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1. Introduction

In this paper we consider groups of uniformly quasiconformal homeomorphisms
acting on R'. One method of constructing such a group is to conjugate a conformal,
(i.e., Möbius) group by a quasiconformal mapping. A question raised by Gehring
and Palka [GP] was whether this might not be the only way, that is, if each uni-
formly quasiconformal group is the quasiconformal conjugate of a conformal group.
This question was answered affirmatively by Sullivan [S] and Tukia [T 1] for quasi-
conformal groups acting on subsets of R2. Later Tukia [T 3] exhibited, for every
n>2, a quasiconformal group acting on F which is not isomorphic to, hence is not
the quasiconformal conjugate of, a Möbius group. Tukia's example was modified by
Martin [M] to yield discrete, non-elementary (i.e., with limit set containing more
than two points) quasiconformal groups acting on R', n >3, which are not quasi-
conformally equivalent to conformal groups. More recently, Freedman and Skora

[FS] have produced a discrete group G of smooth quasiconformal mappings acting
on §3, where G is not even topologically conjugate to a Möbius group. Since each of
the quasiconformal groups mentioned above is a group with large dilatation, it was
a matter of some interest to obtain a quasiconformal group with small dilatation
which is not quasiconformally conjugate to a Möbius group. We modify Tukia's
construction to produce such groups. We demonstrate that, for each n>-3 and
K>1, there is a K-quasiconformal group acting on F which is not the quasicon-
formal conjugate of a Möbius group. Furthermore, we extend a second result of
Tukia, in that we exhibit for each n>3 and K>1, a Jordan domain in R'which
is homogeneous with respect to the action of a K-quasiconformal group and which
is topologically, but not quasiconformally, equivalent to the open unit ball B'.
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2. Definitions and notation

Let X and Y be metric spaces. An embedding f: X*Y is called bilipschitz
(or more precisely, L-bilipschitz) if, for some Z>1,

+ =lf(x)-f(v)l * Llx-vl

for all x,y€X, where we use euclidean notation lx-yl to denote the distance
between points x and y in an arbitrary metric space. An embedding f: X-Y is
quasisymmetric (or q-quasisymmetric) if there is a homeomorphism 4: [0, -)*[0, -)
such that

lf@) -fU)l = 4(01/(x) -f(u)l
whenever lx-yl = tlx-ul.If it is merely true that there is an H > I so that

(2) lf@) -f(y)l = H lf@) -f(u)l
whenever lx-yl=lx-al, we say/is aweakly H-quasisymmetric embedding. Clearly
every 4-quasisymmetric embedding is weakly 4(l)-quasisymmetric. Consider the
space ff of all homeomorphisms 4: [0, -)*[0, -). Let id denote the identity
mapping of [0, -) and for s>0, let N(id, s):$7€//: ltl!)-rl=s, 0=l=1/s].
The sets il(id, s) form a basis for the neighborhood system of the identity in the
compact-open topology on ff. We say/is s-quasisymmetric if f is 4-quasisymmetric
for some 4 in N(id, s). An embedding which is 4-quasisymmetric with q(t):t
is called O-quasisymmetric. Our terminology here conforms to that in [TV l, TV 2].
We denote the identity map on the space X by idr. When the context is clear, we
also write id, for the embedding of X into 7 given by idl(x):;s for all x€X.

If G is a family of homeomorphisms of a metric space X and if each g€G is
Z-bilipschitz, we say that G is an L-Lipschitz family.If, in addition, G forms a group
under composition, we say G is an L-Lipschitz group. We ca,ll G a unifurmly Lipschitz

family (or group) if it is an Z-Lipschitz farrily (or group) for some Z.
If UcR' is open and G is a group of self-homeomorphisms of U such that

each g€G is K-quasiconformal, we say that G is a K-quasiconformal group. If
every g€G is the restriction to U of a Möbius transformation, we call G a Möbius
groilp. A unifurmly quasiconformal group is a group which is K-quasiconformal for
some K.

If l: R'*R' is a linear mapping, then we set

lAl :6a4lahl, t(a) :6e lzal,

andwrite detl forthedeterminantof A.Let UcR beopen. If /: U*R'is
differentiable at xQU, the derivative of f at x is denoted Df(x) and the Jacobian
determinant of f at x is f (x,f).
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The notation B"(x,r) indicates the open ball {y€R" lx-yl=r} and we
abbreviate B":8"(0,1). Similarly, s'-l(x,r) is the sphere {yen"r b-yl:r}
and ,S'-1:,S'-t(0, t). By / we mean the closed interval [0, l] in R, while 1o:
[0, 1]n, the n-dimensional unit cube. C is the complex plane, which we identify
with R2. Depending on the context, we use either x:xr qix, or x:(xt,xr) to
denote x€Rz. The upper half plane in C is Qo:{z(C: Imz>O} while d}r:
{z€C: Imz=0}, thelowerhalfplane.Welet e:Cu{-} and [,:Ru{-}. For
AcRn, å,4 denotes the boundary of A and Ä denotes the closure of l, both taken
in R'. We write dist (Å, B) for the euclidean distance between sets I and B in Ra.

Let U be a simply connected region in C which is not the whole plane. Then
the hyperbolic metric hu on U is defined by

hu(rr, z) : inf ! r),uG)ldzl,

where ,1, is the Poincarö density in U and the infimum is extended over all rectifiable
paths 7 joining z, and z, in U. The Poincard density ,1, is given by

^a(f4))tDflz)l 
: - L..Im(z)'

where/is any conformal mapping of Oo onto U. In the case (l:dli, i:0 or I, then

ll
Äa(z): 

T",IA]- 
: 

dist(Z, au) 
.

