ON SUBHARMONIC FUNCTIONS IN STRIPS

HIROAKI AIKAWA

1. Introduction

Various properties of subharmonic functions on a strip \(R^n \times (0, 1) \) have been studied by many authors (see Hardy, Ingham and Pólya [17] for \(n=1 \); Brawn [6–12], Armitage [3, 4], Armitage and Fugard [5] for \(n \geq 1 \)). Recently Yoshida [26–28] extended some of them for subharmonic functions on a cylinder \(R^1 \times D \), where \(D \) is a smooth bounded domain in \(R^m \). The purpose of this paper is to consider several properties of subharmonic functions on a (generalized) strip \(R^n \times D \) from a point of view different from Yoshida's. We shall argue especially the Phragmén-Lindelöf principle, the harmonic majorization and the properties of hyperplane mean values of subharmonic functions. In case \(m=1 \) every bounded domain in \(R^n \) is similar to \((0, 1) \). However, there arises a regularity problem for bounded domains \(D \) in \(R^n \) if \(m>1 \). In this paper we let \(D \) be a bounded Lipschitz domain if \(m>1 \).

We denote by \(P=(X, Y) \) a point in \(R^{n+m}=R^n \times R^m \), where \(X=(x_1, \ldots, x_n) \in R^n \) and \(Y=(y_1, \ldots, y_m) \in R^m \). We write \(|P|, |X| \) and \(|Y| \) for \((\sum_{j=1}^{n} x_j^2+\sum_{j=1}^{m} y_j^2)^{1/2} \), \((\sum_{j=1}^{n} x_j^2)^{1/2} \) and \((\sum_{j=1}^{m} y_j^2)^{1/2} \), respectively. We identify \(R^n \) and \(R^m \) with \(\{(X, Y) ; Y=0\} \) and \(\{(X, Y) ; X=0\} \), respectively. We denote by \(S^{n-1} \) the unit sphere \(\{x \in R^n ; |x|=1\} \) with center at the origin in \(R^n \), and by \(\tau \) the surface measure on \(S^{n-1} \). We write briefly \(L_D \) for a strip \(R^n \times D \).

Let \(s \) be a subharmonic function on \(L_D \). If

\[
\lim_{P \to Q, Q \in \partial L_D} \sup_{P \in L_D} s(P) = 0
\]

then we say that \(s \) satisfies the Phragmén-Lindelöf boundary condition. We denote by \(s^+ \) the positive part of \(s \). In view of the behavior at \(\infty \) of the Bessel function \(I_{n/2-1} \) of the third kind of order \(n/2-1 \),

\[
I_{n/2-1}(r) \sim r^{-1/2} e^r \quad \text{as} \quad r \to \infty,
\]

([23; p. 203]), Brawn's result [7; Theorem 2, Corollary] may read as follows:

Theorem A. Let \(m=1 \) and \(D=(0, 1) \). If \(s \) is a subharmonic function in \(L_D \)

\[\text{doi:10.5186/aasfm.1987.1202} \]
satisfying (PL) such that

\[\liminf_{r \to \infty} r^{(n-1)/2} e^{-\pi r} \int_{S^{n-1}} \int_0^1 s^+(r, y) \sin(\pi y) \, dy \, d\tau(a) = 0, \]

then \(s \leq 0 \) in \(L_D \).

We note that the function \(\sin(\pi y) \) appearing in (2) is related to the eigenvalue problem

\[(\Lambda_Y + \mu) f = 0 \quad \text{on } D, \]
\[f = 0 \quad \text{on } \partial D, \]

where \(\Lambda_Y = \sum_{j=1}^m \partial^2/\partial y_j^2 \). If \(m = 1 \) and \(D = (0, 1) \), then the constant \(\pi^2 \) and the function \(\sin(\pi y) \) are the first positive eigenvalue of (3) and its positive eigenfunction. In general we let \(\lambda_D \) be the square root of the first positive eigenvalue of (3) and let \(f_D \) be its positive eigenfunction. In Section 3 we shall prove the following generalization of Theorem A:

Theorem 1. Let \(m \geq 1 \) and \(D \subseteq \mathbb{R}^m \). If \(s \) is a subharmonic function on \(L_D \) satisfying (PL) such that

\[\liminf_{r \to \infty} r^{(n-1)/2} \exp(-\lambda_D r) \int_{S^{n-1}} \int_D s^+(r, Y) f_D(Y) \, dY \, d\tau(a) = 0, \]

then \(s \leq 0 \) on \(L_D \).

Next we shall deal with subharmonic functions which do not necessarily satisfy (PL). Let \(\mathcal{S} \) be the set of all functions \(s \) defined on the closure of \(L_D \) that are subharmonic in \(L_D \) and satisfy

\[\limsup_{P \to Q, P \in L_D} s(P) = s(Q) < +\infty \quad \text{for every } Q \in \partial L_D. \]

Let \(\mathcal{A} \) be the set of all subharmonic functions \(s \) that have nonnegative harmonic majorants (see [11; p. 262]). In case \(m = 1 \) we can easily deduce the following sufficient condition for \(s \) to belong to \(\mathcal{A} \) in the same line as in Brawn [8; Theorem 2]:

Theorem B. Let \(m = 1 \) and \(D = (0, 1) \). If \(s \in \mathcal{S} \) satisfies (2) and

\[\int_{\mathbb{R}^n} s^+(X, 0)(1 + |X|)^{(1-n)/2} e^{-\pi|X|} \, dX < \infty, \]
\[\int_{\mathbb{R}^n} s^+(X, 1)(1 + |X|)^{(1-n)/2} e^{-\pi|X|} \, dX < \infty, \]

then \(s \in \mathcal{A} \).

