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OI{ MAXIMAL AND MINIMAL QUASISYMMET'RIC
FUNCTIOI\S ON AN INTERYAL

MATTI LEHIINEN

1. Introiluction

Let k>1. In recent papers [HH, H 1,H21, W. Hayman and A. Hinkkanen
have investigated the maximal distortion under a normalized ft-quasisymmetric func-
tion f of the real line. They denote the family of all such functions, normalized by

"f(-1):-1 and f(l):|, bv No(ft). Hayman and Hinkkanen have found bounds
for the growth of /e No(/c), and Hinkkanen has constructed piecewise linear func-
tions fi(Å[o(k) for which fi(x):milx {f(x)lf€No(k)} for infinitely many x.

In this note, we consider the related problem of the distortion under a k-quasi-
symmetric self-map of [0, 1], i.e., under a function /: [0, 1]r[0, 1] satisfying

"f(0):0, "f(1): l, and

(f(*) -f(x - t))lk 
= f(x+ 0 -f@) = k(f(.) -f(x- 0)

for all x and / such that lx-t,x+/]c[0, 1]. We denote the family of all such

functions by QS (k). In particular, we investigate whether the functions introduced
by R. Salem and studied by K. Goldberg [S, G] are best possible majorants or
minorants of the functions in QS (/c). In the last section, we apply our results to
the dilatation estimates of the Beurling-Ahlfors extensions. - In a sense, the distor-
tion problem is a one-dimensional analogue of the problem of distortion under a
K-quasiconformal self-map of the unit disc.

lf fcNo(k), then g, defined by g(x):(fQx-l)+l)12 for x€[0,1], is in
QS (&). All functions in QS (ft) are not restrictions of ft-quasisymmetric func-
tions of the real line. (See the remark after Proposition 3.) On the other hand,
boundedness of the domain and range of the mappings rules out a behaviour which
condition (l) allows for mappings of the real line:

Proposition l. If ,f€QS (fr), thenf is a homeomorphism.

Proof. lf k>1, a subtraction of the right and left hand sides of (l) shows

that/is nondecreasing. It is easy to see that in this case/is continuous: let c((0, 1)

and assume lim,*"- f(x)-a=g:lim,*",/(x). Given an e=(b-a)lk, there is a
ä such that f(x)=b*e for c<.x<.c*ö. Choose x and r so that x-t<.c<,x<.

(t)
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x+t<c*6 to obtain a contradiction with (1). Similar§ one can see that/is contin-
uous at 0 and l. Consequently,f is a homeomorphism.

This argument does not work if k:7 (cf. tcl; in fact, functions satisfying (l)
but defined on an unbounded interval need not be monotonic). However, assuming
k:l and, say,f(x):a,>x for an v>1f2, we obtain from (1) that for some n we have
O < y - 2 x - 2' + I = I I 2 and f(y) : 2' a - 2o + 1 >y. Since f (y * p2-, (x - y)) :f(y) +
p2-o(f(x)-f(y)) for all integers q>l and 0=p=2e, there is a z=ll2 swh
that f(z)=112. Butthen fQz)>l, whichisnotpossible. So, if k:1, then/(x):x
for all x.

Beurling and Ahlfors [BA] were the first to ask for Mo(x):s1ax {/(x)l/€QS (/s)}

and mr(x):min {f(x)lfeQs (e)}, since the computations needed for the estima-
tion of the maximal dilatation of their extension of a quasisymmetric function to a
quasiconformal self-map of the half-plane depended on upper and lower bounds of
the integral

for ftQS(ft). However, the needed inequalities 110+k)=I=klt+k) were easy

to establish without direct knowledge of mror ltr(lBA,p. l3T; see [Le] for a slightly
sharpened version).

Because f arrd g, where g(x):l-f(l-x), either both are in QS(&) or are
not in QS (ft), m{x):1-M*(l -x) for all x€[0, 1].

