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1. trntroduction

Various properties of subharmonic functions on a strip R'X(0, 1) have been

studied by many authors (see I{ardy, Ingham and Pölya [lfl for n:1;
Brawn 16-121, Armitage [3,4], Armitage and Fugard [5] for n=l). Recently

Yoshida t2.6--281extended some of them for subha.rmonic functioris on a cylinder
R1XD, where D is a smooth bounded don:ain in R-. The purpose of this paper

is to consider several properties of subharmonic functions on a (generalized) strip
R'XD from a point of vievr clifferent from Yoshicla's. We shall argue especially

the Phragmdn-Lindelöf principle, the harmonic majofization and the properties

of hyperplane mean values of subharmonic functions. In case m:l every bounded
domain in R- is similar to (0, 1). Flowever, there arises a regularity problem for
bounded domains D in R'n if m>1. In this paper we let D be a b_ounded Lipschitz
domain if m=1.

We denote by P : (X, Y) a point in Ro+": R" X R*, wherg X: ( xt, ..., x,)(.R'
and Y:(yr,...,y*YP3. We write lPl, lxl and lIl fnr (Zi:r*3+Z'i:ry1)'t',
(Zi-r*11'r' and (Zi:ryl)'t', respectively. We iclentify Rr and Rm with

{(X,Y); I:0} and {(X,y); X:AI, respectively. We denote by 5'-r the unit
sphere {a€R'; lal :l} with center at the origin in R', and by z the surface measure

on ,S'-1. We write briefly L, for a strip R'XD.
Let s be a subharmonic function on Zr. If

(PL) limsup s(P) = 0 for 8(8LD,
PnQ,P€Ln

then we say that s satisfies the Phragmdn-Lindelöf boundary condition. We denote
by s+ the positive part of s. In view of the behavior at - of the Bessel function
In,r-, of the third kind of order nf2-1,

(1) Lp-r(r) - r-tlz et as r + @,

(IZS; p.2031), Brawn's result p; Theorem 2, Corollaryl rnay read as follows:

Theorem A. Let m:l and D:(0, l). If s is a subharmonic function in Lp
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satisfying

(2)

then s50

Wen
problem

(3)

(PL) such that

liginf r(n- t)tz e-"' f ,._, {:

in Lo.

ote that the function sin (zry)

s +(ra, y) sin (ny) dy dr(a) - 0,

appearing in (2) is related to the eigenvalue

(År+ p)f - 0 on D,

f :A on 0D,

where År:Zi:r0'10y1. lf m:l and D:(0, l), then the constant n2 and the

function sin (zy) are the first positive eigenvalue of (3) and its positive eigenfunc-

tion. In general we let ,1, be the square root of the first positive eigenvalue of (3)

and let /, be its positive eigenfunction. In Section 3 we shall prove the following
generalization of Theorem A :

Theorem l. Let m>l and DcR-. If s is a subharmonic function on Lp
satisfying (PL) such that

(4) lim isf r@-t)tz exp ? Äoi [ *-, I os 
+ (re, Y)fr(f) clY dr(a) - 0,

then s<0 on Lp,

Next we shall deal with subharmonic functions which do not necessarily sat-

isfy (PL). Let I be the set of all functions s defined on the closure of L, that are

subharmonic in "Lp and satisfy

limsup s(f;: s(Q) <1-- for every Q€\Lr'
P+Q,FELD

Let ,il be the set of all subharmonic functions s that have nonnegative harmonic

majorants (see [11 ; p.262]).In case m:l we can easily deduce the following suffi-

cient condition for s to belong to ,il in the same line as in Brawn [8; Theorem 2] :

Theorem B. Let m:t and D:(0, l). If sC? satisfies Q) and

f ̂
,t* 

{x,0)(1 + lxl)(1-n)tz'-tlxl dx < n,

Å, t*(X, lxl +lxl)(l-n)tz r-nlxl dX < *,
then sQd.

