ON ESTIMATING THE INVERSE COEFFICIENTS FOR MEROMORPHIC UNIVALENT FUNCTIONS OMITTING A DISC

HENRYKA SIEJKA and OLLI TAMMI

1. Introduction

In [2] and [3] the class
\[\sum_b = \{ H | H(z) = z + \sum_{n=0}^{\infty} A_n z^{-n}, \ |z| > 1, \ |H(z)| > b \in (0, 1) \} \]

of meromorphic univalent functions was defined and considered. This class was found to have a one-to-one relationship with bounded univalent functions
\[S(b) = \{ f | f(z) = b(z + \sum_{n=0}^{\infty} a_n z^n), \ |z| < 1, \ |f(z)| < 1, \ b \in (0, 1) \} \]
so that
\[H(z) = \frac{b}{f\left(\frac{1}{z}\right)}, \ |z| > 1. \] (1)

Especially the inverse coefficients, i.e., those of the inverse function \(I \) of \(H \), were estimated. Denote the inverse function of \(w = H(z) \) by
\[z = I(w) = w + \sum_{n=0}^{\infty} E_n w^{-n}. \]

In [2] a FitzGerald—Launonen inequality was written for \(I \). This appeared to be effective especially for the odd indexes. Thus for odd \(\sum_b \)-functions all the inverse coefficients were maximized. However, for general \(\sum_b \)-functions the FitzGerald—Launonen inequality gave results only for some initial odd inverse coefficients. Moreover, this method needed the maxima of corresponding initial even inverse coefficients. For estimating the latter the variational method appeared to be the most useful. However, technical difficulties prevented proceeding beyond \(|E_0| \) in [3].

In the present paper the general result for inverse \(\sum_b \)-coefficients is derived by applying the variational method, which appears to work equally well for both odd and even indexes.

2. The variation of I

The relation (1) allows us to utilize the variational formulae true for $S(b)$-functions. For brevity, adopt directly the notations and results of [4]. Thus (1), p. 137, yields the variational formula of $f \in S(b)$ (here the parameters A_v are not to be mixed with the coefficients A_v of H). Through (1) the variational formula for f is transformed into that for H and further for I:

$$K = \sum_1^N \left\{ A_v \frac{w_v w}{w_v - w} + \bar{A}_v \frac{w_v w^2}{b^2 - w_v w} + A_v \left(\frac{w_v I'(w_v)}{I(w_v)} \right)^2 \frac{I(w)^2}{I'(w)(I(w) - I(w_v))}
\right.
+ \bar{A}_v \left(\frac{w_v I'(w_v)}{I(w_v)} \right)^2 \frac{I(w)}{I'(w)(I(w) I(w_v) - 1)} \right\}.$$

The expansion form of (2) reads

$$\sum_0^\infty (E_n^* - E_n) w^{n-\epsilon} = \epsilon \sum_1^N \left\{ \left(\frac{w_v I'(w_v)}{I(w_v)} \right)^2 \left[A_v (w + (E_0 + I(w_v)) w^0 + ...)
\right.
+ \bar{A}_v (I(w_v)^{-1} w^0 + ...)] + A_v (- w - b^2 w^{-1} w^0 + ...) + \bar{A}_v (- w - b^2 w^{-1} w^0 + ...)] + O(\epsilon^2).$$

On the right side the coefficient of w appears to be

$$\sum_1^N \left\{ A_v \left(\frac{w_v I'(w_v)}{I(w_v)} \right)^2 - \bar{A}_v \right\} = 0.$$

This is due to the fact that according to (3), p. 138, in [4]

$$b^* = b \left[1 + \epsilon \sum_1^N \left\{ A_v \left(\frac{w_v I'(w_v)}{I(w_v)} \right)^2 - \bar{A}_v \right\} \right] + O(\epsilon^2).$$

Hence, for preserving the class $\sum b$, i.e., for keeping b constant in the variation, we must require that the parameters A_v are chosen in such a way that (3) holds.