If U is a proper subdomain in R', the quasihyperbolic metric qu of U is defined
using the density qr,

oa(x):"#rrl
For x, y€U we let

qa(x, y) : ,\f I rpr6)ldl
with the infimum being extended over all rectifiable paths y joining x and y in U.
Note that if U:Qi, i:0 or l, then ev:ha. We shall often write simply q or h
in these cases.

3. Extension of weakly H-quasisymmetric embeddings of R into C

In this section we establish an extension result we shall need in order to control
the dilatations of the groups constructed in Section 5. We appeal to results of Tukia
and Väisälä, as well as to a result of J. Vaaler and the author [MV].

An embedding I R*C is normalized if /(0):0 and /(1):1. We now
establish
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Theorem l. Let I R*C be a weakly H'quasisynmetric embedding. Then f
is s-quasisymmetric, where s:s(H) canbe chosen to satisfy ,v*0 an H*1.

Pr oof. By ITV 1, 2.1 6l f is 4-quasisymmetric for some homeomorphism 4 depend-

ing only on ä. Let s(ä) be the smallest s so that 4€N(id, s), i.e., s(ä) is the smallest

s so that any weakly -El-quasisymmetric f: R*C is s-quasisymmetric. Assume

that s+'0 as ä*1. Then there exists a number s((0, 1/6], a sequence ä;11,
and a sequence of embeddings fi: R*C so that eachf.is weakly är.-quasisym-

metric, but such that no fi is 2s-quasisymmetric. Appealing to [TV 2, 2.47 we can

choose points ct;,bi,x;€R with

lai-xil _
lbi-x;l

for which

,t : wl?')_ -fiy:ll >,j + §.'t lf,(b,)-fi(xyr

Performing auxiliary similarities we are free to assume that at:l:ft(a) and

tbat xt:U-f.(x;). Consequently, we have

I r 1l
l4i-:',€P'TJ

and

+: rT > rj*s.lfi(b)l "r

Now this gives lå;l=llti€.Is,l/sl. We may pass to a subsequence and assume that

{ör.}i=, converges to å where lål€[s, 1/s]. Eachfl is normalized, so according to

ffv l, 3.4 and 3.fl we may further assume that fi*f uniformly on compact sub-

sets of R, where/is a quasisymmetric embedding of R into C. Now for x, y, a fixed
in R with lx-yl=lt:-yl we have

lfi@)-fiU)l - s.TA=I@ = trr'

Hence, taking the limits, we obtain

lf(x)-fU)l - .,

ffi=''
Thus/is weakly l-quasisymmetric and normalized. Now a theorem in MVI asserts

that f is the identity. We conclude that the subsequence "4.*idn uniformly on

compact subsets of R. Therefore

rre [s,+l ,

r. I I I r. I
lir Er 

: fr : ffir : Jis ffi : 
J:T'i'
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However, this implies that

I -. .. 1 1

fr : JiT'i = JiT 'r*' 
: 

JiT tart 
+' : 

to1 
*''

Since s>0, this is a contradiction. We conclude that s(ä) can be selected so as to
ensure that s(ä)*0 as ä*1.

Corollary 2. Let I R*C be a weakly H-quasisymmetric embedding. Then

f has an extension to a weakly K-quasisymmetric and K-quasiconformal homeo-

morphism F: C*C, where K:K(H) can be chosen so that K*l as H*1.

Proof. ByTheorem l/is s-quasisymmetric, where s:s(ä) and s*0 as ä*1.
Using [TV2,5.4] we see that there exists so>0 so that, if/is s-quasisymmetric

with .f=so, thenf has a or-quasisymmetric extension F: C*C. Here or:or(s)
may be chosen so that or*0 as s*0. Choose äo so that for all H=Ho, s(ä)=sr.
Then for H=Ho, F is o1-quasisymmetric, where or:6r(ä):or(s(f))*0, as

H*1. By [TV2, 2.6], FisK-quasiconformal and weakly K-quasisymmetric for
K:K(o) satisfying .K(oJ*l as o1*0. In other words, we conclude that/has
a weakly K-quasisymmetric and K-quasiconformal extension F to C, where K:
K(H):g1or(ä)l may be chosen to satisfy K*l x H*1.

4. The embeildings/anil Fy

Fixan integer n>1. We construct, correspondingto n, an embeddingl R*C.
If we wish to emphasize the dependence of ;f on n, we write f:fro. To begin, we

define a sequence of embeddingsfi of f:[0, l] into C. Restricted to .I,/will just be

the limit of this sequence of embeddings. Set

1

s, : Z-(1+3-9.

We define the embeddingsfi, i:0,1,..., inductively. Take fo:idr. Subdivide
linto four segments 101, where Fo:l(k-l)14,k141 for fr:l,2,3,4. Note that 1;1

is of length 1/4. We definefi so that Åhg is affine and fi(I), which we denote ,Ir,
is an arc consisting of four line segments of length s,. We specify the images of
the endpoints of { for k:1, 2,3,4, as follows:

: §,,, f,{+): +(1+ i3-ntz),

1 - sn, and fr(l) : l.

See Figure 1.