In order to generalize TheoremB to the case m>1, we need to define the

normal derivative of fr. Let n, be the inward normal at Y with respect to 0D and

let o be the surface measure on LD.It is well known that n, exists o-a.e. on åD (see

e.g. 122; p. 2+4). We shall observe in the next section that for o-a.e. Y on åD the
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normal derivative of /r,

fir,t >:titr*r,(Y +tn,)

exists, and that 0frl0nr>0 o-a.e. and is square integrable with respect to o. We
note that if m:1, D:(0, 1) and å(y):sin (ny), then \fpl\ny:n on {0, l},
and o:äo*är, where äo and ä, are the Dirac measures at 0 and 1. Our generaliza-

tion of Theorem B is

Theorem 2. Let m>l and DcR'. If se? satisfies (4) and

(s) I * l uos+(x, D(l -tlxl){t-n112 exp (- )"plxl»p*tr>ax do(Y) =*,

then I ar.,s+(Q)a(P, dO) is a nonnegatfuse harmonic majorant of s and hence s€,il
where a is the harmonic measure.

Finally we shall consider the mean

,&s(Y): f *.t(X,Y)dX
of a subharmonic function.v on Lr.ln case m:l and D:(0, l), there are a num-
ber of studies on ulls (see [3, 41, l7-9, l2l, ll5l and [lfl). As a typical example we

quote [8; Theorem 3]:

Theorem C. Let m:l and, D:(0, l). If s€g and

(r) .[ *^lt<*, y\lilX =.*, o = y = !,

(ii) lim sup s+(X, y)lxl(t-Dtae-'lxl - O,
l(x,y)l*e,(x,y)€r,

then .,{ds is a conaex function of y€D.

Since the assumption of Theorem C implies that s€.il by Theorem B, it may
be natural to consider the properties of ufis for s(.il. Noting that the subhar-
monicity corresponds to the convexity in case rn>|, we shall prove

Theorem 3. Let m>l and Dcx'.. Let s1,il and let h be a nonnegatiae

harmonic majorant of s. If

{ *.o(*,Y) dx < * for some Y<D,

then "ds(Y) is a subharmonic function on D or identically -* on D.

From this theorem we shall derive

Corollary l. Let m>-l and DcR'. If s€9 satisfies $) and

I u, I *.s+ 
(x, D ffi(D dx do (Y) = -,
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then ,ils(Y) is asubharmonicfunctiononD or identically -* onD.

In case m:l and D=(0, 1), the inequality in Corollary I reduces to

0) + s+(X, l)) dX < oo

Hence Theorem C readily follows from Corollary 1.

The author would like to acknowledge that this work was inspired by Yoshida

[2.6-281, and would like to thank Professor Yoshida for showing him the pre-
prints of 126-281.

2. Preliminaries

We shall use the following notation: Let X6- (0, ...,0XP, Io:(0, ...,0)(R'
and Po:(Xo,Yo)(N+-. Let,Sn-1 be the unit sphere with center at Xo in.P and
let r be the surface measure on ^S-1. Denote by B"(X, r) (respectively B-(Y, r),
B(P, r)) the n (respectively m, n*m)-dimensional open ball with center at X(respec-

be the projection defined by n((X,Y)):X and let no(P):(r(P), %). We observe
that O(X):8"(X,|)XD is a bounded Lipschitz domain in Rn+'. For simplicity
we write L for L, in the sequel.

Unless otherwise specified, A \Ntll stand for a positive constant depending only
on Z, possibly changing from one ocrurrence to the next, even in the same string. If
f and g are positive quantities such that A-tf=g=Af,, then we wite f-g.

The boundary Harnack principle ([25; theorem 1]) stated below is a useful tool.

Lemma A. Suppose that U is a bounded Lipschitz domain in N+*, Q is a
point in U, E is a relatiaely open set on 0U, S is a subdomain of U satisfying 0S n\U c E.
Then there is a positiue constant C, such that wheneaer u and a are two positiue har-
monic functions in U aanishing on E and u(Q) = a (Q), then u(P) = Cu (P) for all PC S.

Applying Lemma A to U:Q(P), Q:no(P), E:|A(P)a\L and §-
: B' (n (P), I l2)xD, we obtain

Lemma I ([1; Lemmall). Let P€L. Let u and a be positiae harmonic func-
tions on O(z(f)) whichaanish continuously on\A(n@))alL. If u(ns(P))=n(no(P)),
then u(P)<Åu(P).

We need the following simple Phragmdn-Lindelöf principle, which will be
improved by Theorem 1.