2. Salem's functions

K. Goldberg [G] observed the connection between rfi*, M* and the completely
singular homeomorphisms of [0, 1] introduced by R. Salem [S]. Setting )":),(k):
UQ+k), p:p(k):H', we define the upper Salem function P:P* inductively
for points with a finite dyadic representation by P(0):0, P(l):t, and by

(2) p((zi +t)12") - 1p(jl2'-,) * pp((r+ 1)12,-,)

fot n:1,2,..,; j:0, 1,.,,,2o-t-1, and for the rest of [0, l] by continuity. The
lower Salem functionpo is similarly defined by exchanging,l and pin Q), and po(x):
1-&(1-x) for all x [G]. Since it follows easily from (l) that every /€QS(ft)
satisfies

(3) pf(a)+ Lf(b) 
= f((, +b)12) = )'f(a)+ pflu)

for 0= a,<.b=l, we see that

(4) px@) € rnx(r), Mk(x) = Po@)

r - {i tuta*
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for all x€ [0, lJ. The examples

f(x)

show that there are points x for which Mr(x):Po(x) or my(x):p{x) (in the
examples, a:jfL, j:0,1,2,3,4). On the other hand, if ft>I, then P:P*|QS (&)
for any &', since

(p(tlz+rlz\-p(u2))l(p(u2)-p(u2-ur))--kn-z

for n>1.
A direct consequence of Goldberg's observation is

Proposition 2. Mo and. mp are continuous and strictly increasing.

Proof. Only the statements concerning Mo have to be proved. Clearly, M* is
non-decreasing. Assume, for instance, that lim,*, * M1,(x)>Mo(c). Then there exist a

ä>0, and sequences (xi), xi=c,limr*-xy:c, and (fi\,fi€QS (e) such that[(x)>
Mok)+ö. set 8:r(r)dQxt)lfi@). Then sl€QS(fr), and p1,@lx)=gt(clx):
f, (c) lfi @ ) = 

M o@) I (M o@) + ä) = 1, in contradiction with lim;* _ p xk I x ;) : L.

Similarly, if My(a):Mo(b), a=5, we find (4), 4e QS (ft), such that fi(a)>
M o@) - | fi . Define s;( QS (/c) by s i@) :(fi@+(l - x) a) - fi (o)) I $ -f,. (a)). rhen
gi((b-a)l(l-a))*0, in contradiction with (4) and the fact that po(c)>0 for c>0.

3. Piecewise linear quasislmmetric functions

We shall investigate the possibility of equality in (4); our previous example

shows that equality is true for certain values of x at least.

An obvious device for proving an equality M*(x):y is to construct a piece-

wise linear function 
"f€QS 

(f) satisfying/(x):y.
The following lemma, which is proved in [HH, p. 647, facilitates the proof that

a given piecewise linear function is in QS(/r):

Lemma l. Let .Sc[0, I], {0, l}cS, be a discrete set and I [0, 1]*[0, 1],

"f(0):0, f(l):l, be continuous on 10,11 and linear on each interaal rtx [0,1]\^S.
Then feQS(k) if and only if (1) is true for all x, t such that {x-t,x,x*/}n,S
has at least two elements.

I ou'*'

- { ti + pA(x - rl4),

Ir* p1+472(x-314),

I u"x,
g(x) - { }'2 +4tt1(x - rl4),

[,t+ pt+4p'(x- 314),

rc€[0, u41
x€[r14,3141
x€1314, u,

x€[0, u4l
x€[r14,3141
xqil , 1J,
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Remark. Even if ,S is finite, the number of relevant intersections to be checked
grows with the cardinality of §: in fact, if § has n elements, then there are at least
n2l2-3n12*1 and at most 3n'12-llnl2+5 intersections to be checked.

As a corollary to Lemma l, we obtain

Lemma 2. Let ,f€QS (fr) be piecewise linear and f(ll2):p.
(a) If f is linear on lll2,ll, and g(x):1tf(2x) for x([0,1121, g(x):f(x) for

x(Ul2,ll, then C€QS (k).
(b) Iff is linear on [0,1121, and g(x):f(x) for x€l0,ll2],g(x):p+).fQx-l)

for x(lll2,ll, then c(QS (fr).