We proceed to the inductive definition. We assume fr has been defined on

I:l)f=r(, where {:(/-l)l4i,ll4rl. Define 4.+r so that fr*rlp*' is affine for

,å(o): o, .,6 (+)

,[å) :
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0 I -sn
,fr?)

for n=.1

J* for n

1-§o

fo?) ,fr7)

J,F

J: for n :3
Figure I

l:1,2, ...,4j*' and so that for l:1, ...,4J

r,.,(H*):f,W)

r,.,(Nf,#) : r,(ä *,. [r (*) - r,(+)]

r, ., (ff Jz) : +lr' FÅ * r, (+) * i3 - n z (r, (*)-, (ä 
J l,

t,.,ff#l) : r,(ä -,. lt' (*) - r' (H;J,

"jft+JL
,åJq, f^a'? {* "}\.*ffJ \-.ft*
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and

r,.,(ff) : r, *,(*J : t,(+)
Then [""r({):(s,)f,(1), and fj+LQ» for /:1,2,...,4t is a rotated, and per-

haps translated, copy of (s")fi(I). If we denote fi(I)by il,we see that the dilate

so,Ii is a subarc of Ji+L. We note that maxr€r lfi*r@)-fi(x)l=(s,12)tJ-n!z
which implies that {r.} is uniformly Cauchy on L Hence {[] converges to / uni-
formly on d where f: I*C is a continuous mapping. As/is easily seen to be injec-

tive, we conclude thatfis an embedding. Write f(t):t*. Some examples of ./*
are shown in Figure l, along with examples of[(/).

By the mannerin which we definedf,., we see that s,./* is a subarc of "/* and
that "I* is a subarc of (l/s),I*. Set

We extend f to R by setting

r -U,=, [+J' tr*u(-./*)I.

By construction, for />0 and x satisfying 0= y=4-', we have

f(4,x) : C)' f(x).

f(x4'x)- t(*)' f@),

ros(å,1 +31)

for x€L The resulting map, still called / is a homeomorphism of R onto J and

satisfies

(3) mqrl/(x)-xt = (fl l-'r'.

For n>l a fixed integer, we define O=so=l by

dr: los+ )

and we set &(x):1" for x([0,2]. A computation yields

Lemma 3. The mappings g, com)erge uniformly to the identity mapptng on fO,2l
(N n+@.

Next we establish some significant estimates.

Lemma 4. Let 0<e<1. There exists N>1 sa that f:f6 satisfies

(4) 1_r, =v@)-fu)l = 1I u- 
lx-Ylo" l-e

for all x, y€[- 1, 1], wheneaer n>N.
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Proof. Let x,y(l-l, 1l with lx-yl=4-4. Without loss of generality, assume
y=x. By (3) and Lemma 3 we may find N so that f:f<o satisf.es

,ätS,, lf(x)-xl - fi
and so that for all x,y(l-l,ll

llx-tl'"-lx-yl= L
whenever n>N. Then

1f@) -fU)l - lf@) -xl+lx - yl+ly -fU)l
lx - ylo^ lx - yl"^

: lx - ylo" + el48 - 2e 148= ;r-1* * 1*-r,

: r' 48lx-y',"

By the triangle inequality,

ly -f(y)l + lf$ -f@)l + l/(x) -xl = lx - yl.

This implies that

lf@) -fU)l - lx - yl -Qel48)|,.,r,r'= 1*-r1*

1

1-e '

lx - yln" -Qela8)
lx - yl""

> 1-e.

We have shown that (4) holds for all x,y(l- 1, 1l with lx-yl= -a. We must
also show that it holds for lx-yl=4-4. We consider two situations: Case (a):
x and y are both in .I (or, what is the same, by symmetry, x and y both in -I);
Case(b): x€-I and y(1. Wemayagainassumethat x<y.

Assume we are in Case(a). Then xelf for some /. Since lx-yl=4-4, either
fiIf as well, or y€It+r. Suppose first that ye ll+r. At the fifth stage of our con-
struction, .I,a is subdivided into 4 segments, say

If = I*U Il**rU I*+zU I*+s.

Similarly, .If*, consists of the next four segments. The following situations might
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conceivably arise:

(i) x€I*+B

(iD x€ lfl*,

(iii) x€ I*+t

(iv) xe Ifl

and y€U; :uli,*j.
and ,y€ U;: u lfn* i.

and y€ LJ;: r Iå*i.

and !€ lfl*o.

Only in the situation x€lf;*, and y€lfl*n do x and y lie in adjacent segments of
length 4-5. Suppose any of the other possibilities occur. Then lx-.yl=4-6. Now,
by the construction, l7tfvtr4*r) is an arc consisting of two line segments, each of
length (s,)a. Furthermore, fn(Ifvlf*r) is a rotated and translated copy of fo(Ilwl§,
fLgru 4), or fn(Ilvlft). Since fr is affine on each Il, we may thus find points

x1 andy.in /i:Ur1:, 1r4 with lxr-yrl :lx-yl and lf(x) -fn0t)l:lfn(x)-i(y)|.
Hence, we might as well consider x and y in 1i. Recall that L($:(s,)tå(|
and 7g):(s,)3/(/). Thus there exist x*,y*€/ with lx*-y*l:4a$-ylz4-a
and I f(x'l -f(y)l :(s,)B 

| /(x*) -f(y\|. This implies that

Since (4) holds for the final expression, it must hold for the first.
We have not dealt with the case x(Ifl*, and yilfi*n which occured in (i) or

the case xQIt and fiIra. We handle these with one argument as follows. In both
instances there is a largest integer ft so that for some h, xCIf and yEI!*r. At the
next stage, at least one interval of length 4-(k+1) must lie between x and y. Again,

the image of lfvlf*, is a rotated and translated copy of the image of lfvll, t\wl!,
or l§vlf;, so we may consider x and y in {-1. Since/({-l):(s)t-f(I), there are

x*, y* €. I with lx* -y*l - 4e-I fu - yl > 4- a and | /(x) -/(y)l : (s,)o-' I f(**) -f(y\|.
Consequently,

(r,)o-'lf@")-f(v\l l"f(x.) -f(v\ltf@)-fu)tw

tf@)-fu)tw

tf@)-fu)tW (4-t lx* -y*l)o"

lx* - Y*1""