Lemma 2 ([; Lemma2)). Let Ii be a subdomain of L. If s is subharmonic in

I o-(r*(x,
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Li, bounfud aboae in Li and nonpositiae on \IJ, i.e.,

fi-*Pps(P) = 0 for any Q1AL',

then s=0 in L'.

One of the main difficulties arising in case rn >1 seems to be caused by the

lack of the exact formulas for the Green and Poisson kernels for Z (see [6] in case

m:l and D:(0, 1)). Instead of those formulas we shall use the Riesz-Martin
representation (t201 and [19; Chapters 6 and l2l). In the previous paper [1] we deter-

mined the Martin compactiflcation of I (see [10] for m:l).We shall describe the

Martin compactification of .L as follows: We denote by Z:PXD the Euclidean
closure of I in N+-. Let L:Lv{M,; a€.Sn-r} be a compact topological space

with open base OrvO2, where Or:dUnL; U is an open set of R'+') and Or:
{U(a, e,R); a€,S'-l, 0=e=1 andR>0} with U(o(, e, R):{Mp; p€S'-1, Zi:tatfri=
t - elu {(x, h<L; (l - e)-'Z!:, xiur>lx l= R}. We note that M nis considered to be

anidealboundarypoint, and that Pi:(Xi,Yt)<1 converges to M, if and only if
lim;*- lX;l:{- and lim.;*- XillX;l:a.

Theorem D (tt; Theorem ll. See also [10], [16; Chapter 8, 4 Appendix]). rne
Martin compactification of L is homeomorphic to L. Euery point on ,tr.l is a minimal

boundary point. More precisely, let G be the Green function for L and let K be the

Martin kernel defined by

K(P, Q) : I G(P,8)lG(Po,8)

t - liqr_ - G(P, M)lG(Po, M)
M*Q,,M €L

ir 8€L,
if 0€ i\u.

Then there are a positiae constant ).f, and a positiue contimtous function f$ on D,
uanishing on 0D and satisfying fi$):|, such that

(6) K(P, M): fi!\exp(,li )",=raix)

for P:}Y,Y) and Q:M,1L\L.
We write the Laplacian / as

/ : /x* Åy : Zn:, # * ZT:r# .

Since /K( ., M)-0, it follows from (6) that (/y+Lf)fi:O on D, so that lf;
is an eigenvalue of (3). Furthermore we show

Propositionl. The constant )"f; is the first positiue eigenaalue of (3). Hence

1o: )"5 and fr:ssns1.7*.

Proof. Suppose that (3) has a positive eigenvalae p-).2 smaller tban ),,f;.
Let f#0 be an eigenfunction correspondingto )'2. By a straightforward calculation
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we see that
u(X,Y) - f(Y)ex*t

is harmonic on I. Let z4o:sup".r lf!)l=*, I/:{X; xr<l\XD and L!,:
{X' xr=0}XD. First we compare r.r and the bounded positive harmonic function
o on L'such that

tim u(p) : I Ao if Qe {x; xL: llxD,
t-e-,- , l. 0 if ee {X; x, = l}XåD.

Lemma 2 applied to s:lzl-e^a leads to

lu(P)l = eAu(P) for Pe.L'.

Next we compare a and the Martin kernel K(., Mp) with 9:11,0, ...,0).
we infer from Lemma I that there is a positive constant l, such that if
P:(X,Y)e {x; x1:0}XD, then o(P)=ALK(P,Mp). Hence Lemma2 applied to
s:a-AtK(., Mi yields

a(P) = ALK(P, Mp) on L".

Therefore we have from (6)

lf?)l = Are^f$(y)e1tf;-t1x, if xr = 0.

Since ,tf >,[, letting x!*-e, w€ obtain f(y):O on D, a contradiction.

Remark 1. In case D is a piecewise cl domain it is known that if/is a posi-
tive eigenfunction for (3), then the eigenvalue corresponding to/is the first positive
eigenvalue (t13; r. a58l).

Remark 2. If m:1, D-(0, 1)

If m--2 and D - B* (Yo, r), then

fo(I) :

where J^,r-, is the Bessel function of the first kind of order ml2-l and .lo is
the least positive number such that J^12_1(),s):O (see [23; p. 45] and 16; p. aa\).

