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QUASICONFORMAL GROUPS WITH
'SMALL DILATATION

M. JEAN McKEMIE

1. Introduction

In this paper we consider groups of uniformly quasiconformal homeomorphisms
acting on R”. One method of constructing such a group is to conjugate a conformal,
(i.e., Mobius) group by a quasiconformal mapping. A question raised by Gehring
and Palka [GP] was whether this might not be the only way, that is, if each uni-
formly quasiconformal group is the quasiconformal conjugate of a conformal group.
This question was answered affirmatively by Sullivan [S] and Tukia [T 1] for quasi-
conformal groups acting on subsets of R®% Later Tukia [T 3] exhibited, for every
n=>2, a quasiconformal group acting on R” which is not isomorphic to, hence is not
the quasiconformal conjugate of, a Mébius group. Tukia’s example was modified by
Martin [M] to yield discrete, non-elementary (i.e., with limit set containing more
than two points) quasiconformal groups acting on R", n=3, which are not quasi-
conformally equivalent to conformal groups. More recently, Freedman and Skora
[FS] have produced a discrete group G of smooth quasiconformal mappings acting
on 3, where G is not even topologically conjugate to a Moébius group. Since each of
the quasiconformal groups mentioned above is a group with large dilatation, it was
a matter of some interest to obtain a quasiconformal group with small dilatation
which is not quasiconformally conjugate to a Mdbius group. We modify Tukia’s
construction to produce such groups. We demonstrate that, for each n=3 and
K=>1, there is a K-quasiconformal group acting on R” which is not the quasicon-
formal conjugate of a Mobius group. Furthermore, we extend a second result of
Tukia, in that we exhibit for each =3 and K=>1, a Jordan domain in R" which
is homogeneous with respect to the action of a K-quasiconformal group and which
is topologically, but not quasiconformally, equivalent to the open unit ball B".
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2. Definitions and notation

Let X and Y be metric spaces. An embedding f: X—Y is called bilipschitz
(or more precisely, L-bilipschitz) if, for some Lz=1,

P2I <1169 -10)1 = Lix—y1

for all x, y€X, where we use euclidean notation |x—y| to denote the distance
between points x and y in an arbitrary metric space. An embedding f: X—~Y is
quasisymmetric (or n-quasisymmetric) if there is a homeomorphism #: [0, «)—~[0, =)
such that

M /&) =) = n(0)1f(x)—f©)l
whenever [x—y| = ¢ |x—v|. If it is merely true that there is an H = 1 so that
@ 1fG) =)l = HIfx)—f()l

whenever |x—y|=|x—v|, we say f'is a weakly H-quasisymmetric embedding. Clearly
every n-quasisymmetric embedding is weakly #(1)-quasisymmetric. Consider the
space # of all homeomorphisms #: [0, «)—~[0, ). Let id denote the identity
mapping of [0, ) and for s=>0, let N(id,s)={nc#: |n(t)—t|=s, 0=t=1/s}.
The sets N(id, s) form a basis for the neighborhood system of the identity in the
compact-open topology on #. We say fis s-quasisymmetric if f is n-quasisymmetric
for some n in N(id,s). An embedding which is y-quasisymmetric with 5(¢)=t¢
is called O-quasisymmetric. Our terminology here conforms to that in [TV 1, TV 2].
We denote the identity map on the space X by idy. When the context is clear, we
also write idy for the embedding of X into Y given by idy(x)=x for all x€X.

If G is a family of homeomorphisms of a metric space X and if each g€G is
L-bilipschitz, we say that G is an L-Lipschitz family. If, in addition, G forms a group
under composition, we say G is an L-Lipschitz group. We call G a uniformly Lipschitz
Sfamily (or group) if it is an L-Lipschitz family (or group) for some L.

If UcR" is open and G is a group of self-homeomorphisms of U such that
each g€G is K-quasiconformal, we say that G is a K-quasiconformal group. If
every g€G is the restriction to U of a Mbius transformation, we call G a Mébius
group. A uniformly quasiconformal group is a group which is K-quasiconformal for
some K.

If 4: R">R" is a linear mapping, then we set

|41 = max |4hl, I(4) = min |4hl,
and write det 4 for the determinant of 4. Let UcCR" be open. If f: U~R™ is
differentiable at xcU, the derivative of f at x is denoted Df(x) and the Jacobian
determinant of fat x is J(x,f).
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The notation B"(x,r) indicates the open ball {y€R": |[x—y|<r} and we
abbreviate B"=B"(0, 1). Similarly, S$"~'(x,r) is the sphere {ycR": |x—y|=r}
and S""'=8""1(0,1). By I we mean the closed interval [0, 1] in R, while I"=
[0, 1]", the n-dimensional unit cube. C is the complex plane, which we identify
with R2 Depending on the context, we use either x=x;+ix, or x=(x, x;) to
denote x€R® The upper half plane in C is Q,={z€C: Imz>0} while Q,=
{z€C: Im z<0}, the lower half plane. We let C=Cu{s} and R"=R"U{e}. For
ACR", 04 denotes the boundary of 4 and A4 denotes the closure of 4, both taken
in R". We write dist (4, B) for the euclidean distance between sets 4 and B in R™.

