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ON SUBHARMONIC FUMNCTIONS IM STRIPS
HIROAKI AIKAWA

1. Introduction

Various properties of subharmonic functions on a strip R"X(0, 1) have been
studied by many authors (see Hardy, Ingham and Pélya[l7] for n=1;
Brawn [6—12], Armitage [3, 4], Armitage and Fugard [5] for n=1). Recently
Yoshida [26—28] extended some of them for subharmonic functions on a cylinder
RiX D, where D is & smooth bounded domain in R™. The purpose of this paper
is to consider several properties of subharmonic functions on a (generalized) strip
R'"XD from a point of view different from Yoshida’s. We shall argue especially
the Phragmén—Lindeldf principle, the harmonic majorization and the properties
of hyperplane mean values of subharmonic functiors. In case m=1 every bounded
domain in R™ is similar to (0, 1). However, there arises a regularity problem for
bounded domains D in R™if m=>1. In this paper we let D be a bounded Lipschitz
domain if m=>1.

We denote by P=(X, Y) apointin R"""=R"XR", where A—(}q, e X)ERT
and Y=(py, ..., y,)ER™. We write |P|, |X| and [Y]| for (37_, x5+ v~
(S x3)Y® and  (J7,¥)YE respectively. We identify R and R™ with
{(X,Y); Y=0} and {(X,Y); X=0}, respectively. We denote by S""! the unit
sphere {¢€ R"; |¢|=1} with center at the origin in R", and by 7 the surface measure
on S"~' We write briefly L, for a strip R"XD.

Let s be a subharmonic function on L. If

(PL) limsup s(P)=0 for Q¢JLy,

P-Q,PcLp

then we say that s satisfies the Phragmén—Lindeldf boundary condition. We denote
by st the positive part of s. In view of the behavior at « of the Bessel function
1,5, of the third kind of order n/2—1,

ey Lyp_1(r)~r~12e" as 1 e,
([23; p. 203]), Brawn’s result [7; Theorem 2, Corollary] may read as follows:

Theorem A. Let m=1 and D=(0,1). If s is a subharmonic function in L
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satisfying (PL) such that

) lim inf r@=V12g= [

r—oco sn-1

f; st(ra, y)sin (ny) dy dz(e) =0,

then s=0 in Ly.

We note that the function sin (ny) appearing in (2) is related to the eigenvalue
problem

(4y+wf=0 on D,

® f=0 on 0D,

where Ay=27_; (')2/By§. If m=1 and D=(0,1), then the constant n? and the
function sin (zy) are the first positive eigenvalue of (3) and its positive eigenfunc-
tion. In general we let 4, be the square root of the first positive eigenvalue of (3)
and let f,, be its positive eigenfunction. In Section 3 we shall prove the following
generalization of Theorem A:

Theorem 1. Let m=1 and DCR™ If s is a subharmonic function on Ly
satisfying (PL) such that

Y] lim inf r"=Y/2 exp (— JpF) f

r—>oo sn-1

fD s+(ra, Y)fp(Y) dY dz(a) = 0,
then s=0 on Ly.

Next we shall deal with subharmonic functions which do not necessarily sat-
isfy (PL). Let & be the set of all functions s defined on the closure of Ly, that are
subharmonic in Ly and satisfy

limsup s(P) =s(Q) <+ for every Q€0JLp.
P—Q,PcLp

Let <7 be the set of all subharmonic functions s that have nonnegative harmonic
majorants (see [11; p. 262]). In case m=1 we can easily deduce the following suffi-
cient condition for s to belong to 7 in the same line as in Brawn [8; Theorem 2]:

Theorem B. Let m=1 and D=(0,1). If s€¢& satisfies (2) and

s+ (X 0 (1 +IX O X < o,

[ ST DAHX AR e N X < e,
then sc .

