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ON MAXIMAL AND MINIMAL QUASISYMMETRIC
FUNCTIONS ON AN INTERVAL

MATTI LEHTINEN

1. Introduction

Let k=1. In recent papers [HH, H 1, H 2], W. Hayman and A. Hinkkanen
have investigated the maximal distortion under a normalized k-quasisymmetric func-
tion f of the real line. They denote the family of all such functions, normalized by
f(=1D)=-1 and f(1)=1, by Ny(k). Hayman and Hinkkanen have found bounds
for the growth of f€N,y(k), and Hinkkanen has constructed piecewise linear func-
tions f,€ Ny(k) for which fy(x)=max {f(x)| f€Ny(k)} for infinitely many x.

In this note, we consider the related problem of the distortion under a k-quasi-
symmetric self-map of [0, 1], i.e., under a function f: [0,1]~[0, 1] satisfying

f(0)=0, f(1)=1, and
M (S —fGx=0)/k = f(x+D)—f(x) = k(f(x)—f(x—1)

for all x and ¢ such that [x—1, x+t]c[0, 1]. We denote the family of all such
functions by QS (k). In particular, we investigate whether the functions introduced
by R. Salem and studied by K. Goldberg [S, G] are best possible majorants or
minorants of the functions in QS (k). In the last section, we apply our results to
the dilatation estimates of the Beurling—Ahlfors extensions. — In a sense, the distor-
tion problem is a one-dimensional analogue of the problem of distortion under a
K-quasiconformal self-map of the unit disc.

If feNy(k), then g, defined by g(x)=(f(2x—1)+1)/2 for x€[0,1], is in
QS (k). All functions in QS (k) are not restrictions of k-quasisymmetric func-
tions of the real line. (See the remark after Proposition 3.) On the other hand,
boundedness of the domain and range of the mappings rules out a behaviour which
condition (1) allows for mappings of the real line:

Proposition 1. If f€QS (k), then f is a homeomorphism.

Proof. If k=1, a subtraction of the right and left hand sides of (1) shows
that f'is nondecreasing. It is easy to see that in this case f'is continuous: let c€(0, 1)
and assume lim,_ - f(x)=a<b=lim__ . f(x). Given an e<(b—a)/k, there is a

é such that f(x)<b+e for c<x<c+d. Choose x and ¢ so that x—t<c<x<
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x+t<c+35 to obtain a contradiction with (1). Similarly one can see that f is contin-
uous at 0 and 1. Consequently, f is a homeomorphism.

This argument does not work if k=1 (cf. [G]; in fact, functions satisfying (1)
but defined on an unbounded interval need not be monotonic). However, assuming
k=1 and, say, f(x)=a=x for an x=1/2, we obtain from (1) that for some »n we have
0<y=2"x—2"+1<1/2 and f(y)=2"a—2"+1>y. Since f(y+p2~%(x—y))=f(»)+
P27 f(x)—f(p)) for all integers g=1 and 0=p=2% there is a z<1/2 such
that f(z)>1/2. But then f(2z)>1, which is not possible. So, if k=1, then f(x)=x
for all x.

Beurling and Ahlfors [BA] were the first to ask for M, (x) =max { f(x)|f€QS (k)}
and my(x)=min {f(x)|f€QS (k)}, since the computations needed for the estima-
tion of the maximal dilatation of their extension of a quasisymmetric function to a
quasiconformal self-map of the half-plane depended on upper and lower bounds of
the integral

I=f: f(x)dx

for fe€QS (k). However, the needed inequalities 1/(1+k)=I=k/(1+k) were easy
to establish without direct knowledge of n, or M, ([BA, p. 137]; see [Le] for a slightly
sharpened version).

Because f and g, where g(x)=1—f(1—x), either both are in QS (k) or are
not in QS (k), m(x)=1—-M,(1—x) for all x€[0, 1].