In order to generalize Theorem B to the case \(m \geq 1 \), we need to define the normal derivative of \(f_D \). Let \(n_Y \) be the inward normal at \(Y \) with respect to \(\partial D \) and let \(\sigma \) be the surface measure on \(\partial D \). It is well known that \(n_Y \) exists \(\sigma \)-a.e. on \(\partial D \) (see e.g. [22; p. 242]). We shall observe in the next section that for \(\sigma \)-a.e. \(Y \) on \(\partial D \) the
normal derivative of f_D,
\[
\frac{\partial}{\partial n_Y} f_D(Y) = \lim_{t \to 0} \frac{\partial}{\partial n_Y} f_D(Y + t n_Y)
\]
extists, and that $\frac{\partial f_D}{\partial n_Y} > 0$ σ-a.e. and is square integrable with respect to σ. We note that if $m=1$, $D=(0, 1)$ and $f_B(y) = \sin(\pi y)$, then $\frac{\partial f_D}{\partial n_Y} = \pi$ on $\{0, 1\}$, and $\sigma = \delta_0 + \delta_1$, where δ_0 and δ_1 are the Dirac measures at 0 and 1. Our generalization of Theorem B is

Theorem 2. Let $m \geq 1$ and $D \subset R^m$. If $s \in \mathcal{S}$ satisfies (4) and

\[
\int_{R^n} \int_{\partial D} s^+(X, Y) (1 + |X|)^{(1-n)/2} \exp(-\lambda_D |X|) \frac{\partial f_D}{\partial n_Y}(Y) dX d\sigma(Y) < \infty,
\]
then $\int_{\partial D} s^+(Q) \omega(P, dQ)$ is a nonnegative harmonic majorant of s and hence $s \in \mathcal{A}$ where ω is the harmonic measure.

Finally we shall consider the mean
\[
\mathcal{M} s(Y) = \int_{R^n} s(X, Y) dX
\]
of a subharmonic function s on L_D. In case $m=1$ and $D=(0, 1)$, there are a number of studies on $\mathcal{M} s$ (see [3, 4, 7–9, 12, 15] and [17]). As a typical example we quote [8; Theorem 3]:

Theorem C. Let $m=1$ and $D=(0, 1)$. If $s \in \mathcal{S}$ and

(i) $\int_{R^n} |s(X, y)| dX < \infty$, \quad $0 \leq y \leq 1$,

(ii) $\lim_{|X, y| \to \infty, (X, y) \in L_D} s^+(X, y)|X|^{(n-1)/2} e^{-\pi |X|} = 0$,

then $\mathcal{M} s$ is a convex function of $y \in D$.

Since the assumption of Theorem C implies that $s \in \mathcal{A}$ by Theorem B, it may be natural to consider the properties of $\mathcal{M} s$ for $s \in \mathcal{A}$. Noting that the subharmonicity corresponds to the convexity in case $m=1$, we shall prove

Theorem 3. Let $m \geq 1$ and $D \subset R^m$. Let $s \in \mathcal{A}$ and let h be a nonnegative harmonic majorant of s. If
\[
\int_{R^n} h(X, Y) dX < \infty \quad \text{for some} \quad Y \in D,
\]
then $\mathcal{M} s(Y)$ is a subharmonic function on D or identically $-\infty$ on D.

From this theorem we shall derive

Corollary 1. Let $m \geq 1$ and $D \subset R^m$. If $s \in \mathcal{S}$ satisfies (4) and
\[
\int_{\partial D} \int_{R^n} s^+(X, Y) \frac{\partial f_D}{\partial n_Y}(Y) dX d\sigma(Y) < \infty,
\]
then \(A_s(Y) \) is a subharmonic function on \(D \) or identically \(-\infty \) on \(D \).

In case \(m=1 \) and \(D=(0, 1) \), the inequality in Corollary 1 reduces to

\[
\int_{\mathbb{R}^n} (s^+(X, 0) + s^+(X, 1)) \, dX < \infty.
\]

Hence Theorem C readily follows from Corollary 1.

The author would like to acknowledge that this work was inspired by Yoshida [26—28], and would like to thank Professor Yoshida for showing him the preprints of [26—28].

2. Preliminaries

We shall use the following notation: Let \(X_0=(0, \ldots, 0) \in \mathbb{R}^n \), \(Y_0=(0, \ldots, 0) \in \mathbb{R}^m \) and \(P_0=(X_0, Y_0) \in \mathbb{R}^{n+m} \). Let \(S^{n-1} \) be the unit sphere with center at \(X_0 \) in \(\mathbb{R}^n \) and let \(\tau \) be the surface measure on \(S^{n-1} \). Denote by \(B^n(X, r) \) (respectively \(B^m(Y, r), B(P, r) \)) the \(n \) (respectively \(m, n+m \))-dimensional open ball with center at \(X \) (respectively \(Y, P \)) and radius \(r \). We may assume that \(D \supset B^n(Y_0, 2) \). Let \(\pi: \mathbb{R}^{n+m} \to \mathbb{R}^n \) be the projection defined by \(\pi((X, Y))=X \) and let \(\pi_0(P)=(\pi(P), Y_0) \). We observe that \(\Omega(X)=B^n(X, 1) \cap D \) is a bounded Lipschitz domain in \(\mathbb{R}^{n+m} \). For simplicity we write \(L \) for \(L_D \) in the sequel.