:ry

We see that (4) holds for the last term, thus holds for the initial term as well.
Finally, consider Case(b). Now x(-1 and y€L Then x(-Il and yil|

since lx-yl=.4-4. At the fifth subdivision of -IvI either there is a segment of
length 4-6 lying between x and y or x€-Il and yeII. If lx-yl=4-u, then

we have f(-Ilvll):(s,)3/(-1u1). Hence there are x* and /*€-lul with

lx*-y*l : 4slx- yl>4-4, and

(s,)'l(x*) -f(v*)l lf@*) -/(v*)l

Again, (4) holds for the last expression so it must also be valid for the flrst.
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If x€ -{ and y{1, then a similar argument leads to a largest k so that
x€-I! and yQIl. The same argument is made using /(-4u{):(s,)e-'.f(-Ivf)
and the result follows.

Thus, for all x,yQl-|, 1l we have

l_c< lf@)-fu)l - 'l
lx-Yl|." : l-e'

provided that n>N.
We next extend this result to the entire real line.

Corollary 5. Let 0=e=1. There exists N>l so that f:f61 satisfies

r _n < lf@)-fu)l = I
lx-y\," : 

I -e
for all x, y€R, wheneuer n>N.

Proof. Using Lemma 4, choose -l[ so that the estimate above holds for all
x,y€l-I, ll whenever n>N. Suppose x,y§I-l, 11. We may assume lxl=lyl.
Then for some k>1, we have x*,.y*€[--1, 1] with y:4ky*, x:Akx* and f(y):
0 I s )kf(y*), f(x) : (t I s )kf(x*). So

(1/s,)o lf@*) -f(y*)l lf@*) -/(y*)lm:6
Hence (4) holds for/on R.

It is a direct consequence of (4) that / is weakly 1/(l -e)'z-quasisymmetric.
We summarize the foregoing in

tf@)-fu)t
lx-yW :

Lemma 6. Giaen

f: R*C satisfying

(5)

H=l there exists a weakly H-quasisymmetric embedding

1= tf@)-f!ilt 
= HH: W-vl"

for all x andy,where a:a(I1)((0, L) canbe chosento satisfy a(H)*l as H*1.

Proof. Givenä,choose 0=e<1 sothat llQ-e):ptlz<.H. Applying Corol-
lary 5 for this e:e(ä), we may fix n:n(H)>ll(H- l) so that .f:fot satisfies
(5) with d:&n. Then a,:s(I|*t as H*1, and/is seen to be weakly.I*quasi-
symmetric.

The Tukia extension Fy. Fix f/>1. Using Lemma 6 we find a weakly I/-quasi-
symmetric embedding /: R*C satisfying 5. By Corollary2, we may extend/to
F, a weakly K.(ä)-quasisymmetric and Kr(I/)-quasiconformal homeomorphism of
C to itself, where Kr(.EI)*l as ä*1.

We actually desire a modified extension, one of a particular form. This exten-
sion is originally due to Tukia [T 2]. Remember that / hence F, is normalized.
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Let Cs be the component of \f(R) such that the triple (0, l, -1 describes

the positive orientation of \Cs with respect to G. Denote the remaining component
by Cy Let At be the homeomorphism mapping O6 onto eo which is conformal in
Oo and fixes 0, l, and -. Note that /(R):F(R) is a Kr(I1)-quasicircle.

Consider the mapping AlloFloo. Since ,4;ro F(Qo7:a;r(Co):go, we see

that AVtoF is a K.(ä)-quasiconformal self-mapping of Oo. By a well known
theorem of Beurling and Ahlfors IBA), g:lVloFl*:7;r o;fis a ft-quasisymmetric
self-mapping of R, where k:k(K):k("ffl can be chosen so that k(H)*l as

H*1. Then [L, Theorem 5.2] asserts that there is a Kr(e)-quasiconformal self-
mapping B, of Qs which extends g. Furthermore Kr(H):6rgr(ä) can be chosen
so that Kr(II)*l as ä*1. We remark that Bo is a difeomorphism on (2s, and
is given by

Bn@*iy) : f,la(x, y)+fi(x, y)l+ila(x, y)-§(x, y)J,

where a(x, y):ll7@+ty)dt and §(x,y):l'og@-ty)dt. We refer to B, as the
Beurling-Åhlfors extension of g. We also note that the partial derivatives of a and
p satisfy

(6)
d*(x, y) : 

|U(x * 
y) -g(x)I, fi*(x, y) - |fr(x) - s@ - y)1,

ur(x, y) : 
|U(x* y)-a(x, y)1, frn(x, y): itrÖ-»-fi(x,y)I.

Now, set Fs:ApBo. This definition is due to Tukia 1T2,p.921, hence we
refer to F, as the Tukia extension of I (In [T 2], Bn:ll2la+Fl+il2lu-81.
All of the results we shall need from [T 2] remain valid despite this difference in
the imaginary part of Br.) We observe that Fr: Qo-Co is Kr(ä)-quasiconformal.

We define F, on Q, in an analogous manner to obtain Fr: C*C, a K2(H)-
quasiconformal homeomorphism with Kr(U1*1 as If*l. Note that F, is a dif-
feomorphism on C\R.

We now establish several lemmas. We remark that Tukia has proven similar
lemmas in [T 3], but made no attempt to obtain estimates of the size of the constants
involved. Since we wish to control the dilatation of the groups we shall construct,
we include the proofs of our lemmas to demonstrate that the constants can, in fact,
be controlled.