Let U be a simply connected region in C which is not the whole plane. Then
the hyperbolic metric sy, on U is defined by

hy(z1, 2) = inf [ 2y(2)1dz,
v v

where Ay is the Poincaré density in U and the infimum is extended over all rectifiable
paths y joining z, and z, in U. The Poincaré density Ay is given by

R(FE)IDAE =

where f'is any conformal mapping of Q, onto U. In the case U=;, i=0 or 1, then

1 1
Ao (z) = Mm ()] ~ dist(z 0U) °

If U is a proper subdomain in R", the guasihyperbolic metric qy of U is defined
using the density gy,
1
W= S an)
For x,ycU we let
qu(x, y) = inf [ oy(Q)1dl]
v Y

with the infimum being extended over all rectifiable paths y joining x and y in U.
Note that if U=Q;, i=0 or I, then gy=hy. We shall often write simply g or A
in these cases.

3. Extension of weakly H-quasisymmetric embeddings of R into C

In this section we establish an extension result we shall need in order to control
the dilatations of the groups constructed in Section 5. We appeal to results of Tukia
and Viisild, as well as to a result of J. Vaaler and the author [MV].

An embedding f: R—~C is normalized if f(0)=0 and f(1)=1. We now
establish
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Theorem 1. Let f: R~C be a weakly H-quasisymmetric embedding. Then f
is s-quasisymmetric, where s=s(H) can be chosen to satisfy s—~0 as H-1.

Proof. By[TV 1, 2.16] fis n-quasisymmetric for some homeomorphism 5 depend-
ing only on H. Let s(H) be the smallest s so that n€N(id, s), i.e., s(H) is the smallest
s so that any weakly H-quasisymmetric f: R—~C is s-quasisymmetric. Assume
that s-+0 as H-1. Then there exists a number s€(0,1/6], a sequence H;il,
and a sequence of embeddings f;: R—~C so that each f; is weakly H;-quasisym-
metric, but such that no f; is 2s-quasisymmetric. Appealing to [TV 2, 2.4] we can
choose points a;, b;, x;€R with

laj—x;1

o=, ,| te[s’ ]
- _ @)=l
RV ACHEIAED]

Performing auxiliary similarities we are free to assume that a;=1=f;(a;) and
that x;=0=f;(x;). Consequently, we have

for which

> t;+s.

|bj| i
and
1 1> t;+s
G

Now this gives |b;|=1/t;€[s, 1/s]. We may pass to a subsequence and assume that
{b;}_, converges to b where |b|€[s, 1/s]. Each f; is normalized, so according to
[TV 1, 3.4 and 3.7] we may further assume that f;—f uniformly on compact sub-
sets of R, where fis a quasisymmetric embedding of R into C. Now for x, y, v fixed
in R with |x—y|=|v—y| we have

1f; ) =0

=100 =
Hence, taking the limits, we obtain

D=0 _

/@)=l —

Thus fis weakly 1-quasisymmetric and normalized. Now a theorem in [MV] asserts
that f is the identity. We conclude that the subsequence f;—idg uniformly on
compact subsets of R. Therefore

——-—-—— lim ————— 1 = lim .

j~= |bj| FOI ~ == 1501 ~ ==
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However, this implies that

1 1
— = lim#f = 11m ti+s = ]1m =—s.
bl ~ J-e / Ib T~ T
Since s=0, this is a contradiction. We conclude that s(H) can be selected so as to
ensure that s(H)—0 as H—1.

Corollary 2. Let f: R—~C be a weakly H-quasisymmetric embedding. Then
f has an extension to a weakly K-quasisymmetric and K-quasiconformal homeo-
morphism F. C—~C, where K=K(H) can be chosen so that K—~1 as H-1.

Proof. By Theorem 1 f'is s-quasisymmetric, where s=s(H) and s—~0 as H—1.
Using [TV 2, 5.4] we see that there exists s,>0 so that, if f is s-quasisymmetric
with s<s,, then f has a ¢,-quasisymmetric extension F: C—~C. Here o¢,=0,(s)
may be chosen so that ¢,—~0 as s—0. Choose H, so that for all H<H,, s(H)<s,.
Then for H<H,, F is oy-quasisymmetric, where o¢,=0,(H)=0,(s(H))-0, as
H—1. By [TV2, 26], Fis K-quasiconformal and weakly K-quasisymmetric for
K=K(o,) satisfying K(o;)—1 as o;—~0. In other words, we conclude that f has
a weakly K-quasisymmetric and K-quasiconformal extension F to C, where K=
K(H)=K][o,(H)] may be chosen to satisfy K—1 as H-1.

4. The embeddings f and F;

Fix an integer n=1. We construct, corresponding to n, an embedding f: R—~C.
If we wish to emphasize the dependence of f on n, we write f=f, . To begin, we
define a sequence of embeddings f; of I=[0, 1] into C. Restricted to 7, f will just be
the limit of this sequence of embeddings. Set

1 —n
sy = 7 (1437,

We define the embeddings f;, j=0,1, ..., inductively. Take f,=id,. Subdivide
I into four segments I}, where Il=[(k—1)/4,k/4] for k=1,2,3,4. Note that I}
is of length 1/4. We define f; so that fi|; is affine and f,(Z), which we denote J?,
is an arc consisting of four line segments of length s,. We specify the images of
the endpoints of I for k=1, 2, 3,4, as follows:

£O=0, £i(3) = A3) =30+,

fl[%) =1-s,, and fi(1)=1.
See Figure 1.