Hereafter we let f»(Yi:|. We observe from (6) that

{ r"-,*(r, M) tu(a) : fr(Y) I 
",-, 

exp (,1e Zi:, a,x) arlo'y, p : (x,y),

is a positive harmonic function depending only on lxl and z. on account of the
formulas for Bessel functions in 123; p. 79), we see that the above integral is equal to

ca fog)lx l' -n tz Inp - fi»lxl),
where c, is a positive constant depending only on n and rn,r-, is the Bessel function
of the third kind of order nl2* l. Let Kntz-r be another Bessel function appearing

2*"-r1(+)

and Yo:112, then Lo:n and foj)-sin (ny).
1o:101, and

(9'-mtz lrl, -mtzJ*tz_,elrl) ,

(7)
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in 123; p. 781, which satisfies

(8) Knp-t(r)-r-Uze-t as r + €.

Since K,72-1 satisfies the same second order differential equation 123; (l) on p. 771

as f,p-1, it follows that

fo(y) I X l, - " 
tz K, 

1 2 _ t(l ol X l)

is positive and harmonic on {(X, Y)€L; X*Xo}.
Let GD be the Green function for D. we see that if m:l and D:(a,å), then

Go(y,y): min {#"-d,J!(b-l;} for !,!,(D.

Weobserve that GD(.,7) isharmonicon D\{y'} and

[-d, if ffi: r,
/rGo(. ,Y') : l, -2nöy, if m :2,

lp-m1o^a* if m-3,
where o. denotes the surface area of the unit sphere s'-1 and ä, denotes the Dirac
measure at I'. We have

Lemma 3. Let Go(.):G( ., Ps) and G3(.):Gr( .,y). If f€D\8.(f0, t),
then

(i) Go(6, V)) -fr(y) (l + 1x;;tr-»rt exp (- ).olx l),

(ii) G3(J)-fDg).
Proof. Applying Lemma 1 to u:f»(Y)lX1t-"tzy,p_r(),rlXD and a-Go, we

obtain that

Go((x,y))-fDg)lxlt-az K,12_{iolxl) for lxl : l.

On account of Lemma2 and (8) we have (i) for lXl>l. From LemmaA with
(J:Bn(xo,zlx(ofr"trr, tlz», il:Go and u:fo(y)lxlr-ntrl,p-r(lrlxl) we
infer (i) for lXl=l and f(D\B'(%, 1). We regard Gfl as a positive harmonic
function on {(X,y)et-; Y*Yol. Applying LemmaA to the same U as above,
u:G? and o:Go, we obtain

Gf(D-Gr«X,Y)) for lXl : I and r(D\.8'(r0,1).

Hence (i) leads to (ii).

Remark 3. In view of Widman [24; Theorems2.2 and2.5l, if D is a Liapunov
domain in N (m=2), then

G?(Y)-fD(Y)-dist(r, AD) for r€D\8,(%, t).
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This relation also holds in case rn:l.
In [14] Dahlberg studied a relationship between the harmonic measure and

the normal derivative of the Green function for a bounded Lipschitz domain. Since

GD andfo are comparable by Lemma 3 (ii), we can prove the next lemma in a way
similar to ll4; Lemma 91.

Lemma 4. Let n, be the inward normal at Y with respect to 0D, For o-a.e.

point Y on 0D the normal deriaatiue of fr,

fi, r,«r1 : riffh r,(Y +tn,)

exists and is positiue. The normal deriuatiae |fol\nr is square integrable with respect

to the surface measure o on 0D. Furthermore if h is C2 on a domain including D,
then the following Green's identity holds:

{ rfr{1, + t"?D)h dY : r uro * or.

Let ctt(P, E) be the harmonic measure at P(L of Ec\L.

Lemma 5. If E is a Borel rueasurable set on DL,' then

a (p s, E) * ! r( 1 + lx l)(1 -' ) t 2 exp (- )"ol* O #, (Y) d x d o (Y).

Proof. It is sufficient to prove the lemma in case EcB"(Xr,l)XAD for some

X1.Let Pt:(Xt,Io) and L':B,(X,,3)XD. By ar(.,E,L') and G'we denote

the harmonic measure of -E and the Green function for L'. Applying Lemma A
to u:Bn(xt, z)x(,o\a'(rr, t/» , u:G'(., P.) and a:G(., Pr), we obtain that
G'((X,Y), PL)-G((X,Y), Pr) for X€U"(X|, 1) and y(D\B'(%, l). By Lemma 3

(i) and a suitable translation we have G((X,Y),Pr)-fr(Y) for X(B*(Xr, 1) and
f€D\B'(%, l). Hence we infer from [14; Theorem 3 (b) that

a(P,, E, L)-l r#dx do(Y).