We begin with

Lemma 7. Letf be aweakly H-quasisymmetric embedding of Rinto C satisfying
the conclusion of Lemma 6, let a:a(H) as in Lemma 6, Iet F, be the Tukia exten-
sion of f, and let J:f(R):Ft(R). Then there is a constant M>l such that the
double inequality

(7) #= dist (Fr(u*iu), J) = M lt:l*
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holds for all u,aeR. Furthermore, M:M(H) can be chosen so that M(H)*|
as H*1.

Proof. Since F, is weakly K2-quasisymmetric on C, where Kr:Kr(lt)*1 ag

ä*1, we have

I F y Q\ - F /w)l = Kzl F, (z) - F y Q)l

whenever lz-wl=lz-tl. Hence

dist (rr(u +, o), J) = lF|@ * iu\ - 4@)l
= KrlFl@*o)-F1@)l

: Kzlf@*tt)-f(u\l

= Igälol",
bv (5).

On the other hand, let s:f(x)€J be a point with dist(Fr(u+ia),J):
I F x@ + ia) -zl. Then l(u + n ) - xl=l(u + iu\ - zl, whence

dist (+ (u + ior, r) ::r 

r? rrr..:j_l, o,

= filrrtu*io)-F1@)l
I

. 
filFr@+io)-f(u)l

=(fl'va+»-r(u)l

= [+)'E)r,r'.'\x) \H)tvt '

again by (5). Hence (7) holds wtth M(II):HK?, and thus M(II)*| as I/*1.
We next have:

Lemma 8. Let f be a normalized weakly H-quasisymmetric embedding of R
into C. Let F, be its Tukia extension. Then there is a constant Lo>l so that

(8) *=,\r+(*.il) = l"o(*.rå)l = t
Furthermore, Ls-Ls(H\ may be chosen so that Lo(H)*l as H*1.

Proof. The existence of .Lo follows from [T 2, p.931. We need only show that we

may choose the constant so that Lo(A*l as ä*1.
Suppose that Lo(H) cannot be so chosen as to approach I as ä*1. Then

there is ä>0 and a sequen@ of mapsfi which are normalized weakly ä.-quasi
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symmetric embeddings of R into C with H^*l such that either

(x)

for all m, ot

(* *)
for all m.

Assume first that (x) holds. The sequence {å} is a compact family by [TV l,
p. 1091. By passing to a subsequence we are free to assume f**.f*, where f is
normalized and weakly l-quasisymmetric. We conclude that f(x):x for all x
in R [MV, Corollary 2]. Note that å(R):F,-(R) is a K(ä.)-quasicircle, where by
construction K(.FI,)*1 as H**1, or, equivalently, as m+@. It follows that
the corresponding mappings Ar^ are conformal homeomorphisms for which we

may choose [K(ä.)]'z-quasiconformal extensions to C (for which we retain the nota-
tion Ar^). According to [V, 20.5] the family {At^\ is a normal family. By passing

to a further subsequence, we may assume Ar^-A uniformly on compact subsets

of C. We infer that r4 is a l-quasiconformal, normalized self-mapping of C, whence

,4 is the identity mapping. Consequently, Aj)"f^ converges to the identity mapping
on R. Set h^:AV)of^ and h*:/-toÅ:idn. We see that

where Bo_ denotes the Beurling-Ahlfors extension of h^. We observe that, as

ln+@,
Ft^: Ay^oB1r^* Ft-= idlc,

where the convergence is uniform on compact subsets of C. Using (6) and the fact

that lDBh@)l:l0B^(z)l+l6nop)1, we infer that

Because the mappings Ar^are conformal in Oo and converge uniformly on compact
subsets of C to id", we have

lor,^(å.rl 
>,+ö

r[»r,,^(+.å)] <1 -ä

Bn^[å+ r)* Bn*{+.+): +++,

J,* lorr-,[+.;fl 
:l',r-(+.'+)l : 1

lor,*(+.å)l 
: fiprlor,^(+. +) ,l

: 
fii31l'n,^[ur-,(å.+)) 'DBn^(+. ;) 'l

: 
ln,^F,,$*-J)l l"*-$*+)l ,
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and where l' denotes the complex derivative of l. Now

ln,^Fr^(å. å))l tln' (! * 1)l:,
Therefore,

#xlo',^[å.å)l :'
This means

1+ä = J,*l"a-(+41 --||o,,-(å*å)l : ,,

which is a contradiction.
Finally, assume that (x x) were to hold. Then

,fo,,^(+$) =,-ä,
and proceeding in a manner similar to that above, we could assume fi-*f*:idx,
Ar^*A:idg, and Fr**Fr_:id". Then

,foo,^(+.+)) : filelor,^e.il ,l

: 
fil'$ lon' ^('*(*. +))' o'o^(+. +) rl

: ln'l' ̂ E. +\ l' ["''- (+. +))
We infer that

Jvg'['+-(+.+)) :'f",*(]*å)J : 
''

again a contradiction. Thus, it must be true that we are able to choose Zo so that
Lo(H\-l as ä*1.

We shall also need to know that F, is bilipschitz in the quasihyperbolic metrics
of Oo and O..

Le mma 9. Let f: R * C åe a weakly H-quasisymmetric embedding as in Lemma 6,
let F, be the Tukia extension of f, let ,f :/(R) and let Ci, i:0 or l, be a component

o/ C\.r. Then there is a constant, L1:L:(H)>|, so that

(e) ry=q",(Fr(z),ri(r) =L.q@,w)

for all z,wQQo when i:0 orfor all z,w€Qt when i:1. Moreouer, h(H) may
be chosen so that h$I)*t as H*1.
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Proof. We carry out the proof for the case Fr: Qs*Cs. The other case is
done in a similar manner. Let u,o€Co. Then

4co(u, o) : i4f f ,*Qcods

where the infimum is extended over all rectifiable arcs y* joining u and a in Co.