We proceed to the inductive definition. We assume f; has been defined on
I=U. I, where I=[(—1)/4’,1/4’]. Define f;,, so that fj,|y+ is affine for
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J* for n=1

J* for n=2

S

J* for n= 3

Figure 1

I=1,2,...,4*" and so that for /=1, ...,4/

f,+1( ) ( )
(4(1 1)+1) )+s [f~(—]“ff(l4!1]]
()=o) ()]
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+1 4J+1
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s
2
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J
i () = )
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and
() () -14)

Then f;,(B)=(s,)'/iD), and f;1(F) for I=1,2,..,4 is a rotated, and per-
haps translated, copy of (s,)’f,(I). If we denote f;(I) by J, we see that the dilate
s,J7 is a subarc of J/*L We note that max,¢;|f11(x)—f;(x)|=(s,/2)/37"*
which implies that {f;} is uniformly Cauchy on 1. Hence {f;} converges to f uni-
formly on I, where f: I-C is a continuous mapping. As fis easily seen to be injec-
tive, we conclude that f is an embedding. Write f(I)=J*. Some examples of J*
are shown in Figure 1, along with examples of f;(1).

By the manner in which we defined f;, we see that 5,J* is a subarc of J* and
that J* is a subarc of (1/s,)J*. Set

1 1
J= U;go (S_] [J* U(—-J*)].
By construction, for /=0 and x satisfying 0=x=4"', we have
1 l
fn) = () 700,
We extend f to R by setting
1 l
feean) = =) 100,

for x€I. The resulting map, still called f, is a homeomorphism of R onto J and
satisfies

3
—xl =1=|3-"2
® e 1701 = ()37
For n=1 a fixed integer, we define O<a,<1 by
1 -n

o, = »
1
log Z—

and we set g,(x)=x* for x€[0,2]. A computation yields

Lemma 3. The mappings g, converge uniformly to the identity mapping on [0, 2]
as n—co.

Next we establish some significant estimates.
Lemma 4. Let O<g<1. There exists N=1 so that f=f,, satisfies

_®»=ml _ _1
@ == =T

for all x,ye[—1,1], whenever n=N.
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Proof. Let x,y€[—1,1] with |x—y|=4~*% Without loss of generality, assume
y>x. By (3) and Lemma 3 we may find N so that f=f,, satisfies

&

nax /) —xl < 75
and so that for all x, ye[—1,1]

&

[lx =yl —lx—yl| < 55

whenever n=N. Then

/)= _ /&) —xI+1x—y|+1y =)

lx =yl |x—yl*

_ Jx—ylmte/4® 2¢/43
T x=ylem [x—y|*n

3¢
= 1+ 48]_x—_y- lan
1.
1—¢°

By the triangle inequality,

Y =fOI+IfO) D+, (x)—x] = [x—y].

This implies that
G =/l _ |x—y|—(2¢/4%)

[x—yl= = |x—yln

o [x=yln—(36/4%)
- |x —ylon

=1-—e

We have shown that (4) holds for all x, yc[—1, 1] with |x—y|=4"% We must
also show that it holds for |x—y|<4~% We consider two situations: Case (a):
x and y are both in I (or, what is the same, by symmetry, x and y both in —1I);
Case (b): x€—1I and y€l. We may again assume that x<y.

Assume we are in Case (a). Then x€I} for some L Since |x—y|<4~% either
YEI} as well, or y€I?, ;. Suppose first that y€I?, ,. At the fifth stage of our con-
struction, I} is subdivided into 4 segments, say

It =IUI UL UL .

Similarly, I},, consists of the next four segments. The following situations might
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conceivably arise:
() x€Ip,; and J’EU;=4]:15:+J'°
(i) x€I%,.. and yeUS_, I3
(i) x€lf,, and yeU]_, I
(iv) xcI3 and y€erl}.,.

Only in the situation x€I},, and y€I}., do x and y lie in adjacent segments of
length 475, Suppose any of the other possibilities occur. Then |x—y|=4"% Now,
by the construction, f,(I}Ul},;) is an arc consisting of two line segments, each of
length (s,)* Furthermore, fy(I}Ul},,) is a rotated and translated copy of f,(I{UI3),
fHUTBUTLY, or fi(I3oI)). Since f, is affine on each I, we may thus find points
xand yyin B={J1_ I! with [x,—y,=|x—3| and | f(r)—00I=1A LG
Hence, we might as well consider x and y in I3. Recall that f,(I?)=(s,)*f,(])
and f(I3)=(s,)*f(I). Thus there exist x*,y*€l with |x*—p*|=43|x—y|=4"*
and | f(x) —f(»)|=(s)°| f(x*)—f(¥*)|. This implies that

)= _ PG OO _ 1A= OM)
| — o (473|x* = y*[)2n [x*—y*m

Since (4) holds for the final expression, it must hold for the first.

We have not dealt with the case x€I},, and y€I},, which occured in (i) or
the case x<I} and y€l}. We handle these with one argument as follows. In both
instances there is a largest integer k so that for some h, x€If and y€If,,. At the
next stage, at least one interval of length 4=®*1 must lie between x and y. Again,
the image of TFUI¥,, isarotated and translated copy of the image of I¥UIE, IXUIY,
or I¥UI¥, so we may consider x and y in I¥~. Since f(If ™) =(s,)*"1f(I), there are
x*, y*el with |x*—y*|=4""x—y|=>4"* and |f(x)—f)|=(s)" S =fI).
Consequently,

) =W _ AN =0 _ 1)/

=yl (4= =D x* — y*|)= [x* = y*em

We see that (4) holds for the last term, thus holds for the initial term as well.
Finally, consider Case (b). Now x€—1 and ycl. Then x€—I} and y€lj,

since |x—y|<4~*% At the fifth subdivision of —IUI either there is a segment of
length 47° lying between x and y or x¢—I7 and y€I}. If |x—y|=47° then
we have f(—Ijul)=(s,)*f(—Iul). Hence there are x* and y*€—Iul with
|x*—y*|=4*|x—y|>4"", and

)= _ RIS O _ 1) =G

[x—ylen @3)x* =y ) X =y

Again, (4) holds for the last expression so it must also be valid for the first.
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If xé—1I} and y€I?, then a similar argument leads to a largest & so that
x€—1If and y€I¥. The same argument is made using f(—I*UI¥)=(s,)*"1f(—IUI)
and the result follows.