Unless otherwise specified, \(A \) will stand for a positive constant depending only on \(L \), possibly changing from one occurrence to the next, even in the same string. If \(f \) and \(g \) are positive quantities such that \(A^{-1}f \equiv g \equiv Af \), then we write \(f \sim g \).

The boundary Harnack principle ([25; Theorem 1]) stated below is a useful tool.

Lemma A. Suppose that \(U \) is a bounded Lipschitz domain in \(\mathbb{R}^{n+m} \), \(Q \) is a point in \(U \), \(E \) is a relatively open set on \(\partial U \), \(S \) is a subdomain of \(U \) satisfying \(\partial S \cap \partial U \subset E \). Then there is a positive constant \(C \), such that whenever \(u \) and \(v \) are two positive harmonic functions in \(U \) vanishing on \(E \) and \(u(Q) \equiv v(Q) \), then \(u(P) \equiv Cv(P) \) for all \(P \in S \).

Applying Lemma A to \(U=\Omega(P), Q=\pi_0(P), E=\partial \Omega(P) \cap \partial L \) and \(S=\cap \partial L \), we obtain

Lemma 1 ([1; Lemma 1]). Let \(P \in L \). Let \(u \) and \(v \) be positive harmonic functions on \(\Omega(\pi(P)) \) which vanish continuously on \(\partial \Omega(\pi(P)) \cap \partial L \). If \(u(\pi_0(P)) \equiv v(\pi_0(P)) \), then \(u(P) \equiv Av(P) \).

We need the following simple Phragmén—Lindelöf principle, which will be improved by Theorem 1.

Lemma 2 ([1; Lemma 2]). Let \(L' \) be a subdomain of \(L \). If \(s \) is subharmonic in
On subharmonic functions in strips

Li, bounded above in L' and nonpositive on $\partial L'$, i.e.,

$$\limsup_{P \to Q} s(P) \leq 0 \text{ for any } Q \in \partial L',$$

then $s \leq 0$ in L'.

One of the main difficulties arising in case $m>1$ seems to be caused by the lack of the exact formulas for the Green and Poisson kernels for L (see [6] in case $m=1$ and $D=(0,1)$). Instead of those formulas we shall use the Riesz—Martin representation ([20] and [19; Chapters 6 and 12]). In the previous paper [1] we determined the Martin compactification of L (see [10] for $m=1$). We shall describe the Martin compactification of L as follows: We denote by $L=R^n \times \bar{D}$ the Euclidean closure of L in R^{n+m}. Let $\hat{L}=\bar{L} \cup \{M; \alpha \in \mathbb{S}^{n-1}\}$ be a compact topological space with open base $O_1 \cup O_2$, where $O_1=\{U \cap L; U$ is an open set of $R^{n+m}\}$ and $O_2=\{U(\alpha, \varepsilon, R); \alpha \in \mathbb{S}^{n-1}, 0<\varepsilon<1$ and $R>0\}$ with $U(\alpha, \varepsilon, R)=\{M_\beta; \beta \in \mathbb{S}^{n-1}, \sum_{i=1}^n \alpha_i \beta_i > 1-\varepsilon\} \cup \{(X, Y) \in \bar{L}; (1-\varepsilon)^{-1} \sum_{i=1}^n \alpha_i |X_i Y_i > |X| > R\}$. We note that M_α is considered to be an ideal boundary point, and that $P_j=(X_j, Y_j) \in \bar{L}$ converges to M_α if and only if $\lim_{j \to \infty} |X_j| = +\infty$ and $\lim_{j \to \infty} X_j/Y_j = \alpha$.

Theorem D ([1; Theorem 1]). See also [10], [16; Chapter 8, 4 Appendix]). The Martin compactification of L is homeomorphic to \hat{L}. Every point on $\hat{L} \setminus L$ is a minimal boundary point. More precisely, let G be the Green function for L and let K be the Martin kernel defined by

$$K(P, Q) = \begin{cases} G(P, Q)/G(P_0, Q) & \text{if } Q \in L, \\ \lim_{M \to Q, M \in L} G(P, M)/G(P_0, M) & \text{if } Q \in \hat{L} \setminus L. \end{cases}$$

Then there are a positive constant λ_D^* and a positive continuous function f_D^* on D, vanishing on ∂D and satisfying $f_D^*(Y_0)=1$, such that

$$K(P, M_\alpha) = f_D^*(Y) \exp \left(\lambda_D^* \sum_{i=1}^n \alpha_i x_i \right)$$

for $P=(X, Y)$ and $Q=M_\alpha \in \hat{L} \setminus L$.

We write the Laplacian Δ as

$$\Delta = \Delta_x + \Delta_y = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2} + \sum_{j=1}^m \frac{\partial^2}{\partial y_j^2}.$$

Since $\Delta K(\cdot, M_\alpha)=0$, it follows from (6) that $(\Delta_y + \lambda_D^2)f_D^*=0$ on D, so that λ_D^* is an eigenvalue of (3). Furthermore we show

Proposition 1. The constant λ_D^* is the first positive eigenvalue of (3). Hence $\lambda_D^* \neq \lambda_*^*$ and $f_D^*=\text{const} \cdot f_D^*$.