Suppose we are able to establish that

(10) oQ) ? tr,/r\4h@)q(z)sQcovre))=ffi
where .L.(ä)*1 as ä*1.

Lety* be a rectifiable arc joining F/z) and Fy(w) in Co. Let y:F;,(y*)cQo.
We see, using (10), that

q""(r1Q\,4(r)) 
= f r*Q"odt

: frr.rQ"'d'

= f ,kc,"F)lDFlits

= h($f ,ods.
Taking the infimum over 1, gives the right-hand side of (9). Similarly,

q(r, w) = ! ro its

: 
'f ';"r*Q 

dt

= {,.1 o r;,(u,)l e(^trr (w)) ldwl

: f -*- -J---T p@;r(w1)pw1.- J * tlDFr(ry,(r))L

Again using (10) we have

q(z,w) = Lr(H) [*pg,(w)ldwl

and taking the infimum over 7* gives the left-hand side of (9). In the above we have
used the fact that ,F, is a diffeomorphism off of R.

Thus it suffices to show that (10) holds for each zQQo. Ftx z:x*iy€Oo. If
E: R*R is an increasing affine map, we denote by g as well the unique conformal
affine map extending E to C. Explicitly, we consider 9 defined by

q(w) :2yw*(x-y)
for rry€R. Then q(O)-x-y and E(l):x*y. Let rlr: C*C be the conformal
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affine map such that t(f@-y)):O and t(f@+y)):t. Set g:ry'olog. We
observe that g is a normalized weakly I/-quasisymmetric embedding. By IT 2, p.921

Thus 
Fr: Fgoloq = tlto FtorP'

D F 1 (x * i y) : e 11 
-t (r, (l * )), o r, (* . +) 

. D E -r (x * i y).

We note that both DL-t and, DE-l (which are constants) are similarity maps,
Dry'-1 multiplies by If(x+y)-f(x-y)l and Dg-r multiplies by ll2y. Thereforc
we obtain

or,(!*|): v6-., »tDF1@*iil.
Applying Lemma 8 to g we arrive at

(u) WWfl 
= 9DFr(» < loFr(z)t =Lolf@+!Y@-,)l .

By Lemma 6,

ry =lf(x+y)-f(x-y)l = Hl2yl'.

Thus

(12) ffi =\DFy(4)=lDF1G)l=(l4"z=lur'i .

Recall oc,(Fy@)):l/dist(r'r(z),,/). using (7) we obtain

dW=s""(+(,))=#,.
Combining the above line with (12) we have

q.,(rr(z))loF1Q\l = 
(M»l:rD 

.

Consequently, since lllyl:p(z), we have

(r3) ac"(Fr(»=ffiPe(z)=ffine»
which is the right-hand side of (10), where I,.=ft-"HLoM. Additiona§,

(14) ac,(Fr4)) =#

=*(6^)hHH
- I (--s!,)-l
- (Z'-nHLoM) | t(DFtk)) )'
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which gives the left-hand side of (10), where aga;rn Lr:Ir(A:Z'-'HL,M. The;n

(13) with (14) gives (10). We know that 2r-e!{l1a[+l as -E[*1. We apply Lemma 8

to see that Zo may be chosen so that Lr(H)*1 as "ill*1. We conclude that.Lr(ä)*1
as ä*1.

5. Construction of the groups

In order to produce the groups mentioned in the introduction, we essentially

duplicate the steps involved in Tukia's construction. However, we have now acquired

enough additional information to allow us to control the dilatation of the resulting
groups. We remark that while we work in Rn, all of the mappings involved fix the
point *. Hence all of our results extend to Rn.

Let G'o be the group consisting of all translations of C parallel to the real axis.

Let Gibe the group generated by Gi and by the maps §r: C*C, wherc §^(z\:)2,
for 1=0.

Fix f1>1. Then Lemma 6 gives I R*C such that / is weakly ä-quasi-
symmetric and satisfies (5). Let F, be the Kz(.F/)-quasiconformal Tukia extension

of/and let ,r:/(R).
We define groups which depend on Fy, hence on ä, as follows. Let

G';(H) : Ff G6o Fi', Gi(A : ProGio F;1.
Then we have

Lemma 10. (a) The group G;(n acfing on C is an Lr-Lipschitz group with
respect to the usual metric, where. Lz:Lz(H) can be chosen so that Lr(n1*1
as "EI- 1.

(b) Gi@) ,s a Kr-quasicoffirmal group

is restricted to a component Ci, i-0 or l, af
with respect to the quasihy"perbolic nxetric Qc

be selected so that Ks(H) *I as H *1.

Proof of (a). We first show that there is an Zr>1 so that if S€G\(H) ana
z€C\"r then

I

E = t(Dnk)) =lDnQ)l 5 Lz.

Let S«i(H\ Let z,w€Fy(Q):C1, f:0 or 1. We have g:progroFrl where
g#Gi, hence is conformal. Thus

111

actw on C. If the action of G'{(H)
CV, then G'i(H) is a Lipschitz group

of Ci. Furthermore, Ks-Kt(f| cnn

( 15)

( 16)
1

E 8c,(2, w) = qc,(s(r), g(w)) = L?Qc,(z,w),

where we have used (9) and the fact that conformal maps are isometries with respect

1s qat. We see that g is ll-bilipschitz in the quasihyperbolic metric of C;, where

Lx:\(H)*l as ä*1.
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Let z€Cr. Then z:Ft@+ta) for u+ia(Q;, whence SQ):FÅ(u+a)+ia)
for some a€R. An application of Lemma 7 gives

#. = dist(Fr(u+a*io), J) = Mlul,

and

#. =dist(4(u +, o), J) = Mlol,.

