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INFINITE DIMENSIONAL STATIONARY SEQUENCES
WITH MULTIPLICITY ONE

A. MAKAGON and H. SALEHI

Abstract. Tt is shown that an infinite dimensional stationary sequence is deterministic if and
only if some related family of stationary sequences with multiplicity one has this property. A spectral
characterization for regular processes with multiplicity one is discussed. The relation between fac-
torability and the conjugate analyticity of the range of the spectral density is examined. An example
of a factorable spectral density without conjugate analytic range is given.

1. Introduction

In [7] Niemi has observed that a multivariate stationary sequence is deter-
ministic if and only if some related family of stationary sequences with multiplicity
one has this property. The purpose of this paper is twofold. First we extend Niemi’s
result to the infinite dimensional case. Our approach to the problem is through
spectral multiplicity theory which is applicable to both the finite and infinite dimen-
sional cases. The second aim is to give a spectral characterization for regular processes
of multiplicity one. We summarize the content of the paper as follows. In Section 2
we state some known facts from the theory of spectral types. Section 3 contains
the extension of Niemi’s results. In Section 4, analytic characterizations for the
regularity of a stationary sequence with multiplicity one are studied. These charac-
terizations are of two types. One pertains to the notion of the conjugate analyticity
of the range of the spectral density, as introduced by H. Helson in [5], and the behav-
ior of the norm of the density. The relation between factorability and the conjugate
analyticity of the range of the density is examined. An example of a factorable
spectral density without conjugate analytic range is given. The other type deals
with an extension of Matveev’s results in [6] connecting the factorization problem
to the Nevanlinna class of functions.

Throughout the paper, N, Z and C stand for positive integers, all integers
and complex numbers. #, A will always denote complex Hilbert spaces with a
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norm |-|, and an inner product (-, -). By L(s#,#) we will denote the space
of all continuous linear operators from 2# into  equipped with the operator
norm | |. If # =2, we will abbreviate L(#, #) as L(#). L* () will stand
for the subset of L(#) consisting of all selfadjoint operators T€L(s#) such that
(Tx, x)=0 for all xcx#. I will denote the identity operator. For x and y in A,
x®y is the operator in L(J#) defined by the formula (x®y)z=(z,)x, z€H#.
If 4 is a closed subspace of #, then we will denote the orthogonal projection
operator onto .# by P,. .#* will stand for the orthogonal complement of .#
in #. The symbol @ indicates an orthogonal sum. The set of all linear combina-
tions of elements of 4 will be denoted by sp 4. If T¢L(#, &), then To# is the
range of T, and T denotes the closure of the range of T. If ¥ is a o-algebra of
subsets of a set Q and yu is a g-additive o-finite scalar measure on X, then we will
denote the space of all #-valued p-Bochner integrable functions on @ by
L*P(Q, %, u, #). The Lebesgue measure on (—m, 7] is denoted by dr. If
Q=(—n, )], X is the Borel g-algebra of measurable sets in (—=, 7] and p=dr,
then we will simply write L?(#) instead of L?((—m, 7], X, dt, #). The set of
all functions f€LP(#), p=1, such that f’i,, e (1) dt=0 for all n=1 (n=-1),
will be denoted by L7 () (L”.(#), respectively). The Hardy classes H? and the
Nevanlinna class N, can be found in [4]. The inequality k<n+1 means k=n
if n<oo, and k<oo if n=-co. For two measures y and v we mean by u<v that u
is absolutely continuous with respect to v.

2. Preliminary results

Let o be a Hilbert space and let (2, ) be a measurable space in the sense
that X is a o-algebra of subsets of a set Q.

A function E: X—L(xX') is said to be a spectral measure in A" if

(i) for every x,y€t, (E(+)x,y) is a countably additive set function on Z,

(ii) for every A€Z, E(4) is an orthogonal projection operator in %',

(iii) E(Q)=1I.

If E is a spectral measure in 2" and x€J, then #(E,x) will denote the
smallest closed subspace of " containing x which is invariant under E(4), 4€Z, i..,

M (E, x) =Sp{E(d)x: 4€Z}.
The space A is said to be countably generated by E if there exists a countable
set {x.: k=1,2,...}c such that sp {E(d)x,: 4€Z, k=1,2,..}=A".

2.1. Definition. Suppose that 2 is countably generated by a spectral meas-
ure E. The smallest number n in Nu{+o} for which there exists a set
{x¢: k<n+1}c " with the property

A =SPLEd) x: A€, k <n+1}
is said to be the multiplicity of E in ¢, and is denoted by m(E, X).
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The following lemma plays an important role in this paper, and its proof can
be found in [3] p. 914—918.

