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INFINITE DIMENSIONAL STATIONARY SEQUENCES
WITH MULTIPLICITY ONE

A. MAKAGON and H. SALEI{I

Abstract. It is shown that an infinite dimensional stationary sequence is deterministic if and
only if some related family of stationary sequences with multiplicity one has this property. A spectral
characterization for regular processes with multiplicity one is discussed. The relation between fac-
torability and the conjugate analyticity of the range of the spectral density is examined. An example

of a factorable spectral density without conjugate analytic range is giveu,

1. Introiluction

In [7] Niemi has observed that a multivariate stationary sequence is deter-

ministic if and only if some related family of stationary sequences with multiplicity
one has this property. The purpose of this paper is twofold. First we extend Niemi's
result to the infinite dimensional case. Our approach to the problem is through
spectral multiplicity theory which is applicable to both the finite and infinite dimen-
sional cases. The second aim is to give a spectral characterizalion for regular processes

of multiplicity one. We summarize the content of the paper as follows. In Section 2

we state some known facts from the theory of spectral types. Section 3 contains
the extension of Niemi's results. In Section 4, analylic cbaructeraations for the

regularity of a stationary sequence with multiplicity one are studied. These charac-

terizations are of two types. One pertains to the notion of the conjugate analyticity
of the range of the spectral density, as introduced by H. Helson in [5], and the behav-
ior of the norm of the density. The relation between factorability and the conjugate

analyticity of the range of the density is examined. An example of a factorable
spectral density without conjugate analytic range is given. The other type deals

with an extension of Matveev's results in [6] connecting the factorization problem
to the Nevanlinna class of functions.

Throughout the paper, N, Z and C stand for positive integers, all integers

and complex numbers. ff, ff will always denote complex Hilbert spaces with a
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norm l.f, and an inner product (., '). By L(/{,tr) we will denote the space

of all continuous linear operators fuom tf into ff equipped with the operator

norm I l. lf lt:ff, we will abbreviate L(/f ,/t) as L(af). L*(tr) will stand

for the subset of L(tr) consisting of all selfadjoint operatorc T(L(/f,) such that

(Tx,x)>o for all x€a(. I will denote the identity operator. For x and y in //,
x6y is the operator in L(/f) defined by the formula (x8y)z:(z,y)x, z€lf .

lf -& is a closed subspace of 2f , then we will denote the orthogonal projection

operator onto ,{/ by Pn. ,{/L will stand for the orthogonal complement of .d/

in af,. The symbol O indicates an orthogonal sum. The set of all linear combina-

tions of elements of ,4 willbe denotedby sp A. lt T€L(n€,t{), then T,/f, isthe

rangeof T,andfudenotestheclosureof therangeof 7. If .Eis a o-algebra of
subsets of a set O and p is a o-additive o-finite scalar measure on X, then we will
denote the space of all ff-valaed p-Bochner integrable functions on O by

Lp(Q, », p, tr). The Lebesgue measure on (-n, n7 is denoted by dt. If
Q:(-n,z], ^E is the Borel o-algebra of measurable sets in (-n, zl and P:dt,
then we will simply w/jlte Le(//) instead of Le((-n,nl,E,dt,af). Tbe set of
allfunctions f<Lo(tr),p>l, such that I\,e-i"'f(t\dt:O for all n=l (z=-l),
will be denoted bv L\(tr) (tn_@q, respectively). The Hardy classes .EIp and the

Nevanlinna class Na can be found in [4]. The inequality k<n*l means &=n
if n<*, and k<* if n:-. For two measures p and v we mean by p<<v that p,

is absolutely continuous with respect to v.

2. Preliminary results

Let ld be a Hilbert space and let (O, X) be a measurable spac€ in the sense

that .E is a o-algebra of subsets of a set O.

A function E: Z*L(ff) is said to be a spectral meafine in tr if
(i) for every rc, y(./d,(E(.)x,y) is a countably additive set function on I,
(ii) for every Å(8,.8(/) is an orthogonal projection operator in /d,
(iii) E(o):L
If E is a spectral measure in ff and xcff, then "//(E,x) will denote the

smallest closed subspace of ff containing x which is invariant under .E(/), Å€8, i.e.,

.,# (E, x) : sP {E(Å)x: /€»l'
The space ld is satdtobe countably generatedby E if there exists a countable

set {x1: k:1,2,...}ctr such that sp {f(Z)xo: Å(», k:1,2,...\:tr.
2.1. Definition. Suppose that ff is cotntably generated by a spectral meas-

ure.E The smallest number n in Nu{+-} for which there exists a set

{xy: k<n*l}c/{ wrth the ProPerty

ff :4{E(Å)xr: Å<», k =. n*1}
is said to be the multiplicity of .E in ff, and is denoted by m(E,ff).
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The following lemma plays an important role in this paper, and its proof can

be found in [3] p. 914-918.