In order to generalize Theorem B to the case m=1, we need to define the
normal derivative of f;,. Let ny be the inward normal at ¥ with respect to D and
let & be the surface measure on dD. It is well known that ny exists o-a.e. on 0D (see
e.g. [22; p. 242]). We shall observe in the next section that for g-a.e. ¥ on 9D the
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normal derivative of f},
9 e ¥y =Tim =2 £o(¥ +1ny)
ony 7° to Ony P ¥

exists, and that df,/0n,>0 oc-a.e. and is square integrable with respect to 0. We
note that if m=1, D=(0,1) and f,(y)=sin (ny), then dfp/ony=n on {0, 1},
and o=48,+9,, where §,and J, are the Dirac measures at 0 and 1. Our generaliza-
tion of Theorem B is

Theorem 2. Let m=1 and DCR™ If sc¢& satisfies (4) and
\ of;
+ 1-n)/2 _ D oo,

O[S TEDAFXDI I exp (— iplX D52 (V) dX do (¥) <=,
then f oL, sT(Q)w(P, dQ) is a nonnegative harmonic majorant of s and hence s¢ o/
where  is the harmonic measure.

Finally we shall consider the mean

Ms(Y) =fRns(X, Y)dx

of a subharmonic function s on L;. In case m=1 and D=(0, 1), there are a num-

ber of studies on s (see [3, 4], [7—9, 12], [15] and [17]). As a typical example we
quote [8; Theorem 3]:

Theorem C. Let m=1 and D=(0,1). If s€¢& and
O [ s dX <=, 0=y=1,

(i) limsup  s*(X, p)|X|"-V2e—mXl = 0,
(X, 9)] >0, (X, ) €Lp

then M is a convex function of y€D.

Since the assumption of Theorem C implies that s€ o/ by Theorem B, it may
be natural to consider the properties of .#s for s€./. Noting that the subhar-
monicity corresponds to the convexity in case m=>1, we shall prove

Theorem 3. Let m=1 and DCR™ Let s€¢Z and let h be a nonnegative
harmonic majorant of s. If

fxn h(X,Y)dX <o for some YE€D,
then Ms(Y) is a subharmonic function on D or identically — < on D.
From this theorem we shall derive

Corollary 1. Let m=1 and DCR™ If s€& satisfies (4) and

[ipf s B DLW axdo(r) <,
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then Ms(Y) is a subharmonic function on D or identically — e on D.

In case m=1 and D=(0, 1), the inequality in Corollary 1 reduces to
fRn (s (X, 0)+sT (X, 1)) dX <-oo.

Hence Theorem C readily follows from Corollary 1.

The author would like to acknowledge *hat this work was inspired by Yoshida
[26—28], and would like to thank Professor Yoshida for showing him the pre-
prints of [26—28].

2. Preliminaries

We shall use the following notation: Let Xy= (0, ..., 0)€R", Y,=(0, ..., 0)ER™
and Py=(X,, Yo)€R"™™. Let S"! be the unit sphere with center at X, in R"* and
let 7 be the surface measure on S"~*. Denote by B"(X, r) (respectively B™(Y,r),
B(P, r)) the n (respectively m, n+m)-dimensional open ball with center at X (respec-
tively ¥, P) and radius r. We may assume that D >B™(Y,, 2). Let n: R**"—R"
be the projection defined by 7n((X, Y))=X and let n,(P)=(rn(P), Y,). We observe
that Q(X)=B"(X, 1)XD is a bounded Lipschitz domain in R"*™, For simplicity
we write L for L, in the sequel.

Unless otherwise specified, 4 will stand for a positive constant depending only
on L, possibly changing from one occurrence to the next, even in the same string. If
fand g are positive quantities such that 4~1f=g=Af, then we write f~g.

The boundary Harnack principle ([25; Theorem 1]) stated below is a useful tool.

Lemma A. Suppose that U is a bounded Lipschitz domain in R"™™, Q is a
point in U, E is a relatively open set on dU, S is a subdomain of U satisfying 0SNOUCE.
Then there is a positive constant C, such that whenever u and v are two positive har-
monic functions in U vanishing on E and u(Q)=v(Q), then u(P)=Cv(P) for all PES.

Applying Lemma A to U=Q(P), OQ=ny(P), E=0Q(P)ndL and S=
=B"(n(P), 1/2)X D, we obtain

Lemma 1 ([1; Lemma 1]). Let PcL. Let u and v be positive harmonic func-
tions on Q(n(P)) which vanish continuously on dQ(n(P))NOL. If u(my(P))=v(m,(P)),
then u(P)=Av(P).

We need the following simple Phragmén—Lindelsf principle, which will be
improved by Theorem 1.