By comparing the coefficients of the above series we obtain the variational formula for the E_v-coefficients. In order to express this in a useful form we introduce a suitable coefficient-notation, i.e., for any series

$$W(t) = \sum \kappa_v t^v$$

we denote the coefficients by the aid of W:

$$\kappa_v = [W(t)]_v.$$
Using this we can write

\[E_n^* - E_n = \varepsilon \sum_1^N (A_v X_v + \overline{A}_v Y_v + A_v Z_v + \overline{A}_v U_v) + O(\varepsilon^2), \quad n = 0, 1, 2, \ldots; \]

\[X_v = \left(\frac{w_v I'(w_v)}{I(w_v)} \right)^2 \left[\frac{I(w)}{1 - \frac{I(w)}{I(w_v)}} \right]_{-n}, \]

\[Y_v = \left(\frac{w_v I'(w_v)}{I(w_v)} \right)^2 \left[\frac{1}{1 - \frac{1}{I(w_v)I(w)}} \right]_{-n}, \]

\[Z_v = \left[\frac{-w_v I'(w_v)}{1 - \frac{w_v}{w}} \right]_{-n}, \]

\[U_v = \left[\frac{-wI'(w_v)}{b^2} \right]_{-n}. \]

Applying the notation of [4] we write the variational formula as in (5), p. 138:

\[E_n^* = E_n + \varepsilon \sum_1^N (A_v H_v + \overline{A}_v K_v) + O(\varepsilon^2); \]

\[H_v = X_v + Z_v, \quad K_v = Y_v + U_v. \]

(8), p. 140, corresponds to (3) in the abbreviated form

\[\sum_1^N (A_v e_v - \overline{A}_v) = 0; \quad e_v = \left(\frac{w_v I'(w_v)}{I(w_v)} \right)^2. \]

For the extremal \(E_n > 0 \) the treatment on pp. 140—142 of [4] yields the necessary condition (13), p. 142:

\[H_1 + K_1 + \lambda e_1 - \lambda = 0 \]

\[\Rightarrow \quad X_1 + Z_1 + Y_1 + U_1 + \lambda e_1 - \lambda = 0. \]

Denote \(w_1 = w \). In the expressions \([\]\) write \(w = t \). Thus, the necessary extremal condition assumes the form

\[\left(\frac{wI'(w)}{I(w)} \right)^2 \left[\frac{I(t)}{1 - \frac{I(t)I(w)}{I(w)}} \right]_{-n} + \frac{I(w)}{1 - \frac{I(t)I(w)}{I(t)I(w)}} + \lambda \left(\frac{wI'(w)}{I(w)} \right)^2 - \lambda = 0 \]

i.e.,

\[\left(\frac{wI'(w)}{I(w)} \right)^2 \left[\frac{I(t)}{1 - \frac{I(t)}{I(w)}} \right]_{-n} + \frac{I(w)}{1 - I(t)I(w)} + \lambda \left(\frac{wI'(w)}{I(w)} \right)^2 - \lambda = 0 \]

(4)

\[= -3 \left[\frac{-wI'(w)}{1 - w t^{-1}} \right]_{-n} - \frac{-tI'(t)}{1 - t^{-1} t t^{-1}} + \lambda. \]
This is the necessary condition for the inverse Σ_b-function I maximizing $E_\alpha > 0$. The comparison of coefficients in (4) yields in this case $\lambda \in \mathbb{R}$.

The expansions of the functions in the λ-expressions can be written by the aid of

$$I(t) = t + \sum_{n=0}^{\infty} E_n t^{-n}, \quad I(t)^{-1} = \sum_{n=1}^{\infty} \alpha_n t^{-n} \quad (\alpha_1 = 1)$$

as follows $(I(w) = I)$:

$$\begin{align*}
1[.] & : \quad \frac{I(t)}{1 - I \cdot I(t)^{-1}} = t + (E_0 + I) t^0 + (E_1 + I^2) t^{-1} + (E_2 + \alpha_2 I^2 + I^3) t^{-2} \\
& + (E_3 + \alpha_3 I^3 + 2\alpha_2 I^3 + I^4) t^{-3} + (E_4 + \alpha_4 I^4 + (2\alpha_3 + \alpha_2^2) I^3 + 3\alpha_2 I^4 + I^5) t^{-4} + \ldots ,
\end{align*}$$