2.2. Lemma. Suppose that A is countably generated by a spectral measure E.
(A) If n=m(E, X'), then there exist a decreasing sequence of set A% and
a collection of vectors x €4, |x|=1, 1=k<n+1 such that

O #=@!_ ME x),
i) |Ex)2=|EAdnd)x? forall A4€X, 1=k <n+l1,
v AIE(-)x?
i) —— it =
) P
B) If A =@_y M (E; )=, M(E,y;), where m, nENU{+}, 0#x,€X,
l=k<n+1, 0%y, 1=j<m+1 such that
[EC) x> |E(-) X2 >... and
[EC)ylP > [EC)yalf >,
then n=m=m(E, #) and moreover for every k<n+l=m+1. The measures
|[E(-)xi|? and |E(-)»|* are equivalent.

1 |E(:)x*? ae.on 4, 1=k<n+l.

Any sequence of measures pu,(-)=|E(-)x|* satisfying the condition in (B)
constitutes the so-called spectral types of E in . It follows from (B) that spectral
types of E in A" are uniquely determined up to the equivalence of measures. There-
fore we may speak of the spectral types of E, and call [E(-)x,;|?* the maximal spectral
type of Ein A",

2.3. Lemma. Suppose that A" is countably generated by a spectral measure E.

Let M be a closed subspace of A invariant under all E(4), A€ZX.
(A) If the maximal spectral type of E in 4 is singular with respect to the maxi-

mal spectral type of E in M*, then
m(E, ) = max (m(E, M), m(E, A1)
(B) If the maximal spectral type of E in M is absolutely continuous with respect
to all the spectral types of E in ML, then
m(E, A) = m(E, M)+m(E, ML).

Proof. Suppose that M =@!_, M (E, x;) with x;#0, and
|E(-)X:[2> |E(-)Xo*>... and that 41 =@ M(E y), y;#0
EC)ylP> |EC-)yal>..., n,meNU{+ o}

(A) Let
X;+y;, if 1=i<min(m, n)+1,
z;=1X; if m < n, min(m, n) <i<max(m, n)+1,
Vi if m > n,min(m, n) <i <max(m, n)+1.
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Since |E(:)x;|2 LIE(-)y;|% 1=i<min (n,m)+1, there exist sets 4;,6X such that
[E(4)x,2=|E(Q)x;]? and |E(4$)y|*=|E(Q)y;|?>, where 4° denotes the comple-
ment of a set 4. It implies that E(4,)z;=x; and E(4{)z;=y;, 1 =i<min (n, m)+1.
Thus #(E, x;)® M (E, y)=M(E, z;). Consequently, @*_, .#(E,z)=A", where
k=max (n,m). Since |E(:)z|?>|E(-)z,)?>..., it follows from Lemma 2.2 (B)
that m(E, #")=max (m(E, M), m(E, M™)).

(B) If m(E, #*)=+ oo, the statement is obvious. Suppose that m(E, #*)=
m=< o and define

Vis l<i=m,
4= {xi_m, m<i<n+m+l.

Then A =" " M (E, z;) and |E(-)zy|*>|E(-)z,|*>.... Thus, by Lemma 2.2 (B),

i=1
m(E, A)=m+n. O
2.4. Lemma. Let # be a separable Hilbert space and let E(A) denote the
operator of multiplication by 1, in L*(Q, X, u; #). Suppose that A" is a countably
generated subspace of L*(Q, X, u; #). Let f;, j=1,2,... be any family of ele-
ments in A such that A =sp {E(A)f;: j=1,2,...,4¢Z}. For every w¢cQ let
us define
H(w) =5p{fi(w): j=1,2,..}.
Then:
@A) 7(-) does not depend on the choice of {f;: j=1,2,...} in the sense of u
almost everywhere equality.
(i) A ={fel2(Q, Z,m; #): f()eX (0) u ae.l}.
(iti) m(E, A)=p-ess sup (dim o (-)).

Proof. The proofs of both parts (i) and (ii) can be given by duplicating those

of Rozanov’s in [9], p. 89—91.
(iii). Let n=m(E, #). From Lemma 2.2 (A) it follows that there exist g,c.%,

|gl=1 and a decreasing family of sets 4,€X, 1=k<n+1, such that

(*) f=@:=1'ﬂ(E, gk):
(%) |[Edodygl =1E@gl, 1=k<n+l,

dIEC)gd® _
diE(-) &l

By (i), dim # (w)=dim 5p {g;(w); 1=k<n+1}=n=m(E; &) u a.e. We shall
prove that for every integer k<n+1, dim A( -)=k on a set of positive measure g,
which will complete the proof.