Lemma 2 ([1; Lemma 2]). Let L’ be a subdomain of L. If s is subharmonic in



On subharmonic functions in strips 123

L’, bounded above in L’ and nonpositive on 0L, i.e.,
lirlr,l sup s(P)=0 forany Q€oL,
then s=0 in L'

One of the main difficulties arising in case m=1 seems to be caused by the
lack of the exact formulas for the Green and Poisson kernels for L (see [6] in case
m=1 and D=(0, 1)). Instead of those formulas we shall use the Riesz—Martin
representation ([20] and [19; Chapters 6 and 12]). In the previous paper [1] we deter-
mined the Martin compactification of L (see [10] for m=1). We shall describe the
Martin compactification of L as follows: We denote by L=R"X D the Euclidean
closure of L in R**™ Let L=Lu{M,; acS" ™'} be a compact topological space
with open base 0,U0,, where O;={UnL; U is an open set of R**"} and O,=
{U(, &, R); € S™", 0<e<1and R>0} with U(x, &, R)={M,; BeS"™", S7_ o>
1—-e}u{(X, Y)EL; 1—&) 31, x> X]| >R}. We note that M, is considered to be
an ideal boundary point, and that P;=(X;, Y;)€éL converges to M, if and only if
lim;_ , |X;|=+ and lim;_ . X;/|X;|=a.

Theorem D ([1; Theorem 1]. See also [10], [16; Chapter 8, 4 Appendix]). The
Martin compactification of L is homeomorphic to L. Every point on L\L is a minimal
boundary point. More precisely, let G be the Green function for L and let K be the
Martin kernel defined by

K, Q) = {M»gn;{ G, M)/G(Py, M) if Q€ INL.

Then there are a positive constant A}, and a positive continuous function f}, on D,
vanishing on 0D and satisfying f5 (Yo)=1, such that

©) K(P, M) = f5(Y)exp (25 27_, ox;)

for P=(X,Y) and Q=M cL\L.

We write the Laplacian 4 as

n 0 m O
A=tx+dy= 3] 5 +2j=1———ayg .
i J

Since AK(-, M,)=0, it follows from (6) that (4y+25)fx=0 on D, so that i}
is an eigenvalue of (3). Furthermore we show

Proposition 1. The constant A}? is the first positive eigenvalue of (3). Hence
Ap=2} and fp=const-f}.

Proof. Suppose that (3) has a positive eigenvalue pu=A1? smaller than A}%
Let 20 be an eigenfunction corresponding to 4% By a straightforward calculation
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we see that
u(X,Y) = f(¥)e*
is harmonic on L. Let Ay=supy.,|f(¥)|<e, L'={X; x,<1}XD and L’=

{X; x,<0}XD. First we compare u and the bounded positive harmonic function
v on L’ such that

0 if Qe{X; x; <1} XaD.

Lemma 2 applied to s=|u|—e*» leads to
|[u(P)] = e*v(P) for PcL’

Next we compare » and the Martin kernel K(-, My with g=(1,0,...,0).
We infer from Lemmal that there is a positive constant A4, such that if
P=(X, Y)€{X; x,=0}X D, then v(P)=4,K(P, Mj). Hence Lemma 2 applied to
s=v—A,K(-, My) yields

v(P) = 4,K(P, M;) on L.

Therefore we have from (6)

fm 0=

(V)] = 4145 (X)e¥~ P4 i x, <.
Since A} >4, letting x;——<co, we obtain f(¥)=0 on D, a contradiction.

Remark 1. In case D is a piecewise C domain it is known that if f'is a posi-
tive eigenfunction for (3), then the eigenvalue corresponding to fis the first positive
eigenvalue ([13; p. 458]).