$$\begin{align*}
2[.] & : \quad \frac{I^{-1}}{1 - I^{-1} I(t)^{-1}} = I^{-1} - t^0 + t^{-2} - t^{-3} + (\alpha_2 I^{-2} + I^{-3}) t^{-2} \\
& + (\alpha_3 I^{-3} + 2\alpha_2 I^{-3} + I^{-4}) t^{-3} + (\alpha_4 I^{-4} + (2\alpha_3 + \alpha_2^2) I^{-3} + 3\alpha_2 I^{-4} + I^{-5}) t^{-4} + \ldots ,
\end{align*}$$

$$\begin{align*}
3[.] & : \quad -\frac{wI'(t)}{1 - w^{-1}} = w \cdot t^0 + w^2 t^{-1} + (w^3 - E_1 w) t^{-2} + (w^4 - E_1 w^2 - 2E_2 w) t^{-3} \\
& + (w^5 - E_1 w^3 - 2E_2 w^2 - 3E_3 w) t^{-4} + \ldots ,
\end{align*}$$

$$\begin{align*}
4[.] & : \quad -\frac{-tl'(t)}{1 - b^2 w^{-1}} = t + b^2 w^{-1} + t^0 + (b^2 w^{-2} - E_1) t^{-1} \\
& + (b^4 w^{-3} - E_1 b^2 w^{-1} - 2E_2) t^{-2} + (b^5 w^{-4} - E_1 b^4 w^{-2} - 2E_2 b^2 w^{-1} - 3E_3) t^{-3} \\
& + (b^{10} w^{-5} - E_1 b^6 w^{-3} - 2E_2 b^4 w^{-2} - 3E_3 b^2 w^{-1} - 4E_4) t^{-4} + \ldots .
\end{align*}$$

As an example consider the case $n = 4$.

3. The coefficient E_4

The necessary condition (4) for E_4 assumes, according to the above developments, the form $(\lambda \in \mathbb{R})$:

$$\begin{align*}
(\frac{wI'(w)}{I(w)})^2 & \left(I^5 + 3\alpha_2 I^4 + (2\alpha_3 + \alpha_2^2) I^3 + \alpha_4 I^2 + \lambda + E_4 + \alpha_4 I^{-2} + (2\alpha_3 + \alpha_2^2) I^{-3} \\
& + 3\alpha_2 I^{-4} + I^{-5} \right) = w^5 - E_1 w^3 - 2E_2 w^2 - 3E_3 w + \lambda - 4E_4 - 3E_3 b^2 w^{-1} \\
& - 2E_2 b^2 w^{-2} - E_1 b^4 w^{-3} + b^{10} w^{-4}.
\end{align*}$$

In [1] Netanyahu maximizes the E_v-coefficient for \sum i.e., in the special case $b = 0$ by the aid of the variational formula. In agreement with him denote

$$E_v = -\beta_v \quad (v = 0, 1, \ldots)$$

and maximize the β_v-coefficients. Because

$$z = I(w) = w - \sum_{n=0}^{\infty} \beta_n w^{-n}$$
and thus
\[\frac{1}{I(w)} = \sum_{1}^{\infty} \alpha_v w^{-v} = \frac{1}{w(1 - \sum_{0}^{\infty} \beta_v w^{-v-1})}, \]
we see that \(\alpha_v \) is a polynomial \(P_v(\beta_0, ..., \beta_{v-2}) \) with only positive coefficients. For example,
\[\alpha_2 = \beta_0, \]
\[\alpha_3 = \beta_0^2 + \beta_1, \]
\[\alpha_4 = 2\beta_0\beta_1 + \beta_0^3 + \beta_2. \]
This remark appears to be useful when estimating coefficients of the differential equation.

Rewrite (5) for the extremal \(H(z) \) by using the \(\alpha_v \)- and \(\beta_v \)-coefficients. Remember that \(E_4 > 0 \) so that \(\beta_4 = -E_4 < 0. \)

\[(6) \]

\[\left(\frac{zH'}{H} \right)^2 \times \]
\[(H^5 + \beta_1 H^3 + 2\beta_2 H^2 + 3\beta_3 H + \lambda + 4\beta_4 + 3\beta_5 b^5 H^{-1} + 2\beta_6 b^4 H^{-2} + \beta_7 b^3 H^{-3} + b^0 H^{-5})^1 \]
\[= (z^6 + v_{43} z^6 + v_{43} z^6 + v_{44} z^6 + \lambda - \beta_4 + \gamma_{44} z^{-2} + \gamma_{43} z^{-3} + \gamma_{43} z^{-4} + z^{-5})_2; \]
\[v_{43} = 3\alpha_2 = 3\beta_0, \]
\[v_{43} = 2\alpha_3 + \alpha_2 = 3\beta_0^2 + 2\beta_1, \]
\[v_{44} = \alpha_4 = 2\beta_0 \beta_1 + \beta_0^3 + \beta_2. \]