Proof. Suppose that (3) has a positive eigenvalue $\mu=\lambda^2$ smaller than λ_D^*. Let $f \neq 0$ be an eigenfunction corresponding to λ^2. By a straightforward calculation
we see that
\[u(X, Y) = f(Y) e^{\lambda x_1} \]
is harmonic on \(L \). Let \(A_0 = \sup_{Y \in D} |f(Y)| < \infty \), \(L' = \{X; x_1 < 1\} \times D \) and \(L'' = \{X; x_1 < 0\} \times D \). First we compare \(u \) and the bounded positive harmonic function \(v \) on \(L' \) such that
\[
\lim_{r \to 0} v(P) = \begin{cases} A_0 & \text{if } Q \in \{X; x_1 = 1\} \times D, \\ 0 & \text{if } Q \in \{X; x_1 < 1\} \times \partial D. \end{cases}
\]
Lemma 2 applied to \(s = |u| - e^\lambda v \) leads to
\[|u(P)| \leq e^\lambda v(P) \quad \text{for } P \in L'. \]
Next we compare \(v \) and the Martin kernel \(K(\cdot, M_\beta) \) with \(\beta = (1, 0, \ldots, 0) \). We infer from Lemma 1 that there is a positive constant \(A_1 \) such that if \(P = (X, Y) \in \{X; x_1 = 0\} \times \bar{D} \), then \(v(P) \leq A_1 K(P, M_\beta) \). Hence Lemma 2 applied to \(s = v - A_1 K(\cdot, M_\beta) \) yields
\[v(P) \leq A_1 K(P, M_\beta) \quad \text{on } L''. \]
Therefore we have from (6)
\[|f(Y)| \leq A_1 e^{\lambda} f_D^* (Y) e^{(l_B - \lambda)x_1} \quad \text{if } x_1 < 0. \]
Since \(\lambda^*_B > \lambda \), letting \(x_1 \to -\infty \), we obtain \(f(Y) \equiv 0 \) on \(D \), a contradiction.

Remark 1. In case \(D \) is a piecewise \(C^1 \) domain it is known that if \(f \) is a positive eigenfunction for (3), then the eigenvalue corresponding to \(f \) is the first positive eigenvalue ([13; p. 458]).

Remark 2. If \(m = 1, D = (0, 1) \) and \(Y_0 = 1/2 \), then \(\lambda_B = \pi \) and \(f_D (y) = \sin (\pi y) \). If \(m = 2 \) and \(D = B^m (Y_0, r) \), then \(\lambda_B = \lambda_0 / r \) and
\[
f_D (Y) = 2^{m^2 - 1} \Gamma \left(\frac{m}{2} \right) \left(\frac{\lambda_0}{r} \right)^{1 - m/2} |Y|^{-1 - m/2} J_{m/2 - 1} \left(\frac{\lambda_0}{r} |Y| \right),
\]
where \(J_{m/2 - 1} \) is the Bessel function of the first kind of order \(m/2 - 1 \) and \(\lambda_0 \) is the least positive number such that \(J_{m/2 - 1} (\lambda_0) = 0 \) (see [23; p. 45] and [6; p. 441]).

Hereafter we let \(f_D (Y_0) = 1 \). We observe from (6) that
\[
\int_{S^n - 1} K(P, M_\alpha) d\tau (\alpha) = f_D (Y) \int_{S^n - 1} \exp \left(\lambda_B \sum_{i=1}^n \alpha_i x_i \right) d\tau (\alpha), \quad P = (X, Y),
\]
is a positive harmonic function depending only on \(|X| \) and \(Y \). On account of the formulas for Bessel functions in [23; p. 79], we see that the above integral is equal to
\[
(7) \quad c_0 f_D (Y) |X|^{l - n/2} I_{n/2 - 1} (\lambda_B |X|),
\]
where \(c_0 \) is a positive constant depending only on \(n \) and \(I_{n/2 - 1} \) is the Bessel function of the third kind of order \(n/2 - 1 \). Let \(K_{n/2 - 1} \) be another Bessel function appearing
On subharmonic functions in strips

in [23; p. 78], which satisfies

\[K_{n/2-1}(r) \sim r^{-1/2}e^{-r} \quad \text{as} \quad r \to \infty. \]

Since \(K_{n/2-1} \) satisfies the same second order differential equation [23; (1) on p. 77] as \(I_{n/2-1} \), it follows that

\[f_D(Y)|X|^{1-n/2}K_{n/2-1}(\lambda_D|X|) \]

is positive and harmonic on \(\{(X, Y) \in \mathbb{L}; X \neq X_0\} \).

Let \(G^D \) be the Green function for \(D \). We see that if \(m=1 \) and \(D=(a, b) \), then

\[G^D(y, y') = \min \left\{ \frac{b-y'}{b-a}(y-a), \frac{y'-a}{b-a}(b-y) \right\} \quad \text{for} \quad y, y' \in D. \]

We observe that \(G^D(\cdot, Y') \) is harmonic on \(D \setminus \{Y'\} \) and

\[\Delta_y G^D(\cdot, Y') = \begin{cases} -\delta_{Y'}, & \text{if} \quad m = 1, \\ -2\pi \delta_{Y'}, & \text{if} \quad m = 2, \\ (2-m)\sigma_m \delta_{Y'}, & \text{if} \quad m \geq 3, \end{cases} \]

where \(\sigma_m \) denotes the surface area of the unit sphere \(S^{m-1} \) and \(\delta_{Y'} \) denotes the Dirac measure at \(Y' \). We have

Lemma 3. Let \(G_0(\cdot) = G(\cdot, P_0) \) and \(G^D_0(\cdot) = G^D(\cdot, Y_0). \) If \(Y \in D \setminus B^m(Y_0, 1) \), then

(i) \(G_0((X, Y)) \sim f_D(Y)(1 + |X|)^{(1-n)/2} \exp (-\lambda_D|X|), \)