Remark 2. If m=1,D=(0, 1) and Y,=1/2, then A== and f,(y)=sin (np).
If m=2 and D=B"(Y,,r), then Ap=A1y/r and

00 (3) (5 s ).

where J,,,_y is the Bessel function of the first kind of order m/2—1 and 4, is
the least positive number such that J,,;_1(4)=0 (see [23; p. 45] and [6; p. 441]).
Hereafter we let f,(Y,)=1. We observe from (6) that

S KB MY d1@) = (V) [ exp (b 5_, aix) de(a), P=(X,Y),

is a positive harmonic function depending only on |X| and ¥. On account of the
formulas for Bessel functions in [23; p. 79], we see that the above integral is equal to

) cofb(Y)lel—"/ZIn/z—l(lanD,

where ¢, is a positive constant depending only on » and I, /2—1 is the Bessel function
of the third kind of order n/2—1. Let K,,_; be another Bessel function appearing
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in [23; p. 78], which satisfies
(®) Kyja—1(r)~r=1%e=" as r oo,

Since K-, satisfies the same second order differential equation [23; (1) on p. 77]
as Iy, it follows that

fb(Y)IX|1_"/2Kn/2—1(/10|X|)

is positive and harmonic on {(X, Y)€L; X X,).
Let G” be the Green function for D. We see that if m=1 and D=(q, b), then

. [ b=y’ y'—a }
D n — — —_ 4
G (y,y)—mm{ b= V= p——(b=y) for y,y’eD.

We observe that GP(-, Y’) is harmonic on D\{¥’} and

I-ay, if m=1,
AyGD(', Y’) = —Znéy/ if m = 2,
l(2—m)a'm5,~ if m=3,

where g, denotes the surface area of the unit sphere S™~* and §,, denotes the Dirac
measure at ¥’. We have

Lemma 3. Let Go(-)=G(-, Py) and GP(-)=GP(-, Y,). If YED\B"(¥Y,, 1),
then

() Go((X, Y))~fo (V)1 +IX =" exp (— Ap | X ]),
(i) GI(Y)~fp(¥).

Proof. Applying Lemma 1 to u=f,(Y)|X['"""*K,,,_1(Ap|X|) and v=G,, we
obtain that

Go((X, Y)) "’ﬁ)(Y)|X|1""/2Kn/z—1(;1D|XD for |X|=1.

On account of Lemma 2 and (8) we have (i) for |X|=1. From Lemma A with
U=B"(Xy, )X(D\B"(X,, 1/2)), u=G, and o=fp(¥Y)|X[*""2L,,_,(Jp|X]) we
infer (i) for |X|=1 and Y€D\B"(Y,,1). We regard G2 as a positive harmonic
function on {(X, Y)€L; Y+#Y,}. Applying Lemma A to the same U as above,
u=Gy and v=G,, we obtain

GR(Y)~Gy((X,Y)) for |X|=1 and YED\B"(Y,,1).
Hence (i) leads to (ii).

Remark 3. In view of Widman [24; Theorems 2.2 and 2.5], if D is a Liapunov
domain in R™ (m=2), then

GP(Y)~fp(Y)~dist(Y,0D) for YeD\B™(Y,,1).
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This relation also holds in case m=1.

In [14] Dahlberg studied a relationship between the harmonic measure and
the normal derivative of the Green function for a bounded Lipschitz domain. Since
GP and f,, are comparable by Lemma 3 (ii), we can prove the next lemma in a way
similar to [14; Lemma 9].

Lemma 4. Let ny be the inward normal at Y with respect to dD. For g-a.e.
point Y on 0D the normal derivative of fy,,

0 .0
B_nyfp(y) = I}wa—mfn(y"‘tny)

exists and is positive. The normal derivative dfp/Ony is square integrable with respect
to the surface measure ¢ on 0D. Furthermore if h is C? on a domain including D,
then the following Green’s identity holds:

S, oy riphay = [ haf”

Let w(P, E) be the harmonic measure at PEL of ECL.

Lemma 5. If E is a Borel measurable set on 0L, then
(1—-n)/2 3fb
o (P, E)~ [ (1+X]) exp (= AplX ) 52 (V) dX do (¥).