2.2. Lemma. Suppose that ff is countably generated by a spectral measure E.
(A) If n:m(E, ff), then there exist a decreasing sequence of set loQZ and

a collection of oectors xy€ff, lxol :1, l=k<n*l such that

(, td : @i:rdt(B,x*),
(iD lE(l)xrlz : lE(A n /1)x112 for all Å€.», 1 = k <. n*1,

(iii) \lEJ)*rf=: I lE(.)xrl, a.e. on /o, r = k <. n*r.

(B) If {:@ft:ril(E; x*):@T:L,t/(E,!i), where m, n(Nu{* -), 0#x1,€t',
l=k<n*|, O*yre,f , l=j<m*l such that

lE(.)xrl' r, lE(.)xrl' ==... and

lE(. ) yrl' t lE(. ) yrl' >,...,
then n:m:m(g, ff) and moreoaer for eaery k=n*l:m*|. The measures

lE(.)xol' and lE(.)yylz are equhtalent.

Any sequence of measures pe(.):lE(.)x112 satisfying the condition in (B)
constitutes the so-called spectral types of E in i{. It follows from (B) that spectral
types of E in ff are uniquely determined up to the equivalence of measures. There-
fore we may speak of the spectral types of ,8, and call l.E( . )xrl2 the maximal spectral
type of E in tr.

2.3. Lemma. Suppose that tr is countably generatedby aspectral measure E.
Let .,/{ be a closed subspace of t{ inaariant under ail E(/), /€».

(A) If the maximal spectral type of E in -til is singular with respect to the maxi-
mal spectral type of E in -dll, then

ru(E,/d): max (m(E,"&\, m(E,llL))'
(B) If the maximal spectral type of E in ..,tr is absolutely contiluous with respect

to all the spectral types of E in '4L, then

m(E, tr\ : m(E, 
"dl) * m (E, 

"d{ 
t).

Proof. Suppose that 'il:@!:rfi(E,x) with xi#O, and

lE(.)x,l'r, lE(.)rrl'>r... and that .&L:@Lril(E,y), li#O
lE(.)yrl' r= lE(.).yrl' =r..., r, m(Nu {+-}.

(§ Let

1=i <min(*,n)+1,
m <. n, min(*, n) = i < max (m, n)+1,
m > n, min(*, n) = i < max (*, n)+1.

[ *,+ v, if

t;: ;i
-l
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Since lE(.)r,l'-L.lE(.)ytl',1=i<min (n,m)*1, there exist sets lfE such that

lE(Å)x,12:lE(Q)x112 and lE(Å)y,12:1E(Q)y,l', where /" denotes the comple-
ment of aset/.Itimplies that E(/t)zi:xi &nd E(Åi)zt:yi,1<i=min (n,m)+1.
Thus .,//(8, x)@"//(8, y)://(E,2,). Consequently, @!:ril(E, z,):ff, where

k:max(n, m). Since lE(.)zrl2>>lE(.)zrl'>,r..., it follows from Lemma2.2 (B)

that m(E, ff):max(m(E, .,//), m(E, .,t/t)).
(B) If m(E,.1,/t1: a-, the statement is obvious. Suppose that m(E,/4'):

m<@ and define
(li, l=i<m,

":l*r-^, m=i=nlm+1.

Then ff:@f:{ -/{(E,zr) and lE(.)zrl2>>lE(.)zrl'-r.... Thus, by Lemma 2.2(B),
m(8, /{):rn-Yn. tr

2.4. Lemma. Let tr be a separable Hilbert space and let E(/) denote the

operator of multiplication by lo in Lz(Q, Z, p; tr). Suppose that ,t is a countably
generated subspace of Lz(Q, E, p;,*). Let fi, j:1,2, ... be any family of ele'
ments in ff such that tr:sp {E(/)ft: j:1,2,...,Å(»\. For euery @€.Q let
us define 

zgul :sp {r.(ar): j : r,z, ...}.
Then:

O 7() does not depend on the choice of {fi: j:1,2,...\ in the sense of p
almost eaerywhere equality.