Thus, for all x, y€é[—1, 1] we have

l—p = =GN _ 1

= |x—ylm T 1—¢

b

provided that n>N.
We next extend this result to the entire real line.

Corollary 5. Let O<e<1. There exists N=1 so that f=f,, satisfies

= M= _ 1

X—yl= 7 1-e

for all x,y€R, whenever n=N.

Proof. Using Lemma 4, choose N so that the estimate above holds for all
x, y€[—1,1] whenever n>N. Suppose x,y¢[—1,1]. We may assume |x|=|y|.
Then for some k=1, we have x*, y*¢[--1, 1] with y=4%y* x=4*x* and f(y)=
(1/s)5f ("), f)=(1/s,)"f(x*). So
=D Qs IS0 1) =)
x=yl= @ =y Xy

Hence (4) holds for fon R.
It is a direct consequence of (4) that f is weakly 1/(1—e¢)*quasisymmetric.
We summarize the foregoing in

Lemma 6. Given H=1 there exists a weakly H-quasisymmetric embedding
f: R—>C satisfying

1 _ /™0 _
® T o - H

for all x and y, where a=a(H)€(0, 1) can be chosen to satisfy a(H)—1 as H—1.

Proof. Given H, choose 0<e<1 so that 1/(1—e)=HY*<H. Applying Corol-
lary 5 for this e=e(H), we may fix n=n(H)=>1/(H—1) so that f=f, satisfies
(5) with a=a,. Then a,=a(H)—-1 as H-1, and f'is seen to be weakly H-quasi-
symmetric.

The Tukia extension F;. Fix H>1. Using Lemma 6 we find a weakly H-quasi-
symmetric embedding f: R—C satisfying 5. By Corollary 2, we may extend f to
F, a weakly K, (H)-quasisymmetric and K, (H)-quasiconformal homeomorphism of
C to itself, where K,(H)—~1 as H-1.

We actually desire a modified extension, one of a particular form. This exten-
sion is originally due to Tukia [T 2]. Remember that f, hence F, is normalized.
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Let C, be the component of C\ f(R) such that the triple (0, 1, =) describes
the positive orientation of dC, with respect to C,. Denote the remaining component
by C,. Let 4, be the homeomorphism mapping &, onto C, which is conformal in
Q, and fixes 0, 1, and <. Note that f(R)=F(R) is a K, (H)-quasicircle.

Consider the mapping A;’oF l,- Since AFoF(Qy)=A;"(Cp)=Q,, we see
that A7 F is a K,;(H)-quasiconformal self-mapping of ©,. By a well known
theorem of Beurling and Ahlfors [BA], g=A; o Flg=A4}" o fis a k-quasisymmetric
self-mapping of R, where k=k(K;)=k(H) can be chosen so that k(H)—1 as
H-1. Then [L, Theorem 5.2] asserts that there is a K,(k)-quasiconformal self-
mapping B, of Q, which extends g. Furthermore K,(H)=K,(k(H)) can be chosen
so that K,(H)—~1 as H-1. We remark that B, is a diffeomorphism on €,, and
is given by

By(x+iy) = 3 [2(x, )+ B(x »I+ila(x, »)—B(x, y)],

where a(x, y)=[;g(x+ty)dr and B(x,y)= [t g(x—1y) dt. We refer to B, as the
Beurling—Ahlfors extension of g. We also note that the partial derivatives of « and
B satisfy '

4 9) = el +) =g fu6 ) = S ls@ gl
(6)
a,(x,y) = %[g(xﬂ)—a(x, N, By(x,y) = —;—[g(x—y)—ﬁ(x, »1

Now, set F;=A;0B,. This definition is due to Tukia [T 2, p. 92], hence we
refer to F, as the Tukia extension of f (In [T 2], B,=1/2[a+p]+i/2[x—p].
All of the results we shall need from [T 2] remain valid despite this difference in
the imaginary part of B,.) We observe that F,: Q,~C, is K,(H)-quasiconformal.

We define F, on £, in an analogous manner to obtain F,: C—~C, a K,(H)-
quasiconformal homeomorphism with K,(H)-1 as H-1. Note that F, is a dif-
feomorphism on C\R.

We now establish several lemmas. We remark that Tukia has proven similar
lemmas in [T 3], but made no attempt to obtain estimates of the size of the constants
involved. Since we wish to control the dilatation of the groups we shall construct,
we include the proofs of our lemmas to demonstrate that the constants can, in fact,
be controlled.

We begin with

Lemma 7. Let f be a weakly H-quasisymmetric embedding of R into C satisfying
the conclusion of Lemma 6, let a=a(H) as in Lemma 6, let F be the Tukia exten-
sion of f, and let J=f(R)=F(R). Then there is a constant M=1 such that the
double inequality

Q) % = dist (Ff(u-i-il)), J) =Mo"
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holds for all u,vER. Furthermore, M=M(H) can be chosen so that M(H)—~1
as H—1.