Proof. 1t is sufficient to prove the lemma in case EcCB"(X;, 1)XdD for some
X;. Let P,=(X;,Y,) and L’'=B"(X;,3)XD. By w(-,E, L) and G’ we denote
the harmonic measure of E and the Green function for L’. Applying Lemma A
to U=B"(Xy, 2)X(D\B"(Y,, 1/2)), u=G’(-, P;) and v=G(-, P;), we obtain that
G/((X, ), P)~G((X, Y), P,) for X€B"(X;, 1) and Y€ D\B™(Y,, 1). By Lemma 3
(i) and a suitable translation we have G((X, Y), P;)~fp(¥) for X€B™(X;,1) and
YEDN\B"(Y,, 1). Hence we infer from [14; Theorem 3 (b)] that

’ a_fD
o(P,E, L )”fzﬁﬁ; dX do(Y).
If |X,—X,|=3, then the Harnack principle leads to
o
w(Py, Ey~w(Py, EY~w(Py, E, L)~ | ——dXdo(Y).
(Po, B)~o(Py, E)~o(Py, E L)~ [ 52 dX do(¥)
In case | X, — X,| >3, using Lemma 1 for P€9dB"(Xy, 2) XD and then using Lemma 2,
we obtain

w(PO’E) ~ G(PO,Pl)w(P15 Ea L,)'
Hence by Lemma 3

w(Py, E)~ j (1+1X D=7 exp (= Ap| X [) 52 %y (Y) dX do(Y).
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Remark 4. If D is a Liapunov domain, then 9f,/0ny~1 by Remark 3, so that
o (B, E)~ [, (1+1X )" exp (— Ap|X]) dX do (Y).

If m=1 and D=(a,b), then
m(POa E) = w(POa Ea)+w(P09 Eb)

fo(Ea) Un(Ey) (141X )= exp (- 4p|X|) dX,

where E,=n(E,) X {a}={(X, y)€E;y=a} and E,=n(E,)X {b}={(X, y); y=b}.

3. Proofs of Theorems 1 and 2

Brawn [7; Theorem 2, Corollary] (see also [5; Theorem 4]) proved Theorem A
by using the Nevanlinna mean #(s,r) of s defined by

M(s, 1) = fsn_l dt(oc)f: s(ra, y) sin(ny)dy

= [sin(ny)dy [, 5o, ) da(a).

In the expressions of (s, r), there are two averaging operations,

f: ssin(ny)dy and fsn_l sdz(a).

Naturally, the operation [, sf,(¥) dY is considered to be a generalization of the
first. We shall observe that these operations produce symmetrized subharmonic
functions from given subharmonic functions on L (see Lemmas 6 and 7 below).
We shall prove Theorem 1 by using this phenomenon. Let us begin with

Lemma 6. Let s be a nonnegative subharmonic function on L satisfying
(PL). Then

SX,Y) =1p(7) [ s, Y)Y’

is a subharmonic function on L satisfying (PL).

Proof. On account of (PL) s is bounded on B"(X,, r)XD for every r=>0.
Since f}, is continuous on D, it follows that S is locally integrable on L. Since s
satisfies (PL) and is nonnegative on L,

o [s(P) if PeL,
s )”{0 if PER™L,

is a subharmonic function on R"*™. On account of [19; Theorem 4.20], there is a
nonincreasing sequence of C? subharmonic functions s; on R**™ converging to .
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In view of (PL) and the construction of the sequence in [19; Theorem 4.20], we may
furthermore assume that there are compact subsets K; of D such that K;tD and

) s;(P)=1/j for PeB"(Xy,j+1)X(R™K)).

Let
S, Y) = fo(¥) [ 5;(X, Y) fp(Y) dY".

It follows from the monotone convergence theorem that S;{S, so that S is upper
semicontinuous. Let P=(X, Y)€B"(X,,/)XD. Since 4s;=0, we have from
Lemma 4 and (9)

48;(P) = fo(¥) [ {dxs;(X, Y) = 23s,(X, Y}/ (¥") dY’

=—fo() [ 4y +23)5,(X, Y) - fp(Y) Y’
= —fD(Y)faD s; (X, Y')'%I;(Y') de(Y")

=1 51 [, 22 (1) do (1),

Since the last term tends to zero as j— <o, it follows from the dominated convergence
theorem that if ¢€Cy°(L) and ¢ =0, then

fL S4¢ dP = lim fL S;4¢ dP = lim fL @4S;dP = 0.
Hence A4S=0 on L in the distribution sense, so that S is subharmonic on L.

In the same manner as in Armitage [2; Lemma), we can prove

Lemma 7 (cf. [28; Lemma 1]). If s is subharmonic on L, then
fs”_l s(|X|e, Y)dr(x)

is a subharmonic function on L depending only on |X| and Y.
The next lemma is a preliminary version of Theorem 1.