(ii) ld:{feLr(o,E,m;ff): f(d<Tki p, a.e.\.

(iii) m(E, /{):p-ess sup(dim 7()).
Proof. The proofs of both parts (i) and (ii) can be given by duplicating those

of Rozanov's in [9], p. 89-91.
(iii). Let n:m(E,.t). From Lemma 2.2(A) it follows that there extst gu€.t,

lg*l:1 and a decreasing family of sets /k€»,1<k<n*1, such that

(x) r : ai.:r.,// (8, g*),

(x x) lE(ÅaÅ)grl' :lE(/)gklz, I < k - n*1,

dln61''tz(xxx) iftffi:t Pa'e'on/1" l<k<nl-l'

By (i), dimV(a):di- tp {So@); l=_ k<nal}>n:m(E; :{) p a.e. We shall

prove that for every integer k<n*|, dtm V (.) =ft on a set of positive measure l,
which will complete the proof.

Let /o:{ar: lg.(al)ll0}. Since E(/)S,tg(/)g1 for all /,Å'12 and i+i,
gr(ro)l.gi(a) p a.e. for all i#j. Let k<n*l be fixed. Since lE(/sn/r,)grl':
lE(/y)grl2:19*l'*0, 1t(/oaÅo)*O. Let ÅcÅonlo. From (x x) it follows that
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for every 7 =j 
< k, I o I g il} d u : lE (/) g i2 : I E (1 n Å ) g rl2 

: lE (Å) grlz : I t I gtl' d p I o,

provided p(/)*0. Thus {g;(r)' j:1,2,..-,k} forms a non-zero orthogonal

sequence in lf, for almost all aQloa/p. Hence

aim7@):dimsp{gi(r)' I =j= n*L}>k p a-e. on an/e- D

3. Stationary sequences anil their multiplicities

Let lf, and t be Hilbert spaces. By a stationary sequence wewill mean a function
y : (X,) : Z * L(ff , ff) suchthat its corr e I ation function f (n, m) : X i X,: f (n - m, 0)

depends only on n-m. Let -d(X):${X,x: n€Z,x?tr}. lf X is stationary,

then the operator U: "//(X)*6(X) defined by the formula

U(EXyx) : EXyayx1,, xx(ff,

is unitary. Hence there exists a spectral measure E(A) in //{ (X) defined on the Borel

o-algebra 0 in (-n, zl such that for every x, y<,/il(X)

(3.1) (Ux, y) : {:ne-o (a @qx, y)"

The function F: $*L+(/f,) defned by the formula 9(Å):y;5(/\Xo, Å<9,
is called the spectral measure of the stationary sequence X:(X,). We will say that
the spectral measure ofa stationary sequence X is absolutely continuous (or singular)

with respect to a nonnegative scalar measure p if (f (.)x, x)<<F@r (F(.)x, x) J-p)
for all x(tf.If lf, is separable and there exists a function Fr(.): (-n,n)*[,+pg\
such that for all x,y€Jf and /(8,

then Fr(.) is said to be the spectral density of the stationary sequence (&) with
respect to p. If p is the Lebesgue measure, then we will abbreviate fr(.) bV f(')
and call F(.) the spectral density of (X,).

3.2. Definition. Let lf be separable and let X:(X,) be a stationary

L(tr, tr)-valued sequence. The smallest number n€Nu{+-} such that there exist

gk(."d{(X),l=lg<.n}|, with the property fl6):W {U go: 1=ft<nfl, m€Z) is

called the multiplicity of the stationary sequence X, and is denoted by m(X).
Note that since sp {U'x: m(Z}:sp {E(/)x: Å(0) for every xQ.$(X),

m(X):m(E,//(X)). The spectral types of E in l/(X) will be referred to as the

spectral types of the sequence (Xn\.

The next theorem gives the description of m(X) in terms of the spectral density

of (X,).

3.3. Theorem. Suppose that lf, is separable. Let Fr(.)be the spectral density

of a stationary sequence y:(X)cL(#, ff) with respect to a o'finite nonnegatiae

I o@r(t)x,v)p(dt) - (,q(Å)x, v),
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measure p. Then
m(X1: t-ess sup(dim rrQ)*).