If l&-&l=3, then the Harnack principle leads to

a(Po, E1-11(Pr, E1-617pr, Z, t-)- f rffiararlrl.
In ese l&-Xol>3, using Lemma l for P(08"(X1,2)XO and then using Lemma 2,

we obtain

Hence by Lemma , '('o'E) - G(Po'P)a(P1'E'o'

a(ps,E')-! r(1+lxl)(l-,'t2 exp(- t»l*»#(r) dx do(y).
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Remark 4. lf D is a Liapunov domain, then |frl\nr-l by Remark 3, so that

a(Po, E)- t o(l + 1X;1«t-',)/2 exp (-lpl Xl) dX do(Y).

lf m:| and D:(a,ä), then

a(Ps, E) : @(Po, E)*a(Po, E)

- { n@)un(su) 
(1 + lxl)(r-z)/2 exP G )'Dlxl\ itx,

where Eo : 2 (E ) X {a} : {(X, i e n ; ! = a} and E o: n (E ) X {b} : {(X, y) ; y : b}.

3. Proofs of Theorems 1 anil 2

Brawn p; Theorem2, Corollaryl (see also [5; Theorem4]) proved Theorem A
by using the Nevanlinna mean "/{ (s, r) of s defined by

.l/ (s, r) : f ,,-, dr (q I: s (ru, y) sin (ny) d y

: /'sin (nD dy I *-,s(ra, y) tu(a).

In the expressions of ,.&(s, r), there are two averaging operations,

;['s sin (ny) dy and { *-,sih(a).

Naturally, the operation losfo(Y) dI is considered to be a generalization of the

first. We shall observe that these operations produce symrnetrized subharmonic
functions from given subharmonic functions on .L (see Lemmas 6 and 7 below).
We shall prove Theorem I by using this phenomenon. Let us begin with

Lemma 6. Let s be a nonnegatiae subharmonic function on L satisfying
(PL). Then

S(x, D : fo[) [ rs(X,Y)fp(Y') dY'

is a subharmonic function on L satisfying (PL).

Proof. On account of (PL) s is bounded on B'(Xo , r)xD for every r>0.
Since /, is continuous on D, it follows that § is locally integrable on "L. Since s

satisfies (PL) and is nonnegative or .L,

,r"l = {å(') 'i "r[?,..r, ,

is a subharmonic function on R'+'. On account of [9; Theorem 4.20], there is a
nonincreasing sequence of C2 subharmonic functions s, on R'+' converging to 3.
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In view of (PL) and the construction of the sequence in [19; Theorem 4.20], we may
furthermore assume that there are compact subsets K1 of D such that K;tD and

(9) sy(P) = lf for P(8"(xo,j+l)x(Å\Kj).
Let

Sj(x,Y) : foT) I rsl(X,Y')fr(Y) itY'.

It follows fiom the monotone convergence theorem that §;{,S, so that § is upper
semicontinuous. Let P:(X,Y)eB'(Xo,ilXD. Since /s;20, we have from
Lemma a and (9)

Å S {P) : fo$) I, $ * s i (X, Y') - },?s s, (X, Y')} f D (Y' ) dY'

= -fr$) ! o(/r, + ),?) s ; (x, Y ) . fD(Y,) dY,

= -fo(Y') ! uos;6, r)ff,(Y')do(Y')

= -| r,<r) 1,,#(r')ito(Y').
Since the last term tends to zero as i* *, it follows from the dominated convergence
theorem that if E€C;(L) and E>0, then

l rto, dP : H f "t,o*dP 
: lim { rvts, itP > o.

Hence /,S>0 on -L in the distribution sense, so that § is subharmonic on Z.
In the same manner as in Armitage [2; Lemma], we can prove

Lemma 7 (cf. [25; Lemma l]). If s is subharmonic on L, then

.;[ "-, 
s(lXla,Y)dt(a)

is a subharmonic function on L depending only on lXl and Y.

The next lemma is a preliminary version of Theorem l.