Let 4o={ow: |g(w)|#0}. Since E(4)g; L E(4)g; for all 4, 4’¢X and i#j,
gi(w) Lgj(w) pae. for all i/ Let k<n+1 be fixed. Since |E(4,n4y)g|*=
|E(4)g112=1g:l?#0, u(dend,)=0. Let Acdynd,. From (* ) it follows that

(% % %) uae ond, 1=k<n+l.
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for every 1=j=k, [,|g;Pdu=|E(4)g,*=|E(4nd))g.|*=|E(d)g:]*= [ 4 1&I*du#0,
provided u(4)#0. Thus {g;(w): j=1,2,...,k} forms a non-zero orthogonal
sequence in # for almost all w€4,n4,. Hence

dim 7 (@) = dim5p {g;(w): 1=j <n+1}=k pae on 4nd. O

3. Stationary sequences and their multiplicities

Let # and A be Hilbert spaces. By a stationary sequence we will mean a function
X=(X,): Z—~L(#, ) such that its correlation function I (n, m) = Xy X,,=I'(n—m, 0)
depends only on n—m. Let #(X)=sp {X,x: n€Z,xc#}. If X is stationary,
then the operator U: 4 (X)—~.#(X) defined by the formula

UEXx) = ZXpi1%e, XEH,

is unitary. Hence there exists a spectral measure E(4) in .# (X) defined on the Borel
o-algebra % in (—mn, 7] such that for every x, y€.#(X)

(3.0) (Ux, ) = [ e~ *(E@Dx, y)

The function % : B-L*t(#) defined by the formula F(4)=X;E(4)X,, 4€4A,
is called the spectral measure of the stationary sequence X=(X,). We will say that
the spectral measure of a stationary sequence X is absolutely continuous (or singular)
with respect to a nonnegative scalar measure  if (% (-)x, x)<<p (or (F (+)x, x) L 1)
for all x€#. If # is separable and there exists a function F,(-): (==, n]—-L*(#)
such that for all x, yc# and AcX,

[, F0x, p)ud = (F@)x, y),

then F,(-) is said to be the spectral density of the stationary sequence (X,) with
respect to u. If u is the Lebesgue measure, then we will abbreviate F,(-) by F(-)
and call F(-) the spectral density of (X,).

3.2. Definition. Let # be separable and let X=(X,) be a stationary
L(#, #)-valued sequence. The smallest number n€ NU{+ <} such that there exist
g€ M (X), 1=k<n+1, with the property 4 (X)=sp {U"g,: 1=k<n+1, mcZ} is
called the multiplicity of the stationary sequence X, and is denoted by m(X).

Note that since sp {U™x: me€Z}=sp {E(d)x: AcHB} for every x€.(X),
m(X)=m(E, #(X)). The spectral types of E in .#(X) will be referred to as the
spectral types of the sequence (X,).

The next theorem gives the description of m(X) in terms of the spectral density

of (X)).

3.3. Theorem. Suppose that # is separable. Let F,(-) be the spectral density
of a stationary sequence X=(X,)CL(#, X)) with respect to a o-finite nonnegative
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measure . Then
m(X) = p—ess sup (dim F, (1) ).

Proof. Consider the stationary L(#,# )-valued sequence Y=(Y,), where
W=L*((—m, ], B, u, #), defined by the formula

(Y”x)(.)=ein‘/Fu(.)x’ XEH.

Then m(X)=m(Y), since X and Y have the same correlation function. We note
that the spectral measure of the shift of the sequence (¥,) is multiplication by 1,
in 4 (Y)c#, which are related by formula (3.1). Using Lemma 2.4 we have
m(X)=m(Y)=p-ess sup (dim F,(t) #). 0O

For every n€Z let M,(X)=sp {X,x: k=n, x€5#}. A stationary sequence
X=(X,) is said to be

(i) deterministic if 4, (X)=.#(X) for all neZ,

(i) regular if (),c, #,(X)={0}.

3.4. Lemma. If # is separable and (X,) is a regular stationary sequence, then
m(X)=dim (M, (X) D My(X)) and all spectral types of (X,) are equivalent to the
Lebesgue measure.

Proof. Let n be the dimension of M (X)®AM,(X) and let g,, 1s=k<n+l,
be an orthonormal basis in % (X) ® #,(X). Then (E,g)=sp {U"g.;: mcZ} L
M(E, g) if k#j and @D;_, H(E, g)=#(X), because the process is regular.
Since |E(-)g|?=dt/2n for every k€N, 1=k<n+1, it follows from Lemma 2.2 (B)
that n=m(E, #(X))=m(X). O

For any stationary sequence (X,) there exists a uniquely determined decomposi-
tion of (X,) into the sum of a deterministic and a regular stationary sequence occurring
in the Wold decomposition. On the other hand, every stationary sequence admits
a unique decomposition into the sum of two stationary sequences whose spectral
measures are absolutely continuous and singular w.r.t. the Lebesgue measure, respec-
tively. Combining these two decompositions we obtain the following three-term
decomposition (cf. [1]).

3.5. Theorem (Wold Decomposition). Let X=(X,) be a stationary sequence.
There exist stationary sequences X"=(X7), X°=(X5) and X*=(X?) with the prop-
erties

() X,=X34+X24+X!, ncZ,

(i) M,(X)=M,(X*)® M(X)D M, (X"), nEZ,

(iii) X" is regular,

(iv) X? is deterministic and its spectral measure is absolutely continuous w.r.t.
the Lebesgue measure,

(v) X°® is deterministic and its spectral measure is singular w.r.t. the Lebesgue
measure.
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The decomposition is unique, that is, if X5, X¢ and X" satisfy (i)—(v), then
X5=P o Xus X8=P 4 _youmscyXn a0d XI=P ey Xy, where M__ (X)=
Muez Ha(X), M(X)={xcM(X): |E(-)x|*Ldt} and E is the spectral measure
in .4 (X) associated with X, occurring in Formula (3.1).