Lemma 8. Let S be a subharmonic function on L satisfying (PL). If

(10) liminf r*-Y2exp(—Apr) sup SX,Y) =0,
Foee |X|=r,YeD

then S=0 on L.
Proof. Let (X,,Y;)€L and &>0 be given. We find r=|X;|+2 such that

sup  S(X,Y) = er®="2exp (Jpr).
|X|=r,Y€D
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Let h be the bounded harmonic function on B"(X,, r)XD such that

h(P) = {srl—"lzlnm—l(’ln") on 0B"(X,,r)XD,
Lo on B"(X,, r)XaD.

By (1) and the maximum principle we have S=A4h on B"(X,, r)XD. Let
v(X,Y) =fD(Y)IXll—n/21n/2-1()“D XD

and recall that this function is positive and harmonic in L and vanishes on JL.
Since

P2 1 (pr) = A(r—1D 21, (p(r—1)),
it follows that
h(X,Y,) = er*="*1,,,_,(Jpr) = Aev(X,Yy) for |X|=r-1
Hence Lemma 1 leads to
h=Adev on 0B (X,,r—1)XD.
Using the maximum principle, we obtain
S=h=A4ev on B"(Xy,r—1)XD,

and in particular S(X;, Y))=A4efp (Y| Xal* 2L, /2-1(Ap|Xa]). Since ¢ is arbitrary,
it follows that S(X;, ¥;)=0, so that S=0 on L.

Proof of Theorem 1. On account of Lemmas 6 and 7

S, Y) =) [, [, 5+ (Xl Y) () dY’ de (o)

sn-1

is a subharmonic function on L satisfying (PL). It follows from (4) that S satisfies
(10). Hence Lemma 8 leads to S=0 on L, so that s* must identically equal zero.
Thus s=0 on L.

Proof of Theorem 2. Let
h(P) = [, s*(@aw(P,dQ).

On account of Lemma 5 and (5), h is positive and harmonic on L. By the aid of
[21; 2.24 The Vitali—Carathéodory Theorem] applied to the measure (P, ),
we find a nonincreasing sequence of nonnegative lower semicontinuous functions
v; on 0L such that s*=v; and

h(Po) = h;(Py)—1/j,
where

hy(P) = [, 0, @0 (P, dQ).
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We observe that
(11) lim hj=h on L.

jreo

In fact, h*=lim;_ h; is a harmonic function which majorizes h since v; is non-
increasing. We infer from h*(Py)=h(P,) and the maximum principle that h*=h
on L.

Now we claim that h; majorizes s on L. Let ¢>0 and M¢€JL. Since v; is lower

semicontinuous, there is r=0 such that

v;(Q) = st (M)—e for Q€B(M,r)noL.

Hence
h;(P) = (s"'(M)—e)w(P, B(M,r)ndL) for P€EL,
so that
}i‘}},i}]& hj(P) = s*(M)—e.
Therefore

limsup (s(P)—h;(P)) = s*(M)— liminf h;(P)=e.

P-M,PEL P~M,PcL

Since ¢ and M are arbitrary, s—h; satisfies (PL). Applying Theorem 1 to s—h;,
we obtain s=h; on L, and s=h on L by (11).

4. Proof of Theorem 3

The Riesz—Martin decomposition ([20] and [19; Chapters 6 and 12]) yields
that s€ o if and only if there are a signed measure v on L\ L and a nonnegative
measure g on L such that

s(P) = [ K(P,Q)dv(©@) - [, G(P,0) du(Q).

We first treat the mean of a positive harmonic function, and then treat that of a
Green potential.

Lemma 9. If h is a positive harmonic function on L, then #h(Y) is harmonic
on D or identically + < on D.