Lemma 8. Let S be a subharmonic function on L satisfying (PL). If

(10) lim inf rCI-l)tz exp(- ),or\ 
rrrlY,g., ^S(X, D = 0,

then S=0 on L.

Proof. Let (Xr, Yr)<L and e>0 be given. We find r=lXtl*2 such that

sup S(f, D < er<L-n)l2 exp (rlrr).
lxl-ltYeD
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Let h be the bounded harmonic function on Bn(Xo, r) XD such that

h(P) : 
{ert 

-"tz I'n-r ('1o r) tå U;," 

rtr:,' lXr';
BV (1) and the maximum principle we have S=Åh on B'(Xe, r)XO. Let

t: (X, Y) : fD(Y)lX 11 
-"tz I 

^n - 
fi»lX l\

and recall that this function is positive and harmonic in I and vanishes on åI.
Since

rr-"lz lon-r(L»r) = A(r -l\'-"1'I,p-r(Lr(r - 1)),

it follows that

h(x,Yo) = erl-ntz l,p-J7or) = Aer:(x,Y) for lxl : r- l.
Hence Lemma I leads to

h = Aeu on 0Bn(Xo,r-1)XD.

Using the maximum principle, we obtain

S = h = Ae,u on B"(Xo, r- l)XD,

and in particular S(XL,Y)=Åef"(Y)lxrf-"t2Inft-t().Dlxl,;l). Since e is arbitrary,
it follows that §(Xr, fJ=O, so that ,S=0 on -L.

Proof of Theorem I. On account of Lemmas 6 and 7

S(X, n : fr(Y) I r*,.,i[ s+(lXl a, Y")fr(Y') ilY' tu(a)

is a subharmonic function on "L satisfying (PL). It follows from (4) that ,S satisfies

(10). Hence Lemma 8 leads to §<0 on Z, so that s+ must identically equal zero.

Thus s<0 on .L.

Proof of Theorem 2. Let

h(P) : ! u"s+ 
(Q)a(P, dQ).

On account of Lemma 5 and (5), å is positive and harmonic on I. By the aid of
121; 2.24 The Vitali-Carathdodory Theoreml applied to the measure @(Po, .),
we find a nonincreasing sequence of nonnegative lower semicontinuous functions
ai on 0L such that s+ <z1 and

h(Pr) = hi(P)-.fi,
where

h/P): Ir"a/Q)a(P,dQ).
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We observe that

(11) tig-h,: t on L.

In fact, å*:limi*- hi is a harmonic function which majorizes å since a, is non-
increasing. We infer from å*(Ps):å(Po) and the maximum principle that h*:h
on L.

Now we claim that \ majorizes s on .L. Let e>0 and M€\L. Since a, is lower
semicontinuous, there is r>0 such that

o1(Q) =- s+(M)-e for QIB(M,r)n|L.
Hence

h,(r) =- (s+(M) -e)o (r, n7tut, r)all) for P(L,
so that

,tlg,yå hj(P) = s+(M)-e.
Therefore

lim sup (s (P) - h; (P )) = s + (M) - lim inf hi(P) = e.
P*M,P€L P*M,P€L

Since e and M are arbitrary, s-ht satisfies (PL). Applying Theoreml to s-å;,
we obtain s=hi on L, and s=lr on I by (11).

4. Proof of Theorem3

The Riesz-Martin decomposition ([20] and [19; Chapters 6 and 12]) yields

that s€ ,il if and only if there are a signed measure v on .L1Z and a nonnegative

measure p on L such that

s(r) : /ry, r(P, 0 an @) - I 
"G 

(P, e) dp(D.

We first treat the mean of a positive harmonic function, and then treat that of a
Green potential.

Lemma 9, If h is a positfue harmonic function on L, then "//h(Y) is harmonic

on D or identically ** on D.