As a consequence, we obtain

I = dist(4@+a+io), J) < M2
M2 - dist(Fr(u*iu), J)

From (16) we have

1

fi4",Q,w) = qg,(sQ), g(w)) = Lfiq",(z,w).

This implies that

#m:'iY,ffi=^WW#
=nmWffi
=,je#:_+:#5

lf z is a point where g is differentiable, i.e., z{J, we see that

1 I .= t(poQ)) 
= lpoQ)l _r? 1

4N@ =TistGOTJ =?i*lsmf ="'TE6T'
So, at all points z(§,

# = \Ds(z)) = | D,(z)l = LIM z.

It follows that (15) is true with Lr:77742.
We know F1, hence g, is quasiconformal. Consequently, g is differentiable

a.e. and is absolutely continuous on lines. Since (15) holds a.e. in C, it follows that
g is .ta-bilipschitz in C. Furtåermore, Lr:Lr(/{)*l as H*7, and part (a) has
been proved.

Proof of (b\. Let S«'l(H). Then g:FrogroFjl, where gz(Gi, hence is
conformal. Since F, and Frl are Kr-quasiconformal, we see that g is Kr-quasi
conformal, where K1:KZ. Hence fs:Ks(ä)*l as ä*1. An argument similar
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to the one used to obtain (16) in part (a) shows that

qc,(z,w) 
= a^ (o(z\ o(w)) 

= IåQ",@,w)
4 - YC1\6\-'lr 5r

for all z,w€Ct, i:0 or 1.

We now construct the desired groups. Fix n >3 and a>0. We regard R'as
R2XR,-2-CXR'-2 andwriteelementsin R'as i:(z,t) with z€C and r€R'-z.
Define maps ho and §r of R" for a€R' and ,1>0 by

fr,1*1 : itro, §^(2, t) : ()uz, ).nt),

We deflne groups ds and d, of affine mappings of R' by

Gr: {fr,: d : (ar,O, ag, ..., a), a;€R}

d, : dt(o) : the group generated by do and {§x: t = 0}.

Then each g€4 is of the form g(z,t)=(),zta,1t+b) for some l.=0, some

a€R, and some ä(R'-2.
Now take E>1. Let /: R*C be a weakly ä-quasisymmetric embedding as

in Lemma 6 and let a:a(H) be as in the same lemma. Then Gr:d.(d):d1(4.
Set 9:FtXid*,-,: CXR'-2-CXR'-2, where as before, F, is the Tukia ex-

tension of I Define
ho: 9okoo9-1, gt : 9o§P9-l

for a€Rn and 1>0. Finally, set

Go(H) : ToGoofr -1, Gr(H) : I oG:o 9-1.

We observe the following commutativity relations between hoand g^:

gtohoo gIL, for a : (at, 0, ..., 0),

gtohuo gIL, for b - (0, 0, br, ..., bn).

Lemma 11. (a) The group Go(H) acting onR" is an Lr-Lipschitz group with
respect to the euclidean metric. Furthermore, Go(H) acts transitiaely on the irwari-
ant set,S:./XR'-z. Here Lz:Lz(H) canbe chosen to satisfy Lr(n1-1 as H*1.

(b) fhe group Gr(H) is a Kn-quasiconformal group acting on N. The action

is transitiue on S and on each componenl o/ R'\^S. If the action of G{H) is restricted
to o component D of R\,S, then GIQI) is an Ls-Lipschitz group relatiae to the

quasihyperbolic metric in D. Additionally, Ka:K{H) and lo:2r917 can be

assumed to satisfy Kn(I/)*l and Lr(H)*l as H-1.

Proof of (a). Using Lemma 10(a) and the definition of G'(II), we see that

CcGo(H) is .Lr-bilipschitz in the euclidean metric. Now if §:,IXR'-2, then do is

transitive on 9-r(S), hence Go(H7:groGoofi-L is transitive on ,S.

113

(17) { h^' -
1h7,6 -

We now have
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Proof of (b). Let D be a component of R\^S. Then ,S and. D are invariant
under the action of Gr(Il):foGrofi-r. It is evident that d, acts transitively
on T-t(S), which implies that Gr(Ifl is transitive on §. Furthermore, d, is transi-
tive on g-'(D), so that the action of Gr(ä) is transitive on D.

An arbitrary §(Gr may be written as §:hoo§^, for suitable aand,l. This
follows from (17). Accordingly, C€.GL(H) is of the form g:11oog^. To see that
each glr:hoogtlo is bilipschitz with respect to the quasihyperbolic metric qr, it
suffices to show that g^1, and h,lo are uniformly bilipschitz with respect to qo,

For holo we have, by part (a),

ry =- fi,(§)-h,(fl]= Lzln-Il

where 1, i€D and Lr:Lr(ll)*l as H*1. Write *:(a I)€CXR'-2 and
z:F1(u,r) with (u,a)qC, olo. Then

and
dist (tr"(X), S) : dist (Fr(u* aL, t)), J),

dist (t, S) - dist (2, J) - dist (Fr(u, u), J).

By Lemma 7 we know that

#= dist (Fr(u*at, u),/) = Mlulo,

and

W= dist (tr(u,u), J) = Mluln,M _\'

where fuf -M(H) satisfles M*l as H*1. We infer that

I

-
dist (4,1;;, s)

=M2Mz - dist(.t, S)

This implies that

(18) $nrp,tr))=or(*) =MzaD(h"(*)),

for all points * in D.
Let P be a rectifiable path joining h,(i) to h"(!) in D, and let y:1-r787. Then

yo(h,(t), h,(y)) = I u so«)l dil

= {,qr(h,(O)Lrld1l

E LzM' f ao($ ld]l,ary
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where we have used part (a) and (18). Taking the infimum over y gives

o »(h "79, 
h 
"(») = In M' q o(i, ».