The next theorem relates multiplicities of the components of X as were described
in the Wold Decomposition.

3.6. Theorem. Suppose that # is separable. Let (X,) be a stationary L(#, A")-
valued sequence and let X,=X +X+X!, ncZ, be the Wold Decomposition of
(X,). Then

m(X) = max (m(X*), m(X%+m(X")).

Proof. Since the maximal type of E in . (X*)=.°(X) (see Theorem 3.5 for
the definition of .#°(X)) is singular w.r.t. the maximal type of E in . (X?+X"),
it follows from Lemma 2.3 (A) that m(X)=max (m(X®), m(X*+X")). Since, by
Lemma 3.4, all spectral types of X" are equivalent to the Lebesgue measure and
since all types of X are absolutely continuous w.r.t. the Lebesgue measure, we con-
clude from Lemma 2.3 (B) that m(X*+X")=mX%)+mX"). 0O

As an immediate consequence of the formula above we obtain the following
generalizations of Theorem 8.3 in [8] and the Wold—Cramér concordance theorem.

3.7. Corollary. If m(X)=1 and the spectral measure of the stationary sequence
(X,) is absolutely continuous w.r.t. the Lebesgue measure, then (X,) is either deter-
ministic or regular.

Proof. Since m(X)=m(X%)+m(X")=1, either X? or X" must vanish. [

3.8. Corollary. Let m(X)=1. If (X,) is non-deterministic, then the com-
ponent (X?) is absent in the Wold Decomposition, i.e., X,=X;+X\, n€Z.

Proof. Since X"#0, we obtain X?=0 from the formula in Theorem 3.6
relating the multiplicities of components of (X,). O

In [7] Niemi has observed that the determinism of a stationary sequence can
be determined by examining a related family of stationary sequences with multi-
plicity one. The following theorem contains infinite dimensional versions of Theo-
rems II.1, 11.2 and I1.3 in [7]. Following [7] let us denote

r(X) = dim (M, (X) D My(X)), r(X)ENU{+ o}

3.9. Theorem. Suppose that # is separable. Let (X,) be a stationary L(#, H')-
valued sequence and let X,=X5+X%+X! be its Wold Decomposition (see Theorem
3.5).

(A) The sequence (X,) is deterministic if and only if for every x€M(X) such
that |E(-)x|*<dt, the sequence Y, ,=P ,,X,, n€Z, is deterministic and M (x)=
sp {U"x: n€Z}.
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(B) The maximum of the cardinalities of the subsets o M (X)—{0} with the
properties that (Y ) is regular for each x in o/ and M(Y,) LA (Y,) for all distinct
x and z in of is equal to r(X).

(C) Let r(X)<oo. If Xy, Xy, ..., Xy are nonzero in 4 (X) such that .%(ij) 4
MY, ) for all k=), 1=k,j=m, and all Y, ., l=k=m, are regular, then X'=
on. Y lfand only if m=r(X).

Proof. First note that since .# (x) is invariant under U and U™,
(*) Pvﬂ(x)U= UP_/ﬂ(x) for all XEJ%(X)

(A) Since M,(Y)DP M, (X), Y,is deterministic for all x€.4(X) provided
X is. Conversely, suppose that ., (X)® #,(X)#0 and let x be a non-zero element
of M(X)®My(X). Then x€.#(Y,) and (x,7Y,,y)=(x, X, »)=0 for all k=0
and y€s#. Thus x€M,(Y,) @ My (Y,) and from (%) #(Y,)C.4(x). Hence (Y, ,)
is non-deterministic with the multiplicity 1. Note that by Corollary 3.7 (¥, ,) is
regular, so |E(-)x|? is equivalent to dt.

(B) Let N be the maximum of the cardinalities of the subsets o/ C.#(X)
such that for every x, z€s/, x=z, M (Y,) LA (Y,) and (Y,,) is regular for all
x€of. Let X,, 1=k<r(X)+1, be an orthonormal basis in .4 (X)@#,(X).
Then, as the proof of part (A) shows, x,€.4,(Y, )@ H(Y, ) and (Y, ,) is regular
for each k. Since .4 (x,) L A (x;) for k#j and M (x,)=.H4 (Yxk), we have 4 (Yxk) L
MY, ) for k#j, 1=k, j<r(X)+1. Thus N=r(X).

Conversely, let x,, 1=k<N+1, be a sequence in .#(X) such that all ¥_
are regular and (Y, )J_ﬂ(Y ) forall ksj. Since M _o.(Y, ) Muez Hn(Y )3
Muez Py Hn(X) :)PJ,,(x ),//i_m(X) and Y, are regular, it follows that /l(xk)_L
M_..(X) for every 1=k<N+1. Since ./%(xk)D//Z(Y ) and A (XN=M(X)D
M_o(X), M (Yxk)cjl (X"). Since, by Lemma 3.4, the spectral type of each Y,
as well as all the spectral types of X" are equivalent to the Lebesgue measure, we
obtain r(X)=m(X")=N from Lemma 2.3 (B).