In [3] all the lower coefficients included are maximized essentially by the radial-slit mapping \(I_r \) which satisfies the condition

\[(7) \]
\[I_r + I_r^{-1} = w - 2(1-b) + b^2 w^{-1}; \]
\[I_r(w) = \frac{w + b^2 w^{-1} + 2b - 2}{2} + \frac{w}{2} \times \]
\[\times [1 + 4(b-1)w^{-1} + (6b^2 - 8b)w^{-2} + 4b^2(b-1)w^{-3} + b^4w^{-4}]^{1/2} = w + \sum_{0}^{\infty} (-B_v) w^{-v}; \]
\[B_0 = 2(1-b), \quad B_1 = 1 - b^2, \]
\[B_v = \gamma_{n0} + \gamma_{n1} b + \gamma_{n2} b^2 + ... + \gamma_{n(n-1)} b^{n-1}; \]
\[\gamma_{nv} = (-1)^v \frac{2}{v!} \frac{n-v}{n-v+1} \frac{(2n-v-1)!}{[(n-v)!]^2}. \]

The numbers \(B_v \) are thus the maxima of \(\beta_v \). Assume here that the inequalities
\[|\beta_v| \leq B_v \quad (v = 0, 1, 2, 3) \]
are true and maximize \(\beta_4 \) by using the necessary condition (6).
As in [3], use the fact that the extremal image-domain has at least one slit, i.e., \(\lambda \neq 0 \) at the starting point \(be^{i\psi} \) of the slit and \(\lambda + 4\beta_4 \) is determined by \(\lambda_1 \equiv 0, \psi \in [0, 2\pi] \), that is,
\[
\lambda + 4\beta_4 = \max \{-2\Re\{b^5 e^{i5\psi} + \beta_1 b^3 e^{i3\psi} + 2\beta_2 b^2 e^{i2\psi} + 3\beta_3 b e^{i\psi}\}\}
\]
\[
= \max \{2\Re\{-b^5 e^{i5\psi} + E_1 b^3 e^{i3\psi} + 2E_2 b^2 e^{i2\psi} + 3E_3 b e^{i\psi}\}\}
\]
\[
\leq 2(b^5 + |\beta_1| b^3 + 2|\beta_2| b^2 + 3b |\beta_3|)
\]
\[
\leq 2(b^5 + b^3 B_1 + 2b^2 B_2 + 3b B_3)
\]
\[
= 2(15b - 20b^2 + 6b^3).
\]

Equality here holds for \(\psi = 0 \) and \(I = I_1 \), which has \(E_v = -B_v < 0 \), when properly rotated. Thus
\[
\lambda + 4\beta_4 = 2(15b - 20b^2 + 6b^3).
\]

(\(\lambda \)) has at least one zero \(e^{i\psi} \), the pre-image of the endpoint of the slit. Thus
\[
\beta_4 - \lambda = -5|\beta_4| - (30b - 40b^2 + 12b^3) = -2\Re\{e^{i5\psi} + v_{45} e^{i4\psi} + v_{46} e^{i3\psi} + v_{47} e^{i2\psi}\};
\]
\[
5|\beta_4| \equiv -(30b - 40b^2 + 12b^3) + 2(1 + |v_{45}| + |v_{46}| + |v_{47}|).
\]
The numbers \(|v_{n,v}| \) are maximized with \(|\beta_v| \):
\[
|v_{45}| \equiv 6(1 - b),
\]
\[
|v_{46}| \equiv 14 - 24b + 12b^2,
\]
\[
|v_{47}| \equiv 14 - 30b + 20b^2 - 4b^3;
\]
\[
|\beta_4| \equiv 1\frac{1}{5} - (30b - 40b^2 + 12b^3) + 70 - 120b + 60b^2 - 8b^3
\]
\[
= 14 - 30b + 20b^2 - 4b^3.
\]

Again, the equality belongs essentially to \(I_1 \), because this holds for all the lower coefficients used in the triangle inequality estimations. — This result is the one proved in the above manner in [3].