(ii) \(G^D_0(Y) \sim f_D(Y). \)

Proof. Applying Lemma 1 to \(u = f_D(Y)|X|^{1-n/2}K_{n/2-1}(\lambda_D|X|) \) and \(v = G_0 \), we obtain that

\[G_0((X, Y)) \sim f_D(Y)|X|^{1-n/2}K_{n/2-1}(\lambda_D|X|) \quad \text{for} \quad |X| = 1. \]

On account of Lemma 2 and (8) we have (i) for \(|X| \equiv 1. \) From Lemma A with \(U = B^n(X_0, 2) \times (D \setminus B^m(Y_0, 1/2)), \ u = G_0 \) and \(v = f_D(Y)|X|^{1-n/2}I_{n/2-1}(\lambda_D|X|) \) we infer (i) for \(|X| \equiv 1 \) and \(Y \in D \setminus B^m(Y_0, 1). \) We regard \(G^D_0 \) as a positive harmonic function on \(\{(X, Y) \in \mathbb{L}; Y \neq Y_0\}. \) Applying Lemma A to the same \(U \) as above, \(u = G^D_0 \) and \(v = G_0, \) we obtain

\[G^D_0(Y) \sim G_0((X, Y)) \quad \text{for} \quad |X| = 1 \quad \text{and} \quad Y \in D \setminus B^m(Y_0, 1). \]

Hence (i) leads to (ii).

Remark 3. In view of Widman [24; Theorems 2.2 and 2.5], if \(D \) is a Liapunov domain in \(\mathbb{R}^m (m \equiv 2), \) then

\[G^D_0(Y) \sim f_D(Y) \sim \text{dist}(Y, \partial D) \quad \text{for} \quad Y \in D \setminus B^m(Y_0, 1). \]
This relation also holds in case $m=1$.

In [14] Dahlberg studied a relationship between the harmonic measure and the normal derivative of the Green function for a bounded Lipschitz domain. Since G^D and f_D are comparable by Lemma 3 (ii), we can prove the next lemma in a way similar to [14; Lemma 9].

Lemma 4. Let n_Y be the inward normal at Y with respect to ∂D. For σ-a.e. point Y on ∂D the normal derivative of f_D,

$$\frac{\partial}{\partial n_Y} f_D(Y) = \lim_{t \to 0} \frac{\partial}{\partial n_Y} f_D(Y + tn_Y)$$

exists and is positive. The normal derivative $\frac{\partial f_D}{\partial n_Y}$ is square integrable with respect to the surface measure σ on ∂D. Furthermore if h is C^2 on a domain including \overline{D}, then the following Green's identity holds:

$$\int_D f_D(\Delta_Y + \lambda_D^2)h \, dY = \int_{\partial D} h \frac{\partial f_D}{\partial n_Y} \, d\sigma.$$

Let $\omega(P, E)$ be the harmonic measure at $P \in L$ of $E \subset \partial L$.

Lemma 5. If E is a Borel measurable set on ∂L, then

$$\omega(P_0, E) \sim \int_E (1 + |X|)^{\frac{(1-n)^2}{2}} \exp(-\lambda_D |X|) \frac{\partial f_D}{\partial n_Y}(Y) \, dX \, d\sigma(Y).$$

Proof. It is sufficient to prove the lemma in case $E \subset B^n(X_1, 1) \times \partial D$ for some X_1. Let $P_1 = (X_1, Y_0)$ and $L' = B^n(X_1, 3) \times D$. By $\omega(\cdot, E, L')$ and G' we denote the harmonic measure of E and the Green function for L'. Applying Lemma A to $U = B^n(X_1, 2) \times (D \setminus B^n(Y_0, 1/2))$, $u = G'(\cdot, P_1)$ and $v = G(\cdot, P_1)$, we obtain that $G'((X, Y), P_1) \sim G((X, Y), P_1)$ for $X \in B^n(X_1, 1)$ and $Y \in D \setminus B^n(Y_0, 1)$. By Lemma 3 (i) and a suitable translation we have $G((X, Y), P_1) \sim f_D(Y)$ for $X \in B^n(X_1, 1)$ and $Y \in D \setminus B^n(Y_0, 1)$. Hence we infer from [14; Theorem 3 (b)] that

$$\omega(P_1, E, L') \sim \int_E \frac{\partial f_D}{\partial n_Y} \, dX \, d\sigma(Y).$$

If $|X_1 - X_0| \leq 3$, then the Harnack principle leads to

$$\omega(P_0, E) \sim \omega(P_1, E) \sim \omega(P_1, E, L') \sim \int_E \frac{\partial f_D}{\partial n_Y} \, dX \, d\sigma(Y).$$

In case $|X_1 - X_0| > 3$, using Lemma 1 for $P \in \partial B^n(X_1, 2) \times D$ and then using Lemma 2, we obtain

$$\omega(P_0, E) \sim G(P_0, P_1) \omega(P_1, E, L').$$

Hence by Lemma 3

$$\omega(P_0, E) \sim \int_E (1 + |X|)^{\frac{(1-n)^2}{2}} \exp(-\lambda_D |X|) \frac{\partial f_D}{\partial n_Y}(Y) \, dX \, d\sigma(Y).$$
Remark 4. If D is a Liapunov domain, then $\partial f_D/\partial n_\gamma \sim 1$ by Remark 3, so that

$$\omega(P_0, E) \sim \int_E (1 + |X|^{(1-n)/2} \exp (-\lambda_D |X|) dX d\sigma(Y).$$

If $m=1$ and $D=(a, b)$, then

$$\omega(P_0, E) = \omega(P_0, E_a) + \omega(P_0, E_b) \sim \int_{\pi(E_a) \cup \pi(E_b)} (1 + |X|^{(1-n)/2} \exp (-\lambda_D |X|) dX,$$

where $E_a = \pi(E_a) \times \{a\} = \{(X, y) \in E; y = a\}$ and $E_b = \pi(E_b) \times \{b\} = \{(X, y); y = b\}$.