Proof. Consider the stationary L(tr,V)-valued sequence Y:(Yn), where
l,/=Lz((-n, nf, o, il, af,), defned by the formula

(f,x)( .): ei'l r[i*, x€/f.

Then m(X):m(Y), since X and Y have the same correlation function. We note
that the spectral measure of the shift of the sequence (I,) is multiplicationby 7o

in ,//(Y)cffi, which are related by formula (3.1). Using Lemma 2.4 we have
m(X):ry1Y):p-ess sup (dim FÅt) /f). u

For every n€Z let /{,(X):sp {Xox: k=n, xetr}. A stationary sequence

X:(X,) is said to be
(i) deterministic if .ft"(X):,611y1 for all n(2,
(ii) regular if ff,e2"//"(X):{0}.
3.4. Lemma. If .rf is separable and (X,) is a regular stationary sequence, then

m(x):dim("tr(x)e"tto@)) and all spectral types of (X) are equiaalent to the

Lebesgue measure.

Proof. Let n be the dimension of '//r(X)g"l/o(X) and let 91, l=k<.n1l,
be an orthonormalbasis in ,,ilr(X)gfio(X). Then .,{4(E,gr):sp {U'go: mcZ\t
"//(E,g) if k*j and @i:rtr(E,g*):"{/(X), because the process is regular.
Since l"E( .)gol':dtl2n for every /d(N, I <k=n*|, it follows from Lemma2.2 (B)
that n:m(E, "/t(X)):rn1y1. tr

For any stationary sequence (X,) there exists a uniquely determined decomposi-
tion of (X,) into the sum of a deterministic and a regular stationary sequence occurring
in the Wold decomposition. On the other hand, every stationary sequence admits
a unique decomposition into the sum of two stationary sequences whose spectral
measures are absolutely continuous and singular wr.t. the Lebesgue measure, respec-

tively. Combining these two decompositions we obtain the following three-term
decomposition (cf. []).

3.5. Theorem (Wold Decomposition). Let X:(X,) be a stationary sequence.

There exist stationary sequences X':(Xtr), X":(X) and Xo:(Xl) with the prop-
erties

(i) x,:Y;1Xl+Xtr, n€2,
(ii) "{/ "(X) 

: -//,(X ) @.d *(X) A,tt "(x), n€2,
(iii) X' is regular,
(iv) Xd is deterministic and its spectral measure is absolutely continuous w.r.t.

the Lebesgue measure,
(v) X" is deterministic and its spectral measilre is singular w.r.t. the Lebesgue

meclsure.
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The decomposition is unique, that is, if X", Xd and X'satisfy (i)-(v), then

X f : P 4"61Xo, Xl: P n _ *<x1q 4"1gXn and X | : P nG)* n _ *(nXn, where "/t - *(X) :
O,eril"(X), ,il"(X):{x(.il(X): lE(.)xl'tdt} and E is the spectral measure

in .,/{(X) associated with X, occurring in Formula (3.1).

The next theorem relates multiplicities of the components of Xas were described

in the Wold Decomposition.

3.6. Theore m. Suppose that lf, is separable. Let (X") be a stationary L(lf,, /d)-
t:alued sequence and let X,:Xi*X!,*Xi, n(2, be the Wold Decomposition of
(X). Then

m (x) : max (m (x), m (x d) + m (x'))-

Proof. Since the maximal type of E in fi(X\:,&'(X) (see Theorem3.5 for
the definition of ,,il"(X)) is singular w.r.t. the maximal type of E in ,$(Xd+X),
it follows from Lemma2.3(A) that m(X):max(m(X"),m(Xd+X')). Since, by
Lemma 3.4, all spectral types of X' are equivalent to the Lebesgue measure and
since all types of Xd are absolutely continuous w.r.t. the Lebesgue measure, we con-
clude from Lemma 2.3 (B) that m(Xd-tX):m(Xd)+m(X). D

As an immediate consequence of the formula above we obtain the following
generalizations of Theorem 8.3 in [8] and the Wold-Cramdr concordance theorem.

3.7. Cor o ll ary. If m(X) : I and the spectral measure of the stationary sequence

(X) is absolutely continuoils w.r.t. the Lebesgue measure, then (X,\ is either deter-
ministic or regular,

Proof. Since m(X):ry7y0)+m7x'1:1, eithet Xd or X' must vanish. E

3.8. Corollary. Let m(X):1. If (X") i§ non-deterministic, then the com-
ponent (Xil is absent in the ll/old Decomposition, i.e., X":Xi*Xtr, n<2.