(C) Suppose that r(X)<e and let xi, X, ..., X,€.#(X) be such that for
all 1=k=m Y, are regular and 4 (Y, )J_,/%/(Y ) for k#j. Then, as we have
just seen, Py 1/%()’ )CJ/(X’) and all spectral types of Y, , 1=k=m, and
X" are equivalent to the Lebesgue measure. Therefore it follows from Lemmas 2.2(B)
and 3.4 that m=r(X) if and only if @y, 4 (Y, )=4(X"), which is equivalent to
Xr=2mw x > NEZ, since Y =Puy) X,,=Pﬂ(xk)X,';. O

If o is separable and a stationary sequence (X,) has the spectral density F(-)
w.r.t. the Lebesgue measure, then, as we will see, it is easy to describe the spectral
densities of all (Y, ,), x€.#(X). Combining this fact with Theorem 3.8 (A) we
obtain the following characterization for the determinism of the sequence (X,).

3.10. Theorem. Let J# be a separable Hilbert space and let X=(X,) be a
stationary L(#, X)-valued sequence with the spectral density F(t). The sequence
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(X,) is deterministic if and only if for each weakly measurable function P(t): (—=, n] -
L(s#) with the properties

(i) P(¢t) is an orthogonal projection operator dt a.e.,
(i) dim (P(¢) #)=1 dt aee.,
(iii) P@)A#A CF@) A dt ae.,
the function F,(t)=VF(t) P(t) VF(r) is the spectral density of a deterministic
sequence.

Proof. Consider the stationary sequence Y,6L(o#,L2(#)) defined by the
formula
@) () =e™YF(-)x, xCH.

Since (X,) and (Y,) have the same spectral density, they are simultaneously deter-
ministic or non-deterministic. From Theorem 3.9 (A) it follows that the sequence (Y,
is deterministic if and only if for every fe#(Y)={gcL*(#): g(t)EF(t)# dt a.e.}
(see Lemma 2.4 (ii)) the stationary sequence Y, ,=P ,Y,, n€Z, is deterministic.
We shall prove that a function G(z) is the spectral density of the sequence Y ,=
(Y,,») for some fe.#(Y) if and only if G(t)=YVF@)P(t)VF()dt a.e. for some
L(#)-valued weakly measurable function P satisfying the conditions (i)—(iii).

Let fe.#(Y) and let P(¢)=Pgqy, 1€(—m, n]. Then for every ge#(Y)

(Pupng)(®) = P()g)dt ae.

Thus (Yf,,,x)(-)=e”i“'P(-)VF-) x, x€#, so the spectral density of (¥ ,) is
equal to YF(1)P(t)VF(r) dt. a.e.

Conversely, let G(r)=VF(1)P(t) Y F(t),where P(t) is a weakly measurable func-
tion satisfying the conditions (i), (ii) and (iii). As we will see in Lemma 4.2, there
exists a function f€L2(#) such that P(t)=f(¢1)®f(t) dt a.e. Moreover, by (iii),
fEA(Y). By an analysis similar to the one given in the preceding paragraph we
conclude that the spectral density of (Y,) is equal to G(¢). O

4. Stationary sequences with multiplicity one

Theorem 3.10 reduces the problem of determinism of an L(s#, #')-valued
stationary sequence to that of a family of L(s#, #')-valued stationary sequences
having spectral densities whose ranges are at most of dimension one. By Theorem 3.3
and Corollary 3.7 each such sequence is either deterministic or regular. In this
section we discuss spectral conditions under which a stationary sequence with multi-
plicity one is regular.

The following assumption remains in force throughout this section.
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4.1. Assumption. Let us assume:
(i) o7 is a separable Hilbert space,
(i) F(¢) is a spectral density of a non-zero stationary L(#, #')-valued sequence
X=(Xx,),
(iii) dim (F(r) #)=1dt a..
Recall that for any y, z€#, y®z denotes the one-dimensional linear operator
in 5 defined by the formula

(y®2)x = (x,2)y.

4.2. Lemma. Under Assumption 4.1 there exists a function f: (—mn, n]->H#
such that (x,f)€L*(C) for all xc# and

F() =fOQf() dt a.e.
Moreover:
@ LfOP=I|F@)| dt ae.,
(b) fEL* () if and only if |F(-)|€L(C),
© if F@)=f(t)®@f())=h(t)®h(t) dt a.e.and (x,[(-)) and (y, h(-)) are meas-
urable for all x,y€#, then there exists a measurable complex-valued function q(t)
such that |q(t)|=1 dt ae. and f(t)=q@)h(t) dt a.e.