Proof. (a) For any homeomorphism ft, we denote the quotient

(h (x + t) - h (x)) I (h (x\ - n @ - fl)

by g, . Denote by §7 (§r) the set of points where / (g) is not linear. Choose x, I such
that two of the points x-t,x,x+t are in.Sr. Then two of the points 2x-2t,
2x,2xa2t are in §, and qu(x,t):qr(2x,2t), except when x*l:I. In this case

x:t:ll2 and. qn(x,t):llk. The proof for (b) is similar.
If we apply L emma 2 repeatedly to f, f(x) : ) px, x €10, I I 21, f (x) : p | il, (x - I I 2),

xQ\l2,l7, and observe that x*l-/(l-x) is in QS(fr) together with / we
immediately get infinitely many points x at which M1,(x):poQ1)1

Proposition 3. For eDery natural number n, Mk(llz\:p':P*(ll2\,

Mk(l -112") -l - 7n:PoQ-112")i mx\l2'\:p*Q12"):),n,

m*(l - I 12\ : p oQ - I l2') : 1 - r".

Remark. The construction above gives an example of functions 
"f€QS 

(k)
with no k-quasisymmetric extension to the real line. Indeed, lf f(l l2\: p", f(t 127: f
andf is linear on |12,11, then a k-quasisymmetric extension of / would have

feun =-tt-'),, f(l+ll2) = l*P12,

and Qr(rl2,llz+t121=1tlk)(l+pl\2)yQ +t-'z1)<.llk for n large enough.
(Since p=112, the numerator tends to 0 faster than the denominator.) - Of course,
every ftQS (k) has a ftr-quasisymmetric extension to R, with /q>k depending
on /c only.

Further evidence supporting the hypothesis P*:M* is obtained from
the piecewise linear functions which are linear on intervals in [0, U\,S,
§:{/817:0, 1,...,8}, and agree with Ppor pp on,S. A direct check gives

Proposition 4. For j:0, l, ...,8, Mr(il8):P*(/8), myQlS):p{jl8).
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4. The points 1/3 and2l3

From (3), we obtain for /€QS (fr)

pfT 13) + t" = fQl3) = )'f(t 13) * tt,

^fQl3) =f[l3) = pfQl3).
Solving, we get

(5) x'zl(t-p)") =f(U3) = 1il(t-Pt),
(6) ),10-p).) =-f(213) = 

plQ-fi').

Using (2) and the representation

!3 : !a+ )|:r(tlZ"-'-ll2'n),
we obtain

Pk0l3'): t, Z]:o(pl)" : p'10- il).
Similarly, the other three upper and lower bounds in (5) and (6) are the respective

values ofthe upper and lower Salem functions.
However, the equality Mk(ll3):Pk(l/3) does not hold. In fact, setting

f(iltZ):ot for brevity, we obtain from (3) that a4=par, ar=).ar*parot aalp-
pas<).az and an=).ar*pa5. Since pas*la.<au we get

an-),ag*aalp-pas= aa.

Inserting ar=- M *(l I 4) - ltz, aa= M *(l 12) 
: p, ar= Mo(3 | 4) : p * pl we obtain

(7) f(U3): a+a p2(t+p+2p1)l[+tt).

It is easy to check that the right hand side in (7) is indeed strictly less than PkQl3)

as soon as ft>I.
A similar argument improves the right hand side of (6) to

(8) fQl3) = p(t*)'*).1t+2p12)lQ+,1) = PkQl3).

Denote the upper bounds in (7) and (8)by x:x(k) and v:t(k), respectively.

Using the fact that g,8(x):1-f(l-x), belongs to QS(ft) together with/ we

get the lower bounds 1-v=f(ll3),1-x=f(213).
We observe the strict inequalities va-pv and v<lx*p. These imply that the

simultaneous equations Qt(x,t):k and 7y(x+t,t):k or q/x,t):llk and

O1(x+t, t):llk cannot hold for any k-quasisymmetric function.
To prove that MrQl3):x, M1,Q,l3):y, we construct piecewise linear func-

tions / c€QS (fr) such that f(ll3):rc, cQl3):v.

Pr o p o si ti o n 5. M eQ 13) :l - m*Ql3) : x, M kQl3) : 1 - m1,(l 13) 
: v.