3. Proofs of Theorems 1 and 2

Brawn [7; Theorem 2, Corollary] (see also [5; Theorem 4]) proved Theorem A by using the Nevanlinna mean $\mathcal{M}(s, r)$ of s defined by

$$\mathcal{M}(s, r) = \int_{S^{n-1}} d\tau(\alpha) \int_0^1 s(r\alpha, y) \sin(\pi y) dy$$

$$= \int_0^1 \sin(\pi y) dy \int_{S^{n-1}} s(r\alpha, y) d\tau(\alpha).$$

In the expressions of $\mathcal{M}(s, r)$, there are two averaging operations,

$$\int_0^1 s \sin(\pi y) dy \quad \text{and} \quad \int_{S^{n-1}} s d\tau(\alpha).$$

Naturally, the operation $\int_D s f_D(Y) dY$ is considered to be a generalization of the first. We shall observe that these operations produce symmetrized subharmonic functions from given subharmonic functions on L (see Lemmas 6 and 7 below). We shall prove Theorem 1 by using this phenomenon. Let us begin with

Lemma 6. Let s be a nonnegative subharmonic function on L satisfying (PL). Then

$$S(X, Y) = f_D(Y) \int_D s(X, Y') f_D(Y') dY'$$

is a subharmonic function on L satisfying (PL).

Proof. On account of (PL) s is bounded on $B^n(X_0, r) \times D$ for every $r > 0$. Since f_D is continuous on \overline{D}, it follows that S is locally integrable on L. Since s satisfies (PL) and is nonnegative on L,

$$\hat{s}(P) = \begin{cases}
 s(P) & \text{if } P \in L, \\
 0 & \text{if } P \in \mathbb{R}^{n+m} \setminus L,
\end{cases}$$

is a subharmonic function on \mathbb{R}^{n+m}. On account of [19; Theorem 4.20], there is a nonincreasing sequence of C^2 subharmonic functions s_j on \mathbb{R}^{n+m} converging to \hat{s}.
In view of (PL) and the construction of the sequence in [19; Theorem 4.20], we may furthermore assume that there are compact subsets K_j of D such that $K_{j+1}D$ and

$$s_j(P) \leq 1/j \quad \text{for} \quad P \in B^n(0, j+1) \times (R^m \setminus K_j).$$

Let

$$S_j(X, Y) = f_D(Y) \int_D s_j(X, Y') f_D(Y') dY'.$$

It follows from the monotone convergence theorem that $S_j \uparrow S$, so that S is upper semicontinuous. Let $P=(X, Y) \in B^n(0, j+1) \times D$. Since $\Delta s_j \geq 0$, we have from Lemma 4 and (9)

$$\Delta S_j(P) = f_D(Y) \int_D \{ \Delta X s_j(X, Y') - \lambda_D^2 s_j(X, Y') \} f_D(Y') dY'$$

$$\equiv -f_D(Y) \int_D (\Delta Y + \lambda_D^2) s_j(X, Y') f_D(Y') dY'$$

$$= -f_D(Y) \int_{\partial D} s_j(X, Y') \frac{\partial f_D}{\partial n_Y'} (Y') d\sigma(Y')$$

$$\equiv -\frac{1}{j} f_D(Y) \int_{\partial D} \frac{\partial f_D}{\partial n_Y'} (Y') d\sigma(Y').$$

Since the last term tends to zero as $j \to \infty$, it follows from the dominated convergence theorem that if $\varphi \in C_0^\infty(L)$ and $\varphi \geq 0$, then

$$\int_L S \Delta \varphi dP = \lim_{j \to \infty} \int_L S_j \Delta \varphi dP = \lim_{j \to \infty} \int_L \varphi \Delta S_j dP \geq 0.$$

Hence $\Delta S \geq 0$ on L in the distribution sense, so that S is subharmonic on L.

In the same manner as in Armitage [2; Lemma], we can prove

Lemma 7 (cf. [28; Lemma 1]). If s is subharmonic on L, then

$$\int_{S^{n-1}} s(|X|, Y) d\tau(z)$$

is a subharmonic function on L depending only on $|X|$ and Y.

The next lemma is a preliminary version of Theorem 1.

Lemma 8. Let S be a subharmonic function on L satisfying (PL). If

$$\liminf_{r \to \infty} r^{(n-1)/2} \exp(-\lambda_D r) \sup_{|X|=r, Y \in D} S(X, Y) \equiv 0,$$

then $S \equiv 0$ on L.