Proof. Since F, is weakly K,-quasisymmetric on C, where K,=K,(H)-1 as
H--1, we have '
|Fp(2)—F;(W)| = K; | Fy(2)—F;(0)|

whenever |z—w|=|z—¢|. Hence
dist (F;(u+iv), J) = |F(u+iv)— F(u)|
= K| Fr(u+v)—F(u)
= K| fu+0)—f(w)|

= KH|v*,

by (5).
On the other hand, let z=f(x)€J be a point with dist (F (u+iv),J )=
|Fp(u+iv)—z|. Then [(u+iv)—x|=|(u+iv)—ul|, whence

dist (Fy(u+iv), J) = |F,(u+iv)—z|
= |Ff(u+iv)—Ff(x)|

= K—12 |Fy (u+iv)— F,; (u)]
= Iyt i)~/

= (&) 1rws -

= (&) @
=)\
again by (5). Hence (7) holds with M(H)=HK32, and thus M(H)—~1 as H—1.

We next have:

Lemma 8. Let f be a normalized weakly H-quasisymmetric embedding of R
into C. Let F, be its Tukia extension. Then there is a constant Ly=1 so that

DF, [l +i]

>+7) =L

) zl— =1 [DF, [%+-;-)] =

0
Furthermore, Ly=Ly(H) may be chosen so that Ly(H)—~1 as H-1.

Proof. The existence of L, follows from [T 2, p. 93]. We need only show that we
may choose the constant so that L,(H)—~1 as H-1.

Suppose that L,(H) cannot be so chosen as to approach 1 as H—1. Then
there is 6>0 and a sequence of maps f,, which are normalized weakly H,,-quasi-
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symmetric embeddings of R into C with H,—1 such that either

i .
1 i
(%) IDF,M(§-+—2—) >146
for all m, or
1 i
for all m.

Assume first that (%) holds. The sequence {f,,} is a compact family by [TV 1,
p. 109]. By passing to a subsequence we are free to assume f,—~f.,, where f_ is
normalized and weakly 1-quasisymmetric. We conclude that f..(x)=x for all x
in R [MV, Corollary 2]. Note that f,,(R)=F, (R) is a K(H,)-quasicircle, where by
construction K(H,)-1 as H,—1, or, equivalently, as m—o. It follows that
the corresponding mappings A, are conformal homeomorphisms for which we
may choose [K(H,,)]?>-quasiconformal extensions to C (for which we retain the nota-
tion 4, ). According to [V, 20.5] the family {4 ...} is a normal family. By passing
toa further subsequence, we may assume A, —A uniformly on compact subsets
of C. We infer that 4 is a 1-quasiconformal, normahzed self-mapping of C, whence
A is the identity mapping. Consequently, A4 ~1o f.. converges to the identity mapping
on R. Set h,=4} ofm and h —A_IOf.,o—ld We see that

1 i 1 i 1 i
B (3+5) = B F+3)-7+7

where B, denotes the Beurling—Ahlfors extension of h,. We observe that, as
m—»co,

F, =A; oB, — F, =id|c,

where the convergence is uniform on compact subsets of C. Using (6) and the fact
that |DB,(z)|=|0B,(2)| +|0B,(2)|, we infer that

1 i
o5, (3+5)
Because the mappings 4, are conformal in Q, and converge uniformly on compact
subsets of C to id¢, we have

2772 =1

lim IDB,,m (l+i] =

L
pF(3+3)| =
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and where 4’ denotes the complex derivative of 4. Now

, 1 i 1 i)
A [ma (Tf?]] - (7““7]1 =1

Therefore,
: 1 i)_
lim IDF,,”(E+7 =1
This means
146 = lim |DF [1 i) = |DF (l+’] =1
= e[ 7T ) T PR T ) T

which is a contradiction.
Finally, assume that (% %) were to hold. Then

I[DF,m (%+%]] <1-34,

and proceeding in a manner similar to that above, we could assume f,,—~f. =idg,
A; ~A=id¢, and F; —~F, =idc. Then

1 i . 1 i
’[DFfm (7+—z‘)] = in |PF, (5 +5). ”l

1 i 1 |
oy (5 (5+3)) 25, (5+5) 4
, 1 i
A [ma (7 +7]]

tim 1[0, (3-+3) =1 o (3+3) =

again a contradiction. Thus, it must be true that we are able to choose L, so that
Ly(H)~1 as H—1.

We shall also need to know that F is bilipschitz in the quasihyperbolic metrics
of Q, and Q.

We infer that

Lemma 9. Let f: R—~C be aweakly H-quasisymmetric embedding as in Lemma,
let F; be the Tukia extension of f, let J=f(R) and let C;, i=0 or 1, be a component
of C\J. Then there is a constant, L,=L,(H)=1, so that

® TG 2 g (£, F0) = LuaCe )

Sor all z,weQ, when i=0 or for all z, weQ, when i=1. Moreover, L,(H) may
be chosen so that L,(H)—~1 as H-1.
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Proof. We carry out the proof for the case F,: 2,~C,. The other case is
done in a similar manner. Let u, v€C,. Then

, v) = inf d
qc,(u, v) mn f g 90 48

where the infimum is extended over all rectifiable arcs y* joining u and » in C,.
Suppose we are able to establish that

e(2) - = Li(H)e(2)
(10) RO LA = @) ="pF o

where L,(H)—~1 as H—1.
Let y* be a rectifiable arc joining F;(2) and Fy(w) in Co. Let y=F;'(y*)CQ,.
We see, using (10), that