4. The general case

From (4) we obtain for \(E_n = -\beta_n > 0 \) the necessary condition for the extremal \(H \):
\[
\left(\frac{zH'}{H}\right)^2 \times
\]
\[
\times (H^{n+1} + \sum_{1}^{n-1} v_{n,v} H^{n-v} + \lambda + n\beta_n + \sum_{1}^{1} v_{n-1,v} \beta_v b^{2n-2v} H^{n-v} + b^{n+2} H^{n-1})\)
\[
= (z^{n+1} + \sum_{2}^{n} v_{n,v} z^{n+2-v} + \lambda - \beta_n + \sum_{2}^{3} v_{n-2,v} \beta_v z^{n-3+v} + z^{n-1})_n.
\]
The numbers \(v_{n,v} \) are polynomials \(Q_v(\beta_0, ..., \beta_{v-2}) \) with only positive coefficients.
Assume that the lower coefficients \(\beta_0, \ldots, \beta_{n-1}\) are all maximized by \(I\) defined by (7). We proceed in maximizing \(|\beta_n|\) by imitating the procedure of Section 3. Thus, \((_)_0\) has at least one zero \(be^{i\psi}\) which determines \(\lambda = n\beta_n\) so that \((_)_0 \equiv 0\) for \(\psi \in [0, 2\pi]\):

\[
\lambda + n\beta_n = \max \left[-2\text{Re} \left\{ b^{n+1} e^{(n+1)\psi} + \sum_{1}^{n-1} v\beta_v b^{n-v} e^{(n-v)\psi} \right\} \right]
= \max \left[2\text{Re} \left\{ -b^{n+1} e^{(n+1)\psi} + \sum_{1}^{n-1} vE_v b^{n-v} e^{(n-v)\psi} \right\} \right]
\leq 2(b^{n+1} + \sum_{1}^{n-1} v|\beta_v| b^{n-v})
\leq 2(b^{n+1} + \sum_{1}^{n-1} vB_v b^{n-v})
= 2 \sum_{1}^{n-1} C_v b^v;
\]

\[
C_v = \frac{(-1)^{v-1}}{(v-1)!} \frac{n-v}{n-v+1} \frac{(2n-v-1)!}{[(n-v)!]^2} = -\frac{v}{2} \gamma_{nv} \quad (v = 1, 2, \ldots, n-1).
\]

Again, equality holds for \(\psi = 0\) and for a rotated \(I\); hence

\[
\lambda + n\beta_n = 2 \sum_{1}^{n-1} C_v b^v.
\]

\((_)_2 = 0\) at some \(e^{i\psi}\) and thus

\[
\beta_n - \lambda = -(n+1)|\beta_n| - 2 \sum_{1}^{n-1} C_v b^v
= 2\text{Re} \left\{ e^{i(n+1)\psi} + \sum_{1}^{n} v_{nv} e^{(n+2-v)\psi} \right\};
\]

\[
(n+1)|\beta_n| \leq -2 \sum_{1}^{n-1} C_v b^v + 2(1 + \sum_{1}^{n} |v_{nv}|)0.
\]

In order to estimate \((_)_0\) we return to the general form (4) of the differential equation. The coefficients \(v_{nv}\) are defined by \(I\), i.e., they are those of

\[
\frac{I(t)}{1-I(t)^{-1}} = I(t) + I + I^{2} \cdot I(t)^{-1} + I^{3} \cdot I(t)^{-2} + \ldots.
\]

We are actually interested in the non-constant term of the \(I\)-polynomials (cf. the expansion of \(I\)). Because the constant term \(E_v\) is due to the first term \(I(t)\), we may confine ourselves to the expansion

\[
F(t) = \frac{I(t)}{1-I(t)} - I(t) = \frac{I}{1-I(t)^{-1}}
= I \cdot t^0 + I^2 \cdot t^{-1} + (\alpha_2 I^3 + I^3) t^{-2} + (\alpha_3 I^2 + 2\alpha_2 I^3 + I^4) t^{-3}
+ (\alpha_4 I^2 + 2\alpha_3 + \alpha_5) I^3 + 3\alpha_2 I^4 + I^5) t^{-4} + \ldots