Proof. First note that |F(-)| is measurable. Let A={s: F(¢)0} and let
fiO=F(t)e;, j=1,2, ..., where {e;: j=1,2,...} is an orthonormal basis in #.
Set g(t)=£,(t) if £i(1)#0, ...,g()=f,(t), if f,(1)#0 and f,(1)=0 for all
j=1,2,...,n—1, néN. Let f(1)=g(t)/|g(O)|XVIF()] if t€4 and f(t)=0 other-
wise. Then f(¢) is measurable. Also for every x€#

(e SO = 1O (5, ED) D = P01 Py = Flx, dt e,
since F(¢) is a one-dimensional operator for 7¢4. Now we proceed with the proof
of (a), (b), (c).

(@ [F@)|=sup {|(F)x, x)|: Ix]=1}=sup {|(x, f(D)]>: IxI=1}=|f(D)? drae.

(b) This follows from (a).

(c) Suppose that F(¢)=f()Qf(t)=h(t)Qh(t) dt a.e.
Then sp {h()}=sp {f()}=F(@)# and |h(?)| =|f(t)|=]/|_F(7)—| dt a.e. Since
dim F(¢) # =1 dt a.., there exists a scalar function ¢(¢) such that q(t)h(¢t)=
f. O

Lemma 4.2 allows the construction of the following model for a stationary
sequence whose spectral density satisfies Assumption 4.1. The proof is immediate.

4.3. Lemma. Let f be a measurable # -valued function such that F(t)=f(t)®
f(t) dt ae. andlet Y=(Y,) be the stationary L(#, L*(C))-valued sequence defined
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by the formula
X)) = e ™(x, f(+)), x€H.

Then F is the spectral density of (Y,).

4.4. Definition. Let F(-) satisfy Assumption 4.1. F(-) is said to be factor-
able if there exists a measurable #-valued function a(-) such that (x, a( ))eLZ (C)
for every x€s#, and

F)=a(®)®a() dt ae.,

where L% (C) denotes the subspace of L?(C) consisting of all functions with vanishing
negative Fourier coefficients.

The following characterization can be derived from the general theory of fac-
torization (see [5], Theorem 10.3). For completeness we include the proof outlined
below.

4.5. Proposition. Under Assumption 4.1 a sequence (X,) is regular if and only
if F(-) is factorable.

Proof. Let Y=(Y,) be the stationary sequence defined in Lemma 4.3. The
sequence (Y,) is regular if and only if ,(Y)=5sp {e™(x,/(-)): x€#, n=0} is
not a doubly invariant subspace of L?(C) for the multiplication by e”. An applica-
tion of the Beurling theorem (e.g. [5], p. 8) completes the proof.

For a finite dimensional Hilbert space s# the characterization of regular sta-
tionary sequences with multiplicity one can be found in [8], Theorem 8.2. Unfor-
tunately, this theorem may fail in the infinite dimensional case. The following prop-
osition provides an infinite dimensional version of the result.

4.6. Theorem. Let {e;: j=1,2,...} be an orthonormal basis in # and let
fi()=(F(t)e;, e), k,j=1,2,.... Then, under Assumption4.1, the sequence (X,)
is regular if and only if there exists an integer k such that:

() [T Infu (1) dt>— =,

(ii) there exists a function @€LZ(C), |p(¢)|=1 dt a.e., such that for every
J=1,2, ... the functions
f0)
0]

Y1) = (1)

are the boundary values of some functions JEN,.

Proof. If (X,) is regular, then by Proposition 4.5 F(t)=a(t)®a(t), where
(x,a(+))eL%(C). Let k be such that (e, a(-))>0. Then (e, a(?))=0 dr ae.
and In|(ey, a(-))|=1n f(-)/2 is in L1(C) ([5], p. 21). By Theorem 4 in [5], (¢, a(t))=
o()n(t) dt a.e., where L3 (C) and 7 is an outer function in L% (C). Thus for
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every j=1,2, ...

f;k ® (ej’ a(t)) (a ), e, _ (ej’ a(t))
V0= 0= (ra)@@e) *0 = 10

is the boundary value of a function from N, ([4], Theorem 2.9).
Conversely, suppose that F(¢)=f(1) ®/(¢) and that o€ LT (C)le(1)|=1 dt a..
is such that for every j#k

_ Ju@® _ (e, /() — i T, (it

l//J(t) - f (t) QD(I‘) - (ek,f(t) @([) - lg?lpj(re ) dt a.c.,
where §;€N,. Since fi,€ LN(C) and [ Inf,(t) dt>—co, there exists a meas-
urable function ¢q(z), |q(¢)|=1 dt a.e. such that q(7)(ex, f(+)) is an outer func-
tion in L2 (C) ([5], p. 21). Let a(t)=¢(1)q(1) f(t). Then a(-) is a measurable
A -valued function and for all j=1,2, ...