9c,(Fr (@), W) = [ 0c,ds
= Ffo ’ QCO ds
= [ (ec,0 F)IDF| ds
= L,(H) f @ ds.
Taking the infimum over y gives the right-hand side of (9). Similarly,
gz, w) = fyg ds

= jF;loy* eds

= [ IDEF ()l e(Fr (w) ldw]

— 1 ~1
=/, I[DF,(FT(w))] o(F7(w) lawl.
Again using (10) we have
9(z W) = Li(H) [ oc,(w)ldw]
and taking the infimum over y* gives the left-hand side of (9). In the above we have
used the fact that F, is a diffeomorphism off of R.
Thus it suffices to show that (10) holds for each z€Q,. Fix z=x+iy€Q,. If

¢: R—R is an increasing affine map, we denote by ¢ as well the unique conformal
affine map extending ¢ to C. Explicitly, we consider ¢ defined by

p(w) =2yw+ (x—y)
for weR. Then ¢@(0)=x—y and ¢()=x+y. Let y: C-~C be the conformal
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affine map such that ¥ (f(x—»))=0 and yY(f(x+y))=1. Set g=yofop. We
observe that g is a normalized weakly H-quasisymmetric embedding. By [T 2, p. 92]

Fy=Fyosop =Yoo Fso0.
Thus

; 1 i 1 i ,
DF, (x+iy) = Dy~ [F,, [7+§]] .DF, (5 ++)-Do1(x-+i3).
We note that both Dy~! and De~! (which are constants) are similarity maps,
Dy~ multiplies by [f(x+y)—f(x—y)] and D¢~ multiplies by 1/2y. Therefore

we obtain

1 i) 2y .
oF,(5+5) - TG+7) fa—y Dty

Applying Lemma 8 to g we arrive at

L,21) 201
By Lemma 6,
2 a
B <\t 76—l = Hiy
Thus
Lyl® (IyI*2*~*HLy)
12 —————— = |(DF = |DF =
2 a=aLLy - (PHE)=IPEEI= T

Recall gco(F ;(@)=1/dist (F;(2),J). Using (7) we obtain

1 M
aryry = eelfr@) =5

Combining the above line with (12) we have

o (F@)IDF, () = LEI).
Consequently, since 1/|y|=0(z), we have
_ (2*"'HL,M) _ (2-*HL,M)
(13) eco(Fr(2) = “DE@ o(2) = “DEG e(2)

which is the right-hand side of (10), where L,=2""*HL,M. Additionally,

9 el =gy

= % ( z(DF], (z))] (2““11“30) [Vl']

_ 1 ( e(2) )
~ @HL,M) \I(DF;(2)) )’
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which gives the left-hand side of (10), where again L,=L,(H)=2'"*HL,M. Then
(13) with (14) gives (10). We know that 2'"*HM—~1 as H-1. We apply Lemma 8
to see that L, may be chosen so that Ly(H)—1 as H—1. We conclude that L, (H)—1
as H~1.

5. Construction of the groups

In order to produce the groups mentioned in the introduction, we essentially
duplicate the steps involved in Tukia’s construction. However, we have now acquired
enough additional information to allow us to control the dilatation of the resulting
groups. We remark that while we work in R”, all of the mappings involved fix the
point . Hence all of our results extend to R".

Let G} be the group consisting of all translations of C parallel to the real axis.
Let G be the group generated by G; and by the maps §,: C—~C, where §,(2)=/z,
for A=0.

Fix H=1. Then Lemma 6 gives f: R—C such that f is weakly H-quasi-
symmetric and satisfies (5). Let F, be the K, (H)-quasiconformal Tukia extension
of fand let J=f(R).

We define groups which depend on Fj, hence on H, as follows. Let

Go(H) = F;oGpo FfY, G{(H) = FroGjoF; ..
Then we have

Lemma 10. (a) The group G,(H) acting on C is an L,-Lipschitz group with
respect to the usual metric, where Ly=L,(H) can be chosen so that L,(H)—1
as H-1.

(b) G{(H) is a Ks-quasiconformal group acting on C. If the action of G{(H)
is restricted to a component C;, i=0 or 1, of C\J, then G|(H) is a Lipschitz group
with respect to the quasihyperbolic metric q. of C;. Furthermore, K;=K3;(H) can
be selected so that K;(H)—1 as H—1. l

Proof of (a). We first show that there is an L,=1 so that if g€Gg(H) and
z€C\J then

(15) le = 1(D,(2)) = 1D,(2)| = L.

Let geGy(H). Let z, weF(2)=C;, i=0 or 1. We have g=F og,oF;* where
£.€G}, hence is conformal. Thus

(16) El 4e.(z W) = 4c,(8(2), g) = Lige, (2, w),

where we have used (9) and the fact that conformal maps are isometries with respect
to g . We see that g is L2-bilipschitz in the quasihyperbolic metric of C;, where
L,=L,(H)-~1 as H~1.
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Let z€C;. Then z=F(u+iv) for u+iw€Q;, whence g(z)=F;((u+a)+iv)
for some a€R. An application of Lemma 7 gives
|v]*

=F = dist (F;(u+a+iv), J) = M|v|*

and

8 = dist (5t ), 7) = Mot

As a consequence, we obtain

1 _ dist(F,(uta+iv), J) — e
M2 = dist(Fp(utiv),J) T

From (16) we have

1
Iz dei (z W) = q¢,(8(2), gW)) = Liqc,(z, w).
This implies that

1 v do(mw) L 1g(2)—gW)l gc,(g(2), gW))
L2dist (z, J) = lim L2|z—w| =1§£ lz—wl  |g(2)—gW)|