Proof. In view of the restrictions described above, any /€QS (k) satisfying

f1l3):% must also satisfy f(ll|):pz, f(ll2):p, fQl$:1t+ttX, f(213)=xlp,



82 MErrr LrnrrxpN

f(5112):,41p- pX, and fQll2):(xlp-p\l),-p'. In addition, (1) requires f(516)=-
f(51t2)lp. Finally, (1) with x:L13, t:l16 requires f(l16)>tt-k(p,-x), and with
x:l13, t:ll4 requires f(lll2)>(l+k)x-(klD(xlp- t'Q+,1)). Define a piece-

wise linear function f,linear in [0, 1]\§, .S: {0,1112,...,10f12,1} by replacing
all the inequality signs in the above conditions by equatties; a check by Lemma 1

shows that f is in QS (k). Similarly, a piecewise linear g satisfying g(213):v,
g(l16):tflQ*)"), S(ll4):pz, g(ll3):pv, s$ll2):p- p),21Q+1), g(ll2):p,
gQlt2):p*p2).1(t*).), 9(314):p(l*)'), 9(516):tt*il.Q+21)lG*).), g(ttlt2):
(t + fl.*p12)1fi +1) is in QS (k).

Corollary. If k>1, the set of x for which M1,@):P*(x) is nowhere den§e,

and My(x)=Pp@) for ffinitely many x with a finite dyadic representation.

Proof. lf M1,(x):Po(x) on an interval, then My(x):P*(x) on an interval
whose endpoints are rnf2 and (m*l)12!. Bnt Mo(@+ll3)12')<Po(@+ll3)12).

Propositions 2 and 5 as well as the continuity of Pn also imply that there are

intervals on which M*=P*. Majorants of Mo, sharper than Po, can be constructed
in a way similar to the construction of Salem's function but using both (3) and the

inequalities fQal3+bl3)=(t-x)f(a)+xf(b), f(al3+2b13)=(t-,v)f(a)+uf(b) on

subintervals of [0, l].
By using Proposition 5, we can also easily prove

Proposition 6. If k>1, Mk is not in QS (ft).

Proof. We show that no/which satisfles f(ll3):% and f(213):v is in QS (k).
Assuming the contrary, we get x<*)"f|1$+1tf(5112),v=),f(7112)+pf(314) and hence

x+v=p2)"*pr(l+).)+pf(5112)+)f(7112)=p+2181.ap2. Inserting the formulas for
u and v and simplifying, we get the contradiction p=112.

5. On the dilatation of the Beurling-Ahlfors extension

The Beurling-Ahlfors extension F of /€ QS (k) is defined in

T - {, - x+iYl} = x = l, 0 < Y = min {*, l-r}}

by 2F (z): 0(0 @ + ur@) * ir (oo@) - d,L@) where

j-0, 1, z-x*iy,

and r>0. By [BA] and [Le], r can be chosen so that the maximal dilatation K,
of F is at most min {ksl2, 2k-1}. On the other hand, for k>12 there are exam-
ples of /r-quasisymmetric functions / defined on the whole real line for which every

Beurling-Ahlfors extension has maximal dilatation at least 3kl2 lLel and for
larye k even larger than 1.587& pd.

u;(z) : {:f@+(- t)i vt) dt,
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Restricting ourselves to k=7, we find functions 
"f€QS 

(f) for which Kr>8k15
for every r. To this end,let f(il8):P*(il8),.1:0, .'.,8, and letfbe linear on each

interval Ul8,(i+1)l8l (cf. Proposition4). Passing to g, g(x):l-l«l -x)12)lp,
and computing the dilatation D of the Beurling-Ahlfors extension of g at the
point i as in [Le, p. 139], we arrive at D>8k15 for k>7 and limo*-Dlk:l*
49164:7.765625. Observe, however, thatf has no k-quasisymmetric extension to
the real line. Such an extension ought to satisfy f(918)=l*pl2 andalso f(514)=
f(518)lp:l+pL. Since /(fl8):I-,13, this would imply that f(514)-f(918):
k(f(918)-f(l)):k'(,r(t)-f(718)), which clearly contradicts the remark preceding

Proposition 5.
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