2. Salem’s functions

K. Goldberg [G] observed the connection between m,,, M, and the completely
singular homeomorphisms of [0, 1] introduced by R. Salem [S]. Setting A=A(k)=
1/(1 +k), u=u(k)=kA, we define the upper Salem function P=P, inductively
for points with a finite dyadic representation by P(0)=0, P(1)=1, and by

® P((2j+1)/2") = AP(j[2"~ D)+ uP((j+1)/2"-1)

for n=1,2,...; j=0,1, ...,2""1—1, and for the rest of [0, 1] by continuity. The
lower Salem function p; is similarly defined by exchanging A and p in (2), and p,(x)=
1—P,(1—x) for all x [G]. Since it follows easily from (1) that every f€QS (k)
satisfies

3 #f(@)+2f(b) = f((a+b)/2) = i(a)+pf(b)
for 0=a<b=1, we see that

4 Pu(x) = my(x), My(x) = Py(x)
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for all x€[0, 1]. The examples

4px, x€[0, 1/4]
S(x) =1 12 +4pd(x—1/4), x€[1/4, 3/4]
ppA+422(x—3/4), x€[3/4,1],

4)2x, x€[0, 1/4]
g(x) =1 2+4pi(x—1/4),  x€[l/4, 3/4]
A+uA+ape(x—3/4), x€[3/4,1],

show that there are points x for which M, (x)=P.(x) or m(x)=p,(x) (in the
examples, x=j/4,j=0, 1, 2, 3, 4). On the other hand, if k=1, then P=P,¢ QS (k")
for any k’, since

(P(/2+1/2%—P1/2)/(P(1/2)—P(1/2—1/2")) = k"2

for n=1.
A direct consequence of Goldberg’s observation is

Proposition 2. M, and my are continuous and strictly increasing.

Proof. Only the statements concerning M, have to be proved. Clearly, M, is
non-decreasing. Assume, for instance, that lim,_ .. M, (x)>M,(c). Then there exist a
6=0, and sequences (x,), x;=>c, lim,_ . x;=c, and (f}), f;€QS (k) such that f;(x;)>
M (c)+6. Set g;(t)=f;(tx)/f;(x;). Then g;€QS(k), and pi(c/x)=g;(c/x;)=
S ©If;(x)=M,(c)[(M,(c)+6)<1, in contradiction with lim;_ ., pi(c/x;)=1.

Similarly, if M, (a)=M,(b), a<b, we find (f)), f;€QS (k), such that f;(a)>
M,(a)—1/j. Define g;€QS (k) by g;(x)=(f;(x+(1—x)a)—f;(@)/(1—f;(a)). Then
g;((b—a)/(1 —a))~0, in contradiction with (4) and the fact that p,(c)=0 for ¢=0.

3. Piecewise linear quasisymmetric functions

We shall investigate the possibility of equality in (4); our previous example
shows that equality is true for certain values of x at least.

An obvious device for proving an equality M, (x)=y is to construct a piece-
wise linear function f€QS (k) satisfying f(x)=y.

The following lemma, which is proved in [HH, p. 64], facilitates the proof that
a given piecewise linear function is in QS (k):

Lemma 1. Let Sc[0,1], {0,1}cS, be a discrete set and f: [0, 1]1-[0, 1],
f(0)=0, f(1)=1, be continuous on [0, 1] and linear on each interval in [0, I]\S.
Then f€QS (k) if and only if (1) is true for all x, t such that {x—t, x, x+t}nS
has at least two elements.
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Remark. Even if S is finite, the number of relevant intersections to be checked
grows with the cardinality of S: in fact, if S has » elements, then there are at least
n?/2—3n/2+1 and at most 3s?/2—11xn/2+5 intersections to be checked.

As a corollary to Lemma 1, we obtain

Lemma 2. Let feQS (k) be piecewise linear and f(1/2)=p.

(a) If f is linear on [1/2,1], and g(x)=uf(2x) for x€[0, 1/2], g(x)=f(x) for
x€[1/2, 1], then g€QS (k).

(b) If fis linear on [0, 1/2], and g(x)=f(x) for x€[0,1/2], g(x)=p+Af(2x—1)
Jor x€[1/2,1], then g€QS (k).