R Gt ()] q9c,(g(2), gw))

wez o |z—w lg(2)—g(w)l
. L2qc.(z, w) L3
_1 191C;\ 4> - _ 1 .
=.am |z—w]| dist (z, J)

If z is a point where g is differentiable, i.e., z4J, we see that

._l_ 1 = I(Dg(z)) - IDg(Z)I _T2 1
L2 dist(z, J) = dist(g(2), J) ~ dist(g(z), J) ~ tdist(z, J)°

So, at all points z€ C\J,

1
W = l(Dg(Z)) = IDg(z)I = Lsz.

It follows that (15) is true with L,=LZM?2

We know Fj, hence g, is quasiconformal. Consequently, g is differentiable
a.e. and is absolutely continuous on lines. Since (15) holds a.e. in C, it follows that
g is L,-bilipschitz in C. Furthermore, L,=L,(H)—~1 as H-1, and part (a) has
been proved.

Proof of (b). Let g€Gy(H). Then g=Fog,0F;!, where g,6G;, hence is
conformal. Since F, and F;*' are K,-quasiconformal, we see that g is Kj;-quasi-
conformal, where K;=K:. Hence K;=K;(H)—1 as H-1. An argument similar
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to the one used to obtain (16) in part (a) shows that

qC:(LZ%a w) = qci(g(Z), g(w)) =12 qu(Z’ w)

for all z, weC;, i=0 or 1.

We now construct the desired groups. Fix n=3 and «>0. We regard R" as
R2XR"2=CxR""? and write elements in R” as %=(z, t) with z€C and t€R""2
Define maps £, and &, of R” for acR” and A=0 by

h,(®) = %+a, §,(z 1) =z, A%0).
We define groups G, and G, of affine mappings of R” by
Gy = {h,: a =(a,0,as, ..., a,), a;cR}
G, = G.(«) = the group generated by G, and {g,: 1 > 0}.

Then each g€G, is of the form g(z, t)=(Az+a, A*t+b) for some A>0, some
acR, and some bER"2
Now take H=1. Let f: R—~C be a weakly H-quasisymmetric embedding as
in Lemma 6 and let a=a(H) be as in the same lemma. Then G,=G,(®)=G,(H).
Set F =F;Xidg..: CXR"*>CXR""? where as before, F, is the Tukia ex-
tension of f. Define
ha = .9705“0.9'-_1, g1 = fog;'og"_l

for acR" and A=0. Finally, set
Go(H) = FoGyoF Y, G(H)=FoGoF

We observe the following commutativity relations between A, and g;:

)

We now have

{hla = gzOhaOgil, fOI' a= (ala 0’ ey 0),
Ry = gzohpogrt, for b=(0,0, b, ..., b,).

Lemma 11. (a) The group Go(H) acting on R" is an L,-Lipschitz group with
respect to the euclidean metric. Furthermore, Go(H) acts transitively on the invari-
ant set S=JXR"% Here Ly=L,(H) can be chosen to satisfy L,(H)—~1 as H—1.

(b) The group G,(H) is a K,-quasiconformal group acting on R". The action
is transitive on S and on each component of R"™\S. If the action of G,(H) is restricted
to a component D of R™\S, then G,(H) is an Ls-Lipschitz group relative to the
quasihyperbolic metric in D. Additionally, K,=K,(H) and Ls;=L;(H) can be
assumed to satisfy K,(H)—1 and L;(H)—~1 as H-1.

Proof of (a). Using Lemma 10(a) and the definition of G,(H), we see that
g€G,(H) is L,-bilipschitz in the euclidean metric. Now if S=JXR""% then G, is
transitive on #~1(S), hence Go(H)=FoGyo F~1 is transitive on S.
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Proof of (b). Let D be a component of R™S. Then S and D are invariant
under the action of G,(H)=%o0G,0# ™1 It is evident that G, acts transitively
on #~1(S), which implies that G,(H) is transitive on S. Furthermore, G, is transi-
tive on & ~1(D), so that the action of G,(H) is transitive on D.

An arbitrary 2€G, may be written as §=4h,08,, for suitable ¢ and A. This
follows from (17). Accordingly, g€G,(H) is of the form g=h,0g;. To see that
each g|p,=h,0g;|, is bilipschitz with respect to the quasihyperbolic metric ¢, it
suffices to show that g,|, and h,|, are uniformly bilipschitz with respect to ¢p.

For h,|, we have, by part (a),

1X—J

— = 1 () - b ()| = Lt
2

where X, 6D and L,=L,(H)-1 as H-—1. Write X=(z, 1)¢CXR""? and
z=F;(u,v) with (u,v)€C, v#0. Then
dist (k, (%), S) = dist (F;(u+a,, v), J),
and
dist (%, S) = dist (z, J) = dist (F, (u, v), J).

By Lemma 7 we know that

%— = dist(Fy(u+ay,v), J) = M[v]5,

and

[v]* . u
3= dist (Fy(u, v), J) = M|vl*,

where M=M(H) satisfies M—~1 as H—1. We infer that

1 _ dist(ha(3), S)

—_— - 2
S T asiE sy M

This implies that

a8 7 00(1a(9) = 05 = M2 oo (),

for all points % in D.
Let B be a rectifiable path joining h,(%) to h,(5) in D, and let y=h_*(B). Then

ao(ha(®), ha(3) = [ o (14l
= [ eo(ha©)Laldl]

= LM [ op©ldl,
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where we have used part (a) and (18). Taking the infimum over y gives

qD(ha(f)s ha(y)) = L2M2qD(5€l’ 37)'
This holds for all h,£G,(H), hence for k', thus we see that
X, o o
(19) BED) = 4y (1), ha() = M*Lyo(: 9.