Proof. Let $(X_1, Y_1) \in L$ and $\varepsilon > 0$ be given. We find $r=|X_1| + 2$ such that

$$\sup_{|X|=r, Y \in D} S(X, Y) \equiv \varepsilon r^{(1-n)/2} \exp(\lambda_D r).$$
Let h be the bounded harmonic function on $B^n(X_0, r) \times D$ such that

$$h(P) = \begin{cases} \epsilon r^{1-n/2} I_{n/2-1}(\lambda_D r) & \text{on } \partial B^n(X_0, r) \times D, \\ 0 & \text{on } B^n(X_0, r) \times \partial D. \end{cases}$$

By (1) and the maximum principle we have $S \equiv Ah$ on $B^n(X_0, r) \times D$. Let

$$\nu(X, Y) = f_D(Y)|X|^{1-n/2} I_{n/2-1}(\lambda_D |X|)$$

and recall that this function is positive and harmonic in L and vanishes on ∂L. Since

$$r^{1-n/2} I_{n/2-1}(\lambda_D r) \equiv A(r-1)^{1-n/2} I_{n/2-1}(\lambda_D (r-1)),$$

it follows that

$$h(X, Y) \equiv \epsilon r^{1-n/2} I_{n/2-1}(\lambda_D r) \equiv A \epsilon \nu(X, Y_0) \text{ for } |X| = r-1.$$

Hence Lemma 1 leads to

$$h \equiv A \epsilon \nu \text{ on } \partial B^n(X_0, r-1) \times D.$$

Using the maximum principle, we obtain

$$S \equiv h \equiv A \epsilon \nu \text{ on } B^n(X_0, r-1) \times D,$$

and in particular $S(X_1, Y_1) \equiv A \epsilon f_D(Y_1)|X_1|^{1-n/2} I_{n/2-1}(\lambda_D |X_1|)$. Since ϵ is arbitrary, it follows that $S(X_1, Y_1) \equiv 0$, so that $S \equiv 0$ on L.

Proof of Theorem 1. On account of Lemmas 6 and 7

$$S(X, Y) = f_D(Y) \int_{S_{n-1}} \int_D s^+(|X| \alpha, Y') f_D(Y') \, dY' \, d\tau(\alpha)$$

is a subharmonic function on L satisfying (PL). It follows from (4) that S satisfies (10). Hence Lemma 8 leads to $S \equiv 0$ on L, so that s^+ must identically equal zero. Thus $s \equiv 0$ on L.

Proof of Theorem 2. Let

$$h(P) = \int_{\partial L} s^+(Q) \omega(P, dQ).$$

On account of Lemma 5 and (5), h is positive and harmonic on L. By the aid of [21; 2.24 The Vitali—Carathéodory Theorem] applied to the measure $\omega(P_0, \cdot)$, we find a nonincreasing sequence of nonnegative lower semicontinuous functions ν_j on ∂L such that $s^+ \equiv v_j$ and

$$h(P_0) \equiv h_j(P_0) - 1/j,$$

where

$$h_j(P) = \int_{\partial L} v_j(Q) \omega(P, dQ).$$
We observe that

$$\lim_{j \to \infty} h_j = h \quad \text{on} \quad L.$$

In fact, $h^* = \lim_{j \to \infty} h_j$ is a harmonic function which majorizes h since v_j is non-increasing. We infer from $h^*(P_0) = h(P_0)$ and the maximum principle that $h^* = h$ on L.

Now we claim that h_j majorizes s on L. Let $\varepsilon > 0$ and $M \in \partial L$. Since v_j is lower semicontinuous, there is $r > 0$ such that

$$v_j(Q) \equiv s^+(M) - \varepsilon \quad \text{for} \quad Q \in B(M, r) \cap \partial L.$$

Hence

$$h_j(P) \equiv (s^+(M) - \varepsilon) \omega(P, B(M, r) \cap \partial L) \quad \text{for} \quad P \in L,$$

so that

$$\lim \inf_{P \to M, P \in L} h_j(P) \equiv s^+(M) - \varepsilon.$$

Therefore

$$\lim \sup_{P \to M, P \in L} (s(P) - h_j(P)) \equiv s^+(M) - \lim \inf_{P \to M, P \in L} h_j(P) \equiv \varepsilon.$$

Since ε and M are arbitrary, $s - h_j$ satisfies (PL). Applying Theorem 1 to $s - h_j$, we obtain $s \leq h$ on L, and $s \leq h$ on L by (11).

4. Proof of Theorem 3

The Riesz–Martin decomposition ([20] and [19; Chapters 6 and 12]) yields that $s \in \mathcal{A}$ if and only if there are a signed measure ν on $\tilde{L} \setminus L$ and a nonnegative measure μ on L such that

$$s(P) = \int_{L \setminus L} K(P, Q) d\nu(Q) - \int_L G(P, Q) d\mu(Q).$$

We first treat the mean of a positive harmonic function, and then treat that of a Green potential.

Lemma 9. If h is a positive harmonic function on L, then $\mathcal{A}h(Y)$ is harmonic on D or identically $+\infty$ on D.

Proof. We assume that $\mathcal{A}h(Y') < \infty$ for some $Y' \in D$. Take a compact subset K of D. Then Harnack’s inequality [19; Theorem 2.14 and Corollary 2.15] yields that

$$\sup_{Y \in K} h(X, Y) \equiv Ah(X, Y') \quad \text{for all} \quad X \in \mathbb{R}^n,$$

where A is a positive constant depending only on Y', K and D. Moreover every first and second order derivative $\partial \partial h$ of h satisfies

$$\sup_{Y \in K} |\partial \partial h(X, Y)| \equiv A'h(X, Y') \quad \text{for all} \quad X \in \mathbb{R}^n,$$
where A' depends only on Y', K and D (see [18; p. 37]). Since $\mathcal{M}h(Y')<\infty$, it follows that
\[
\varphi(r) = \sup_{Y \in K} \sum_{i=1}^{n} \int_{\partial B^n(x_o, r)} \left| \frac{\partial}{\partial x_i} h(X, Y) \right| d\tau_r(X)
\]
is integrable with respect to r, where τ_r stands for the surface measure on $\partial B^n(x_o, r)$. Hence we can choose $r_j \to \infty$ such that $\varphi(r_j) \to 0$. Using Green's formula, we obtain
\[
\Delta_Y \mathcal{M}h(Y) = \int_{R^n} \Delta_Y h(X, Y) dX = -\int_{R^n} \Delta_X h(X, Y) dX
\]
\[
= -\lim_{j \to \infty} \int_{B^n(x_o, r_j)} \Delta_X h(X, Y) dX
\]
\[
= \lim_{j \to \infty} \int_{\partial B^n(x_o, r_j)} \frac{\partial}{\partial n_X} h(X, Y) d\tau_{\partial X}(X) = 0
\]
for $Y \in K$. Since K is arbitrary, $\mathcal{M}h$ is harmonic on D.

