omits all negative values, so h(z) is a normal function. This completes the proof.
Finally, we prove a theorem about analytic functions for which the sequence

of coefficients is an incteasing sequence. Note that by [, Example 3, p. 3zt0] the
sequence of coefficients can be increasing for a non-normal function,
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Before we can state the theorem, we require another definition. A sequence

{a"} of positive real numbers is called naturally com)ex if there exist two positive
numbers u and B such that both 0<aSa, a1- an4.p< - å.Dd ao-2ana4*a,..r>0 for
each non-negative integer z. Thus, a naturally convex sequen@ behaves somewhat
like the sequenc€ of natural numbers.

Our final theorem is related to [, Theorem4, p. 340].

Theorem 5. tf {a"} is a naturally com)ex sequence of positioe real rutmbers,
then f(z):)anz' is a normalfunction.

Proof. Let g(z): (l - z)'f(z): Z[-o b,*. Then

g(z) : aa*(ar-2al z +ZL, (an-2a,+1+ an+z) zn*z.

g,(z) : ao*(a, -2o) z + Z"j:X@i-2oi+1+ aj +z) zj+z, n > 2.

Z]:olb il = laol *lar-2orl + Z::l@ i -2o i+1 + a i +)

€ lat-2aol*2ao- a1* an- an-t

5 2l2ao- atl* an- an-t

=2l2ao-arl*ff.
Thus we have shown that ) lbnl=*, so g(z) is continuous on the closure of D.
Further, fot n> 2, g,(l) : an- an-r >fl >0. Thus, g(1) 

=a 
>0. It follows that f(z) :

S@)10-z)z can be extended continuously to the boundary of O (with /(t):-),
so f(z) is a normal function.

4. Some examples

We give two examples showing that Theorem 5 fails if either aspect of the
definition of a naturally convex sequence is missing.

Example l. Let g(z):exp {llQ-z)'z} and let f(z):g(z)l[-z)2:)ao*.
Then g(z) is not a normalfunction, but ao-2anqy*anq2*0 and an-an-r>O for
each n.

Proof. Clearly f(z) has the radial limit * at z:1, but also f(z)*O a.s z*l
along the ray Arg (1 - z):3n19. Hence, by a result of Lehto and Virtanen [3, Theo'
rem2, p. 531, f(z) is not a normal function. Now if g(z):)b,z', then

f(z): (Z bnr")å (n*r)r") - 2l@+l)bo *nb, .*bnlzn,
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so a,:(n*l)bo+nbr+...*b,, and hence

nn-an-L: bo*bt* ,., *b, and ar-2ar*r*at*z : bn+Z'

By an easy calculation, b,=0 for each n,sof(z) satisfles both a,-an-.>0 and

an-2q*r*an+z=0.

Example 2. There exists a sequence {a,\ of positiae real numbers such that

O<a<an+t-ar=P=o, where a and P nre constants, but f(z):Zarzo is not a
normal function.

Proof. By [1, p. 339] there exists a function g(z):/b,z' with 0=b"=ll2
and å,*Q such that g(z) is not a normal function because of its behavior near

z:i. lf h(z):llQ-z)z and f(z):gQ)+n@), then f(z):)anz', whete an:
n*l*bn. Thus/(z) is not a normal function btfi lf2<a,*r-a*-.312.

We conclude by asking a basic question suggested by our results.

Theorems 2 and 3 raise questions about whether all the hypotheses are nec-

essary. For example, we raise the following question: If {a"} is a monotone decreasing

sequence of positiae real numbers, and if {b,\ satisfies both b,>0 and bn:O(lln\,
is the function f(z):)(a,*b)2" a normal function? lf the answer is affirmative,

then this would greatly simplify Theorem 2 (and probably Theorem 3 also). The

condition given in Theorem 2 that Z;:e lbn-b,+rl:o(lbnD for each p is a strong

restriction on the sequence {å,}. lt is natural to ask if this can be replaced in the

statement of Theorem 2 by some weaker condition.
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