Consequently, h, is bilipschitz with respect to gp.
We next consider the maps g,. Let %=(z, )¢ DCCXR""%, z=F;(u,v) for
(u, v)€C with v=0. We have

g:(®) = (F,(AF7(2), 4*1)
= (g%(2), 1*1)
where we set g5(2)=F;(AF;'(z)). Let
d, = dist (%, S) = dist (z, J),
dy = dist (g,(%), S) = dist (g% (2), /).
Since z=F/(u,v), by Lemma 7 we see that
[v]*
M

where M=M(H)—-1 as H-1.
Now g5(2)=F(AF;'(2))=F;(Au, &), so

=d, = M|v|%,

I'Z’ =d, = M|~
Consequently, we have
A _dy _ yars

Observe that D=C;XR""2 i=0 or 1, where C; is a component of C\J.
By definition, gi€Gy(H). Therefore, applying Lemma 10 and (16) we conclude
that gjl¢, is L?-bilipschitz in the quasihyperbolic metric of C;, again where L,=
L,(H)-~1 as H—1. For all z, weC; we infer that

(%) = 10si) = gz = 22(2)
L% [dl = l(DgA(Z)) = IDg;,(Z)l = Llldl .
Using (20) we obtain
A".ac
T = (081(2) = 1Dgi ()] = LiMeae

Let h}: R"*>R""* be the mapping defined by h} (r)=21*t. Then I(Dh} (t))=
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|Dh} ()|=2% Thus, for %=(z, 1)€CXR""% we have

g;_(Z, t) = (gi(z), I(t))
which implies that

< 1(Dg,(®) = D (B = LM,

LiM?
at each point % in D.
It follows that
%, 7 ; ¥, 7
q___g: : D = 453, 2:0) = Lyan(, 9),

where L;=L,(H)=L,M*. Clearly L;—~1 as H-—1. Hence, g, is bilipschitz with
respect to the quasihyperbolic metric in D. Since any geG,(H) is of the form
glp=h,0g;lp we see that g|,is L,=M?*L,L,-bilipschitz with respect to the quasi-
hyperbolic metric in D. By construction L,=L,(H) satisfies L,~1 as H-1.

Since g, is a diffeomorphism, the linear dilatation of g; at X in D is given by

ngA()?)I =
— = =i M1
I(Dg, (%) '
Therefore, for %D, the linear dilatation of g is
up| L ED BN ), g, ()
o Jnin [g()—g ) 1(Dgs(%))
= [ M*4

Now, g is a diffeomorphism in D with linear dilatation bounded by LZLiM?*.
Then [V, 34.2] implies that g is K,-quasiconformal, with K,(H)=(LiL}M*""?
where K,—~1 as H-1. Since D was an arbitrary component of R™\S, we see
that g is K,-quasiconformal on R™\§. Furthermore, each g€G,(H) is absolutely
continuous on lines in R*, and the n-measure of S is zero. Hence [V, 34.6] implies
that G,(H) is K,-quasiconformal on R".

The following lemma was first established by S. Rickman for n=3, and was
later extended by Tukia. See [T 3] for details.

Lemma 12. The hypersurface S=JXR"™* constructed above is not quasicon-
formally locally flat. In particular, there is no quasiconformal homeomorphism h of
R” onto itself such that h(R*)=S.

We now give the first of our results.

Theorem 13. The group Go(H) acting on R" is an L-Lipschitz (hence K=L*-
quasiconformal) group with respect to the euclidean metric, where L=L(H) can
be chosen so that L(H)—~1 as H-1. For no quasiconformal homeomorphism
h: R">R" is the conjugate hoGyoh™' a Mobius group.
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Proof. We need only verify the last statement. Suppose Go=G,(H) is of the
form hoGoh~ where G is a Mobius group and h is quasiconformal. Using the
Bieberbach theorems, Tukia showed that the orbit of a point under the action of
such a conjugated group is the quasiconformal image of a hyperplane. Since the
orbit of the origin under the action of our group G, is S, which is not the quasi-
conformal image of a hyperplane by Lemma 12, we have reached a contradiction.

We conclude with our second main result, whose proof is the same as in [T 3,
p. 158] and is thus omitted.

Theorem 14. Let H>1. The group G,(H) acting on R"is a K-quasiconformal
group, where K=K(H) can be chosen so that K(H)~1 as H-1. The action of
G1(H) is transitive on S=JXR""? and on each of the complementary domains D of
R™\S. The domains D are Jordan domains in R" which are topologically, but not
quasiconformally, equivalent to B".

Remarks. It can be shown that the group G,=G,(H) is not isomorphic as a
topological group to any Mobius group acting on R™, for any m=0. See [T 3] for
a proof. Using results of Martin, we conclude that every discrete subgroup of rank
n—1 in the group Go(H) is not the quasiconformal conjugate of a M&bius group.
Hence there exist K(H)-quasiconformal, elementary, discrete groups acting on R”,
with K(H)—~1 as H—1. See [M, 3.8]. It is not known whether a non-elementary
group fitting this description exists.
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