_ [ (e, f(0)
(¢ a) = [{22050 0] Lo e 7] = 0,0 Lo (er, SO
where the first factor ¥ is in N, and the second factor ¢(- )(ex, f(+)) isin L% (C).
Thus, (e;, a(r)) is the boundary value of some function from N, (see [4] p. 26).
Since (e,,a( ))€L2(C), from [4], Theorem 2.11, we have (e;, a(- -))EL%(C) for
all j=1,2,.... Since F(1)=a(t)®a(t), by Proposition 4.5 (X,) is regular. O

4.7. Corollary ([8] Theorem 8.2). Suppose that dim # =n<oco. Under
Assumption 4.1, the sequence (X,) is regular if and only if there exists k, 1=k=n,
such that

@) f"_n In fi, (¢) dt = — oo,

(ii) the ratios &, (-)=fu()fi(+) are the boundary values of functions of
the class Ny for some §>0 and j=1,2, ...,n, where N, denotes the class of ratios
of functions from H°.

Proof. If (X,) is regular, then it follows from Proposition 4.5 that there exist
a function a(-) and an integer k, 1=k=n, such that 0+(e, a(-))¢L% (C) and
such that (e;, a(t))(ex, a(t)) =fu(t) di a.e. Thus S (1)=(e;, a(n))/(ex, a(r)) is
in N,.

Conversely, suppose that k is such that (i) and (i) hold. Since every function
from H° can be written in the form B(z)S(z) H(z), where B is a Blaschke product,
S is a singular inner function and H is an outer function (see [4], Theorem 2.8),
we have

() = By (re*) S (re®) Hj(re®)
Ok "’1 By (re") Sy (re') Hy (re®) *

If we take
o() = lirrll I _, Bun(r€") Sy (re'),
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for every j the function ¥;(t)=f; (1) @ (¢)/fi(t) is the boundary value of a function
in N, ([4], p. 26). Thus we conclude from Theorem 4.6 that the sequence (X,) is
regular, [

The following Lemma is used in Proposition 4.11 and Theorem 4.13. Its proof
is given for a more general situation than stated here.

4.8. Lemma. Suppose that F(.) is factorable. If r(-) is a nonnegative func-
tion such that

(@) " Inr(t)dt>—co,

(i) r(-)(F(-)x, x)eLYC) for all x€H,
then r(t) F(t) is factorable.

Proof. Suppose that F(-) is a spectral density, not necessarily of rank one,
which can be written in the form F(t1)=A(t)*A(¢), where A(-) is L(s#)-valued
function such that A(.)x€L?% (#) for all x in . Let ri(r)=max (r(2), 1), ro(t)=
min (r(¢), 1). Since

1 e
m(rl(f)F(f)) =FQ@) = rl(t)F(t)7
it follows from Douglas’s theorem ([2], Theorem 1) that there exists a function
A;(t) with values in L(#) such that 4,(-)x€L% (#) for all xc# and such that
() F(t)=A4,(1)*A,(t) dt ae. Since ry(-) and Inr,(-) are in L}(C), ry(2)=
2 ()9(1) with 9€L%(C). Thus r(1) F(1)=ry(t) (n () F(©)=(p (1) A(0))* (9 () A (),
and @(t)A(¢) has the desired property. O

4.9. Definition ([5], p. 65 and 91). A closed subspace valued function
M,, M, H, te(—m, 7], is said to be conjugate analytic if there exists a sequence of
functions g;€L% () such that .#,=sp {g;(¢): j=1,2,...} dt ae.

4.10. Remark. If dim .#,=1 dr a.e., then .#,, t€(—m,n], is conjugate ana-
lytic if and only if there exists a function a(-)€L? (#) such that |a(-)|=1 dra.e.
and .#,=sp {a(?)} dt a.e. or, equivalently, if the orthogonal projection P, onto
M,, te(—m, ), is factorable ([5], p. 65).

The next proposition provides a set of sufficient conditions for the factorability
of F(t). These conditions involve the conjugate analyticity of the range of F(¢) and
the behavior of the norm of F(t).

4.11. Proposition. Under Assumption 4.1 the following three conditions are
equivalent:

(1) F(r)s# is conjugate analytic and [*  In|F(1)| dt=>— o,

(2) F(t)# is conjugate analytic and there exists x€ such that

In (F(-)x, x)e L1 (C),
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(3) F(¢t) # is conjugate analytic and In |F(.)|€L*(C).
Moreover, each one of these conditions implies that
(4) F(t) is factorable.

Proof. (1)=(4). This implication is a special case of a more general result
(see [2], Theorem 2). We note that the proof could equally be based on Lemma 4.8.
In fact, if (1) is satisfied, then F(t)/|F(¢)]=Ppy, is factorable, so F(t)=
|F(8)| F(t)/|F(t)] by Lemma 4.8.

(1)=(2). Suppose that F(¢) satisfies (1). Then it follows from (1)=(4) that
F(t) is factorable in the form F(t)=a(t)®a(t), where (x,a(-))€L%(C) for all
x€#. Let x be such that (x,a(-))=0 dt a.e. Then

In (F(-)x, x) = 2In|(x, a(-))|€L*(C).