= I \cdot t^0 + I^2 \cdot t^{-1} + \sum_{n=2}^{\infty} (\sum_{v=2}^{n} v_{nv} (n-v+2) I^v + I^{n+1}) t^{-n}.
\]

Because the numbers \(v_{nv}\) are polynomials of \(\beta_0, \ldots, \beta_{n-2}\) with only positive coefficients, we obtain their maxima \(V_{nv}\) by writing \(\beta_k = B_k\) in those polynomials. Actually,
we need only the maximal sum \(u_n = 1 + \sum_{v=2}^{n} V_{nv} \), which is thus obtained as the coefficient \(u_v \) of \(F(t) \) with \(I = 1 \) and \(I_v(t) \) defined by (7) \((w = t) \). Thus we have the expansion

\[
I_v(t) = t - B_0 - B_1 t^{-1} - B_2 t^{-2} - \ldots
\]

\[
\frac{I_v(t)}{I_v(t) - 1} = 1 + t^{-1} + u_2 t^{-2} + u_3 t^{-3} + \ldots;
\]

\[
u_n = 1 + \sum_{v=2}^{n} V_{nv}.
\]

The multiplication of the \(u_v \)-expansion by

\[
I_v(t) - 1 = t - (1 + B_0) - B_1 t^{-1} - B_2 t^{-2} - \ldots
\]

yields the recursion formula:

\[
u_2 = 1 + B_0, \\
u_3 = (1 + B_0) u_2 + B_1, \\
\ldots
\]

\[
u_n = (1 + B_0) u_{n-1} + \sum_{v=2}^{n-1} B_{v-1} u_{n-v} \quad (u_1 = 1; \ n = 2, 3, \ldots).
\]

This gives

\[
u_n = \sum_{v=0}^{n-1} \frac{(-1)^v}{v!} (n-v) \frac{(2n-v-1)!}{[(n-v)!]^2} b^v = \sum_{v=0}^{n-1} \frac{n-v+1}{2} \gamma_{nv} b^v.
\]

According to (9) we now obtain

\[
(n+1) |\beta_n| \geq 2 \sum_1^{n} \frac{v}{2} \gamma_{nv} b^v + 2 \sum_0^{n-1} \frac{n-v+1}{2} \gamma_{nv} b^v
\]

\[
= (n+1) \sum_0^{n-1} \gamma_{nv} b^v;
\]

(11)

\[
|\beta_n| \geq \sum_0^{n-1} \gamma_{nv} b^v = B_n.
\]

Because the lower coefficients \(\beta_0, \ldots, \beta_{n-1} \) are all maximized, save the rotation, by \(I_r \), the same holds in (11) and thus for all \(n \). Hence we have generalized the result of Netanyahu [1].

Theorem. For the inverse \(\sum_b \)-functions

\[
I(w) = w - \sum_0^{\infty} \beta_v w^{-v}, \quad |w| > 1,
\]

the coefficient estimation

\[
|\beta_0| \leq 2(1-b), \quad |\beta_1| \leq 1 - b^2, \quad |\beta_n| \leq \sum_0^{n-1} \gamma_{nv} b^v \quad (n = 2, 3, \ldots);
\]

\[
\gamma_{nv} = (-1)^v \frac{2}{v!} \frac{n-v}{n-v+1} \frac{(2n-v-1)!}{[(n-v)!]^2} \quad (v = 0, \ldots, n-1)
\]

holds.
Essentially the only maximizing function is the radial-slit mapping I_r defined by

$$I_r + I_r^{-1} = w - 2(1-b) + b^2 w^{-1}.$$

The coefficient b_1 has a one-parametric family of maximizing functions I from

$$I + I^{-1} = w - c + b^2 w^{-1}$$

with $c \in [-2(1-b), 2(1-b)]$ as a parameter (cf. [3]).

This result generalizes the classical theorem of Netanyahu [1] showing that also in the cases other than $b=0$ the radial-slit mapping preserves its extremal role with respect to the inverse coefficients.

References

Łódź University
Institute of Mathematics
90-238 Łódź
Poland

University of Helsinki
Department of Mathematics
SF—00100 Helsinki
Finland

Received 25 February 1986