This holds for all h,€Go(H), hence for ft;l, thus we see that

(1e) #* = qo(h.(*),h"(r)) = MzL2qp(*,i).

Consequently, hois bilipschitz with respect to qo.
We next consider the maps gr Let f;:(z,t)(DcCXR'-2, z:F1(u,o) for

(u,u)(c with o+0. we have

el*): (Ft],ryt(», ).,t)

: (g\(z), )"t)

where we set g!(z):FyQ,FV'@\). Let

dr : dist (*, S) : dist (2, "I),
dg : dist (gr(*), §) : dist (s\@), J).

Since z: Fr(u, a), by Lemma 7 we see that

#- = it,= Mlol,,

where M:M(ä)*l as lf*l.
Now gj(z) : rrQ.F;t (z)): F r().u, ),a), so

ry: = it,= Mp.ul,.

Consequently, we have

(20) L=!=^"r'.M2- dr-
Observe that D:CiXR'-2, j:0 or l, where C, is a component of C\./.

By definition, gi€GiUI). Therefore, applying Lemma l0 and (16) we conclude
that gjf 

", 
is Zrz-bilipschitz in the quasihyperbolic metric of C;, again where /,.:

h(H)*l as ä*1. Fo1 all z,wQC, we infer that

+(*) = 
qD si(4) = | D gik)t = L?l*).

Using (20) we obtain

# = 4o gf (z)) = | D slv)l = L?M 2t''

Let h!' Rn-2+R"-2 be the mapping defined by hl(t):14/. Then l(Ohi@):



116 M. Jra.N McKEnarr

lDh!(t)l:L Thus, for *:(2, r)€CXRn-8, we have

g{2, t\ : (g\(z),hi!))
which implies that

# = \og,(x)) =lDg^(*)l 
< L?Mz}un'

at each point .i in D.
It follows that

q»(i,» 
= a^(s,(i\.et(») = hqr(*, i),I* - aD\6,i'\*') 6t

where Zr:;.r(H):LtMa. Clearly Za*l as ä*1. Hence, g, is bilipschitz with
respect to the quasihyperbolic metric in D. Since my S1G{H) is of the form
glo:hoo{tlo we see that gl, is Lo:l'[z7rZr-bilipschitz with respect to the quasi-

hyperbolic metric in D. By construction Lr:Le(H) satisfies La*l as .ä[*1.
Since g, is a diffeomorphism, the linear dilatation of g, at I in D is given by

)W=Lltr4.
t(og7@))

Therefore, for fr€D, the linear dilatation of g is

ti*.,.-[ r"TfrL,lg(;t)-go)l )- ,, lag^(*)l,-.'Pt7,;gp)=m)="@r@
= L\IÅML.

Now, g is a diffeomorphism in D with linear dilatation bounded by LlLlMa.
Then [V, 34.2] implies that g is Kn-quasiconformal, with &(ä):(LZLIM)"-1
where Kn*l as I/*1. Since D was an arbitrary component of R'\,S, we see

that g is Ko-quasiconformal on R\§. Furthermore, each g(G1(r0 is absolutely
continuous on lines in R', and the n-measure of ,S is zero. Hence N,34.61 implies

that Gr(H) is Ku-quasiconformal on R'.
The following lemma was first established by S. Rickman for n:3, and was

later extended by Tukia. See [T 3] for details.

Lemma 12. The hypersurface §:./XR'-2 constructed aboae is not quasicon-

formally locally flat. In particular, there is no quasiconformal homeomorphism h of
R onto itself such that h(Rn-t):S.

We now give the first of our results.

Theorem 13. The group Gs(H) acting onR" is an L'Lipschilz (hence K=Lz'-
quasiconformal) group with respect to the euclidean metric, where L:L(H\ can

be chosen so that L(H)*l as H*1. For no quasiconformal homeomorphism

å: R'*R' is the conjugate hoGooh'L a Möbius groilp.
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Proof. We need only verify the last statement. Suppose Go:Go(H\ is of the
form åoGoft-1 where G is a Möbius group and lz is quasiconformal. Using the
Bieberbach theorems, Tukia showed that the orbit of a point under the action of
such a conjugated group is the quasiconformal image of a hyperplane. since the
orbit of the origin under the action of our group Go is s, which is not the quasi-
conformal image of a hyperplane by Lemma 1.2, we have reached a contradiction.

we conclude with our second main result, whose proof is the same as in [T 3,
p. 1581 and is thus omitted.

Theorem 14. Let H>1. The group G{H) acting onFi" is a K-quasiconformal
group, where K:K(H) can be chosen so that K(H)*l as H*1. The action of
G{H) is transitiae or ,S="IXR"-z and on each of the complementary domains D of
R'\,s. The domains D are rordan domains in R' which are toporogicaily, but not
quasiconformally, equiaalent to B.

Remarks. It can be shown that the group Gr:@r(ä) is not isomorphic as a
topological group to any Möbius group acting on R', for any rz>0. see [T 3] for
a proof. using results of Martin, we conclude that every discrete subgroup of rank
n-l in the group Go(H) is not the quasiconformal conjugate of a Möbius group.
Hence there exist K(ä)-quasiconformal, elementary, discrete groups acting on R,,
with K(.I1)*1 as I/*1. see [M, 3.8]. It is not known whether a non-elementary
group fltting this description exists.
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