From Lemma 9 we have a relation between G and G^D, which may be of some independent interest.

Proposition 2. There is a positive constant c_1 depending only on n and m such that
\[
G^D(Y, Y') = c_1 \int_{R^n} G((X, Y), (X', Y')) dX.
\]

Proof. We may assume that $X' = x_0$. Let $Y' \in D$ and put
\[
v(Y) = \int_{R^n} G((X, Y), (X_0, Y')) dX.
\]
We infer from Lemmas 3 and 9 that v is harmonic on $D \setminus \{Y'\}$. It follows from Fatou's lemma that v is lower semicontinuous on D, and from Lemma 3 and Lebesgue's dominated convergence theorem that
\[
\lim_{Y \to Y'_1} v(Y) = 0 \quad \text{for} \quad Y_1 \in \partial D.
\]
The maximum principle yields that $v(Y) \equiv v(Y') \equiv +\infty$ (actually if $m=1$, then $v(Y') < +\infty$ and if $m \geq 2$, then $v(Y') = +\infty$), so that v is superharmonic on D. Therefore
\[
\Delta_Y v = -c(Y', D) \delta_Y,
\]
in the distribution sense, where $c(Y', D)$ is a positive constant which may depend on Y' and D (see [19; Theorem 5.4]).

What remains is to prove that $c(Y', D)$ does not depend on Y' and D. Take $r > 0$ such that $B^n(Y', r) \subset D$. Let $L' = R^n \times B^n(Y', r)$ and let G' be the Green function for L'. Since $G(\cdot, (X_0, Y')) - G'(\cdot, (X_0, Y'))$ is a positive harmonic function on L' decreasing rapidly at the infinity by Lemma 3, it follows from Lemma 9 that
\[
v(Y) = \int_{R^n} G'((X, Y), (X_0, Y')) dX
\]
is harmonic on $B^n(Y', r)$. Hence
\[c(Y', D) = c(Y', B^n(Y', r)) = c(r). \]

We infer from the arbitrariness of r that $c(r)$ is equal to a positive constant depending only on n and m. The proof is complete.

Lemma 10. If u is a Green potential on L, then $\mathcal{M}u(Y)$ is a Green potential on D or identically $+\infty$ on D.

Proof. Let
\[u(P) = \int_L G(P, Q) d\mu(Q), \]
where μ is a Radon measure on L. We have from Fubini's theorem and Proposition 2 that
\[\mathcal{M}u(Y) = \int_{\mathbb{R}^n} \int_L G((X, Y), Q) d\mu(Q) dX = c_1^{-1} \int_D G^D(Y, Y') d\mu_0(Y'), \]
where μ_0 is the measure on D defined by $\mu_0(E) = \mu(R^n \times E)$. If there is a compact set $F \subset D$ such that $\mu_0(F) = \infty$, then $\mathcal{M}u \equiv \infty$ on D. If there is no such compact set, then μ_0 is a Radon measure on D and $\mathcal{M}u$ is a Green potential on D or identically $+\infty$.

Proof of Theorem 3. Since $h-s$ is a nonnegative superharmonic function, it follows from the Riesz—Martin decomposition that
\[h-s = u+p, \]
where u is a nonnegative harmonic function on L and p is a Green potential on L. We infer from the assumption and Lemmas 9 and 10 that
\[\mathcal{M}s(Y) = \mathcal{M}h(Y) - \mathcal{M}u(Y) - \mathcal{M}p(Y) \]
is a subharmonic function on D or identically $-\infty$.

Proof of Corollary 1. The inequality in Corollary 1 implies (5), and hence Theorem 2 shows that
\[h(P) = \int_{\partial D} s^+(Q) \omega(P, dQ) \]
is a nonnegative harmonic majorant of s. We infer from Lemma 5 and Fubini’s theorem that
\[\mathcal{M}h(Y_0) \]
\[\sim \int_{\mathbb{R}^n} \int_{\partial D} \int_{\mathbb{R}^n} s^+(X, Y)(1 + |X - X'|)^{(1-n)/2} \exp(-\lambda D |X - X'|) \frac{\partial f_D}{\partial n_Y}(Y) dX d\sigma(Y) dX' \]
\[\sim \int_{\partial D} \int_{\mathbb{R}^n} s^+(X, Y) \frac{\partial f_D}{\partial n_Y}(Y) dX d\sigma(Y) < \infty. \]

Hence $\mathcal{M}h(Y_0) < \infty$, so that the corollary follows from Theorem 3.
Note added in proof: Professor S. J. Gardiner kindly informed the author that in a paper to be published in Bull. London Math. Soc. he obtained results which imply our Theorem 3. His methods are different from ours.

References

Gakushuin University
Department of Mathematics
Faculty of Science
Toshima-ku, Tokyo 171
Japan

Received 25 March 1986