Proof. (a) For any homeomorphism 4, we denote the quotient
(h(x+1)—h(X)/(h(x)—h(x—1))

by g,. Denote by S, (S,) the set of points where f (g) is not linear. Choose x, ¢ such
that two of the points x—7, x, x+¢ are in S,. Then two of the points 2x—2tf,
2x, 2x+2t are in S, and gq,(x, 1)=q;(2x, 2t), except when x+¢=1. In this case
x=t=1/2 and q,(x, t)=1/k. The proof for (b) is similar.

If we apply Lemma 2 repeatedly to f, f(x) =2ux, x€[0, 1/2], f(x)=pu+2(x—1/2),
x€[1/2,1], and observe that x—1—f(1—x) is in QS (k) together with f, we
immediately get infinitely many points x at which M, (x)=P.(x):

Proposition 3. For every natural number n, M (1/2")=u"=P,(1/2%),
M (1-1/2)=1-"=P,(1-1/2); m(1/2"=p,(1/2")=2",

my(1-1/2")=p,(1-1/2")=1—p".

Remark. The construction above gives an example of functions fcQS (k)
with no k-quasisymmetric extension to the real line. Indeed, if f(1/2")=u", f(1/2)=pn
and f is linear on [1/2,1], then a k-quasisymmetric extension of f would have

=12y =—p"t0, fA+1]27) = 1+p/2",

and ¢,(1/2,1/2+1/2")=(1/k) (1 + #/(A2)/(1 +u"~22)<1/k for n large enough.
(Since u=1/2, the numerator tends to O faster than the denominator.) — Of course,
every feQS (k) has a k;-quasisymmetric extension to R, with k,;>k depending
on k only.

Further evidence supporting the hypothesis P,=M, is obtained from
the piecewise linear functions which are linear on intervals in [0, 1]\,
S={//8]j=0,1, ..., 8}, and agree with P, or p, on S. A direct check gives

Proposition 4. For j=0,1, ..., 8, M,(j/8)=P,(j/8), m(Jj/8)=p(Jj/8).
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4. The points 1/3 and 2/3

From (3), we obtain for f€QS (k)
wf(1/3)+14 = f(2/3) = A (1/3)+u,
(2/3) = f(1/3) = uf(2/3).
Solving, we get
&) 2J(1—pd) = f(1/3) = @?/(1—pd),
6 H(L=p2) = f2[3) = p/(1—p2).

Using (2) and the representation

13 =1/44 3 (1/22"=1 = 1/2%),
we obtain
P (1/3) = p2 3 ()" = p2/(1— pd).

Similarly, the other three upper and lower bounds in (5) and (6) are the respective
values of the upper and lower Salem functions.

However, the equality M,(1/3)=P,(1/3) does not hold. In fact, setting
f(j/12)=a; for brevity, we obtain from (3) that a,=puas, ag=Aa,+pa, or a,/p—
uag=2ia, and a,=2a;+pua;. Since pa;+ia,=a; we get

a;—Aaz+a,/p—pay = ag.
Inserting a; =M, (1/4) =12, ag=M,(1/2)=p, ay=M,(3/4)=p+pL we obtain
@) fA)3) = ay = P +p+2u)/(1+p.

It is easy to check that the right hand side in (7) is indeed strictly less than Py (1/3)
as soon as k=1.
A similar argument improves the right hand side of (6) to

® f@[3) = p(1+2+Ap+2p29)[(1+2) < P(2/3).

Denote the upper bounds in (7) and (8) by x=x(k) and v=v(k), respectively.
Using the fact that g, g(x)=1—f(1—x), belongs to QS (k) together with f, we
get the lower bounds 1—v=£(1/3), 1 —x=f(2/3).

We observe the strict inequalities x<puv and v<Ax+u. These imply that the
simultaneous equations ¢,(x, )=k and ¢ (x4t t)=k or q,(x,7)=1/k and
g;(x+t, =1/k cannot hold for any k-quasisymmetric function.

To prove that M, (1/3)=x, M,(2/3)=v, we construct piecewise linear func-
tions f, g€QS (k) such that f(1/3)=x, g(2/3)=v.

Proposition 5. My(1/3)=1—m,(2[3) =2, M(2/3)=1—m,(1/3)=v.