Proof. We assume that -&/h(Y)- - for some Y'(D. Take a compact sub-

set K of D. Then Harnack's inequality [19; Theorem2.l4 and Corollary 2.15]
yields that

suPh(X,Y) = Ab(X,Y') for all X(.Rn,
Y€K

where I is a positive constant depending only on Y', K and D. Moreover every flrst
and second order derivative th offt satisfies

supl0h(X,Y)l = A'b(X,Y') for all X(R,
! €.N



On subharmonic functions in strips 131

wherc Å'depends only on Y', K and D (see [18; p. SZ1). Since '{/h(Y)=-, it fol'
lows that

Eb): i:? Zi:r.[ ur,r*o,, l* h(x,r>\ar,(x)

is integrable with respect to r, where z, stands for the surface measure on 08"(Xo, r).
Hence we can choose rit- such tbat EQ)*O' using Green's formula, we obtain

Åy "eh(y) : t ̂
^ 

lrhtx, y) dx : -.f 
^^Å*h(x, 

Y) dx

: - fim I_--__ -/xh(x,Y)dxl*@ J Bn(Xo,t)

: lEI ur,r*,,,,r*h(x,Y)dc,,(x) 
: a

for I€K. Since Kis arbitrary, ..&his harmonic on D.
From Lemma 9 we have a relation between G and GD, which may be of some

independent interest.

Proposition2. There is a positiue constant c1 depending only on n and m

such that
GD (Y, Y) :', f * G((X, Y), (X', Y')) dX'

Proof. We may assume that X':Xo. Let Y'€D and put

,(Y) : I *.G 
((x, Y), (xo, Y')) dx.

We infer from Lemmas 3 and 9 that o is harmonic on D\{Y'}. It follows from
Fatou's lemma that a is lower semicontinuous on D, and from Lemma 3 and

Lebesgue's dominated convergence theorem that

"lgp, 

u(I) : 0 for Yr(.\D.

The maximum principle yields that a(Y)=a(Y)E*- (actually if m:1, then
a(f)-.*- and if m>2, then u(I):1-), so thata is superharmonic on D.
Therefore

lyu : -c(Y',D)öy,
in the distribution sense, where c(I', D) is a positive constant which may depend

on Y'and D (see [19; Theorem 5.4]).
What remains is to prove that c(Y',D) does not depend on Y'and D. Take

r>0 such that B*(Y',r)cD. Let f :NXB-(Y',r) and let G'be the Green

function for L'. Since G( .,(Xo,Y))-G'(.,(Xo, r)) is a positive harmonic func-

tion on I' decreasing rapidly at the infinity by Lemma 3, it follows from
Lemma 9 that

o(D- [ *,G'((x,Y), 
(xo,Y)) dx
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is harmonic on B-(Y', r). Hence

c(Y',D) : c(Y', B^(Y',r)) : c(r).

We infer from the arbitrariness of r that c(r) is equal to a positive constant depending
only on n and m. The proof is complete.

Lemma lO. If u is a Green potential on L, then "/{u(Y) is a Green potential on
D or identically !* on D.

Proof. Let
u(P) : I rc(P, e\ dp(e),

where p is a Radon measure on Z. We have from Fubini's theorem and Proposi-
tion 2 that

"/{u(Y) 
: f ̂

^f ,G((x,y), a) ap@) dx : t, .f »cD(y,y,) dpo(y),

where po is the measure on D defined by po(E): p(R'XE). If there is a compact
set .FCD such that po(F):-, then ,//u=* on D. If there is no such compact
set, then po is a Radon measure on D and ,l/u is a Green potential on D or iden-
tically *-.

Proof of Theorem3. Since å-s is a nonnegative superharmonic function, it
follows from the Riesz-Martin decomposition that

h-s: u*p,

where z is a nonnegative harmonic function on z and p is a Green potential on z.
We infer from the assumption and Lemmas 9 and I0 that

.,e s (Y) : ..d h(Y) - "/{ u(\ - $ p $'S

is a subharmonic function on D or identically - -.
Proof of Corollary l. The inequality in Corollary I implies (5), and hence Theo-

rem 2 shows that
h (P) : I urt* 

(Q)a (P, ilQ)

is a nonnegative harmonic majorant of s. We infer from Lemma 5 and Fubini's
theorem that

-&h(Yo)

- I *,[ uo[ *" s+(x, D(l+ lx-x'11<t-')tzexp(-lolx-x'l)ffr<r> dx do(Y) itx'

- f rol *,s+G,Dffi(\ dxdo(Y) =-.
Hence .//h(Yo)= e; so that the corollary follows from Theorem 3.
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Note added in proof: Professor S. J. Gardiner kindly informed the author that in a paper to
be published in Bull. London Math. Soc. he obtained results which imply our Theorem 3. His
methods are different from ours.
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