Proof. We assume that #h(Y’)<o for some Y’€D. Take a compact sub-
set K of D. Then Harnack’s inequality [19; Theorem 2.14 and Corollary 2.15]

yields that

suph(X,Y) = Ah(X,Y’) for all XcR",
YEK

where A4 is a positive constant depending only on Y’, K and D. Moreover every first
and second order derivative 9h of h satisfies

sup |2h(X,Y)| = A’h(X,Y’) for all XeR",
YEK
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where 4’ depends only on ¥’, K and D (see [18; p. 37]). Since Ah(Y")< <>, it fol-
lows that

. 9
00) =50 I, [ (3

is integrable with respect to r, where 7, stands for the surface measure on 0B"(Xy, r).
Hence we can choose rjte such that ¢(r;)—~0. Using Green’s formula, we obtain

Ay MR(Y) = fR"AYh(X, Y)dX = —fR" Axh(X,Y)dX

h(X,Y)| dr,(X)

B"(X,1)

= d By 1)

. 0
= lim fmxo’rj) o h(X,Y)dz, (X) =0
for Y€K. Since K is arbitrary, .#h is harmonic on D.

From Lemma 9 we have a relation between G and GP, which may be of some
independent interest.

Proposition 2. There is a positive constant ¢, depending only on n and m
such that
GP(TY) = [, G(X,Y), (X, Y))dX.

Proof. We may assume that X’=X,. Let Y’€¢D and put
o(V) = [ .G(X. 1), (X, Y)) dX.

We infer from Lemmas 3 and 9 that » is harmonic on D\ {Y”}. It follows from
Fatou’s lemma that » is lower semicontinuous on D, and from Lemma 3 and
Lebesgue’s dominated convergence theorem that

I}in}) v(Y)=0 for Y,€0D.

The maximum principle yields that »(Y)=v(Y")=+ (actvally if m=1, then
v(Y")< +oo and if m=2, then »(¥’)=+), so that v is superharmonic on D.
Therefore

Ayv = —c(Y’, D)oy,

in the distribution sense, where c(Y’, D) is a positive constant which may depend
on Y’ and D (see [19; Theorem 5.4]).

What remains is to prove that ¢(Y’, D) does not depend on Y’ and D. Take
r=0 such that B"(Y’,r)cD. Let L’=R"XB™(Y’,r) and let G’ be the Green
function for L’. Since G(-, (X,, ¥))—G’(-, (X,, Y") is a positive harmonic func-
tion on L’ decreasing rapidly at the infinity by Lemma 3, it follows from
Lemma 9 that

o) =[G (X, 1), (X, Y)) dX
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is harmonic on B™(Y’, r). Hence
c(Y’,D) = c(Y’, B"(Y’, 1)) = c(r).

We infer from the arbitrariness of r that c(r) is equal to a positive constant depending
only on n and m. The proof is complete.

Lemma 10. If u is a Green potential on L, then #u(Y) is a Green potential on
D or identically + - on D.

Proof. Let
u(P) = [ G(P, Q) du(Q),

where u is a Radon measure on L. We have from Fubini’s theorem and Proposi-
tion 2 that

Mu@¥) = [ [ G(X.7),0)du(@dX = ci* [ GP(Y, Y") du(Y"),

where u, is the measure on D defined by u,(E)=p(R"XE). If there is a compact
set FCD such that p,(F)=o°, then .#u=< on D. If there is no such compact
set, then y, is a Radon measure on D and «u is a Green potential on D or iden-
tically + eo.

Proof of Theorem 3. Since h—s is a nonnegative superharmonic function, it
follows from the Riesz—Martin decomposition that

h—s =u+p,

where u is a nonnegative harmonic function on L and p is a Green potential on L.
We infer from the assumption and Lemmas 9 and 10 that

Ms(Y) = Mh(Y)—Mu(Y)—Mp(Y)
is a subharmonic function on D or identically — eo.

Proof of Corollary 1. The inequality in Corollary 1 implies (5), and hence Theo-
rem 2 shows that

h(P) = [, s*(@Qw(P,dQ)

is a nonnegative harmonic majorant of s. We infer from Lemma 5 and Fubini’s
theorem that

Mh(To)
~ [ oo w8 DA +IX =X DI exp (— 1 |1 X— X gf— (Y)dXdo(Y)dX’

Nfapf ee Y)g_{i(y) dXdo(Y) <.

Hence #h(Y,)<<; so that the corollary follows from Theorem 3.
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Note added in proof: Professor S. J. Gardiner kindly informed the author that in a paper to
be published in Bull. London Math. Soc. he obtained results which imply our Theorem 3. His
methods are different from ours.
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