Proof. In view of the restrictions described above, any f€QS (k) satisfying
f(1/3)=» must also satisfy f(1/4)=p2 f(1/2)=p, fG/A)=p+ul, f2[3)=x/p,
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f(5/12)=x/u— ul, and f(7/12)=(x/u—u*)/A—p?. In addition, (1) requires f(5/6)=
f(5/12)/u. Finally, (1) with x=1/3, t=1/6 requires f(1/6)=x—k(u—x), and with
x=1/3, t=1/4 requires f(1/12)=(1+k)x—(k/2)(%/u—p2(1+7)). Define a piece-
wise linear function f, linear in [0, INS, S={0, 1/12, ..., 10/12,1} by replacing
all the inequality signs in the above conditions by equalities; a check by Lemma 1
shows that fis in QS (k). Similarly, a piecewise linear g satisfying g(2/3)=v,
g(1/60)=p*(1+2), g/H=p* g(/)=p, gOE1)=p—pi2/(1+H), g(1/2)=u,
g(112)=p+p2A(1+7), gB/4)=pn(+7), g(/6)=p+pi(1+22)/(1+4), g(11/12)=
(A +pr+ur®/(1+2) isin QS (k).

Corollary. If k=1, the set of x for which M, (x)=P,(x) is nowhere dense,
and M, (x)<P.(x) for infinitely many x with a finite dyadic representation.

Proof. If M (x)=P,(x) on an interval, then M, (x)=P,(x) on an interval
whose endpoints are m/2" and (m+1)/2". But M,((m+1/3)/2")<P((m+1/3)/2").

Propositions 2 and 5 as well as the continuity of P, also imply that there are
intervals on which M, <P,. Majorants of M,, sharper than P, can be constructed
in a way similar to the construction of Salem’s function but using both (3) and the
inequalities f(2a/3+b/3)=(1—%)f(a@) +xf(b), f(a/3+2b/3)=(1—V)f(@)+vf(b) on
subintervals of [0, 1].

By using Proposition 5, we can also easily prove

Proposition 6. If k=1, M, is not in QS (k).

Proof. We show that no f which satisfies f(1/3)=x and f(2/3)=visin QS (k).
Assuming the contrary, we get x=1f(1/4)+uf(5/12), v=2f(7/12) + uf(3/4) and hence
w+v=p2A+p2(1+A) +uf(5/12) +Af(7/12) = u+2u2 A+ u2 Inserting the formulas for
» and v and simplifying, we get the contradiction u=1/2.

5. On the dilatation of the Beurling—Ahlfors extension

The Beurling—Ahlfors extension F of f€QS (k) is defined in
T={z=x+pl0=x=1, 0<y=min{x, 1 —x}}
by 2F(2)=0o(2) +0,(2) +ir(ctg(z) — 2, () where
a;(2) =f2f(x+(—— Diyt)dt, j=0,1, z=x+iy,

and r=>0. By [BA] and [Le], r can be chosen so that the maximal dilatation Ky
of F is at most min {k*2 2k—1}. On the other hand, for k=12 there are exam-
ples of k-quasisymmetric functions f defined on the whole real line for which every
Beurling—Ahlfors extension has maximal dilatation at least 3k/2 [Le] and for
large k even larger than 1.587k [Li].
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Restricting ourselves to k=7, we find functions f€QS (k) for which K;>8k/5
for every r. To this end, let f(j/8)=P.(j/8), /=0, ..., 8, and let f be linear on each
interval [J/8, (j+1)/8] (cf. Proposition 4). Passing to g, g(x)=1—f((1—x)/2)/n,
and computing the dilatation D of the Beurling—Ahlfors extension of g at the
point i as in [Le, p. 139], we arrive at D=8k/5 for k=7 and lim,_ _D/k=1+
49/64=1.765625. Observe, however, that f has no k-quasisymmetric extension to
the real line. Such an extension ought to satisfy f(9/8)=1+pu4? and also f(5/4)=
f(5/8)/p=1+pi. Since f(7/8)=1—23, this would imply that f(5/4)—f(9/8)=
k(f(9/8)—f(1))=k2(f(1)—f(7/8)), which clearly contradicts the remark preceding
Proposition 5.
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