(2)=(3). We note that P(¢)=F(t)/|F(¢)| is the orthogonal projection onto
F(t)#. Since F(t) is conjugate analytic, P(¢) is factorable (see Remark 4.10).
Let r(t)=|F(1)]. Then [Inr(r)dr=f(In(F(t)x, x)—-2In|x|) di>—eo. Thus by
Lemma 4.8, F(t)=r(t)P(t) is factorable. Thus In(F(-)x,x)=Inr(-)+
In (P(-)x, x)€L*(C), which implies that In r(-)€L*(C).

(3)=(1). Obvious. 0O

4.12. Remark. Under Assumption 4.1, if F(¢) is factorable, then obviously
there exists x€2 such that In(F(-)x, x)€L*(C). Thus the conditions (1), (2),
(3), (4) in Proposition 4.11 would be equivalent if the factorability of F(¢) implied
the conjugate analyticity of its range. If [F(.)|€L*(C) and F(¢) is factorable,
then it follows from Lemma 4.2 that F(:)=a(?)®a(t) with a(.)€L? (), so
F(t) has a conjugate analytic range. Thus if |[F(-)|€L'(C), then conditions (1),
(2), (3), (4) in Proposition 4.11 are equivalent.

Below we prove that, under the Assumption 4.1, the factorability of F(z) implies
the range of F(¢) to be conjugate analytic if and only if In |F(-)|€ L (C).

4.13. Theorem. Let Assumption 4.1 be satisfied. Suppose that F(t) is factor-
able. Then F(t) has a conjugate analytic range if and only if f T An | F(t)| dt< oo,

Proof. Suppose that the range of F(¢) is conjugate analytic. Since F(¢) is fac-
torable, there exists x€# such that In (F(-)x, x)¢L'(C). From Proposition 4.11
we obtain In [F(-)|€L(C).

Conversely, suppose that [ In|F(t)] dt<e and let r()=1/|F(t)|. Since
F(t) is factorable, it follows from Lemma 4.8 that the orthogonal projection onto
the range of F(t), P(t)=F()/|F(t)|=r(t) F(t) is factorable, which in view of
Remark 4.10 completes the proof. O

4.14. Corollary. Under Assumption 4.1, if f’_‘_n In |F(¢t)| dt<oo, then the con-
ditions (1), (2), (3), (4) in Proposition 4.11 are equivalent.
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Theorem 4.13 points to the existence of a factorable spectral density F(¢) whose
range is not conjugate analytic. This would negate the claim “factorability implies
conjugate analyticity” contained in [5], p. 120. Below is an example to this effect.

4.15. Example. Consider the function g(x)=exp {(1/(1—x?)}, —1<x<l.
Since 1/(1—x?)=27, x* and exp y=2 ,»"/n!, the function g(x) has the power
series representation

gx) =23 ja,x", —l<x<l,
where ay=e, a,=2",m+k—1)Ykl(k—1)!nl, n=1,2,.... Let
it

_ 1€ e_it " int
¢n(t)— [_T] e, IE( n, 7!),

and let r,=a,—[a,], where [a,] denotes the greatest integer less than or equal to a,,
n=0,1,2,.... Define the sequence Vg, ¥, ... of analytic polynomials as follows:

l/IO(t) = dy,
Y1(D = 01D, o os Yy () = 01(8), Yo+ (D = VZ#’l(t)-

Vo) = {‘Pk_+_1_§’)’ [al+... +Ha+k+1 =) =[a]]+... +[axs1] +k
! Vreer0®, j=l[ad+... +lag ] +k+1,
for k=2.
Then:

(1) the Fourier coefficients of i, vanish outside of [0, 2k], k=0,1,2, ...,
() for every k=1,2, ..., [T Yy (1)]? dt=2n, and

B) Sy WP = ag+ 2, Wi P

= ay+ (S0 W OF) + ST WO+ = 37 o lsin

1
_exP{m}’ t€(=mn,m), t#=Enf2

Let 5,()=y,()e'®*™V* k=0,1,2, ..., té(—n,n). Then it follows from (1), (2),
(3) that {n: k=0,1,2,...} is a sequence of polynomials in L% (C) such that:

@ ff I (DI2dt = C = 2me, for every k=0,1,...

@) [* (@ dt =0, forevery k=#j kj=0,12, ...,

(i) o, Im@P = exp{1 } <o dt a.e.

—sin?¢

Let f(¢) be the /2-valued function defined on (—=, n) by the formula

1) = (1@, m (@), 1), -..)
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and let F(t)=f(t)®f(t), te(—n, n). Then F(¢) is a nonnegative bounded linear
operator in /2 dt a.e. with the operator norm |F(¢)|=exp {(1/(1—sin?#))}. More-
over, for each x=(o)€/* we have

JT (Foxx)di= 7 ST mm@P dt = C 37 ol = Clxf* <o

Thus F(t) is the spectral density of a stationary sequence with multiplicity 1. Since
for every x=()€l2, (x, f(1))=r o weni(t)€L%(C), F(¢) is factorable. However,

[Tl F@ldt = [[ = dt =+

Thus it follows from Theorem 4.13 that the range of F(¢) is not conjugate analytic.
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