Proof. Since X'+0, we obtain Xd:O from the formula in Theorem3.6
relating the multiplicities of components of (X,). tl

In [7] Niemi has observed that the determinism of a stationary sequence can

be determined by examining a related family of stationary sequences with multi-
plicity one. The following theorem contains infinite dimensional versions of Theo-
rems II.1, ll.2 and II.3 in [7]. FollowingUllet us denote

r(x) : dim("d{x\ @ ilo(x)), r(x)€N u t+ -).
3.9. Theore m. Suppose that // is separable. Let (X,) be a stationary L(lf,, ff)-

ualued sequence and let X.:X",*Xl*Xi be its Wold Decomposition (see Theorem

s.s ).
(A) The sequence (X") is deterministic if and only if for euery x(,{t(X) such

that lE(.)xlg<<dt, the sequence Y*,n:P*r*.,Xn, n(.2, is deterministic and "d/(x):
$ {U"x: ncZl.
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lB) The maximum of the cardinalities of the subsets "ilc"d/(X)-{0) with the

properties that (Y*,) is regular for each x in d and "/{(Y*) Llt (Y,) for all distinct

x and z in ,il is equal to r(X).
(C) Let r(X)<.*. If xt,xz,.-.,xn arenonzeroin.fr(X) such that fl(Y,r)L

"4/(Y,*) for all kli, I=k,i=m, and all Y,u, I=k=m, are regular, then X':
Zt:rY*u if and only if m:r(X).

Proof. First note that since ,t/(x) is invariant under U and U-1,

(*) Pa«iU - (JP,.ao1 for all xQ/4 (X).

(A) Since -l/*(Y,))Pnt@.d/n(X), I,isdeterministicforall x(.M(X) provided

X is. Conversely, suppose that ,d\(X)@.fio(X)*O and let x be a non-zero element

of "/{r(X)@fio(X). Then x€.&(r,) and (x,Y",*y\:(x,Xey):0 for all ft=O
and y€lf,. Thus x(.,//1(Y*)g.d/o(Y*) and from (x) "//(Y)cfr(x)- Hence (f,,,)
is non-deterministic with the multiplicity 1. Note that by Corollary 3.7 (I.,,) is

regular, so l,E(.)xlz is equivalent to dt.
(B) Let N be the maximum of the cardinalities of the subsets ,ilc-//(X)

such that for every x, z(,il, x*2,.4/(Y*)L"d/(Y") and (I*,,) is regular for all
x(.il. Let Xy, l<k=r(X)*l, be an orthonormal basis in trr(X)Afro(X).
Then, as the proof of part (A) shows, xg,//{Y*)@flo(Y**) and (ts *,,) is regular

for each k. Since il (x) L"t/ (x) for k*.i and -il (xo):"{/ (Y"), we have ,// (Y **) L
"//(Y,) for k*j,l<k,j<r(X)+1. thus N=r(X).

Cbnversely, let x1,, l=k<Nll, be a sequence in ,il(X) such that all I',u
areregular and "//(Y**)L"ll(Y,,) forall k*i. Since -/4-*(Y"):(\nez./{,(Y*u)=
OnezP,n6;fr,(X)sPnr,ur./t--(X) and Y*uare regular, it follows that .//(x) 1
"{/--(X) for every 1<k<N+1. Since .{/(xo)-,fr(Y,*) and ll(X'):-//(X)@
"{t-*(X), "d/(Y"*)c.l/(X'). Since, by Lemma3.4, the spectral type of each Y,*

as well as all the spectral types of X' are equivalent to the Lebesgue measure, we

obtain r(x):ry1y1>N from Lemma 2.3 (B).
(C) Suppose that r(X)-.- &od let x1, x2,...,x*(./t(X) be such that lbr

all l=k=m Y**are regular and .//(Y,)L"//(Y,r) for k+j. Then, as we have
just seen, @T:rfl(Y-*)c.fr(X') and all spectrai types of Y,u, l=k<m, and

X' are equivalent to the Lebesgue measure. Therefore it follows from Lemmas 2.2(B)

and 3.4 that m:r(x) if and only if @T:, fr (Y"):"t( (x'), which is equivalent to
Xl:Z[:rYr*,n, n€2, since Y,u,,: P.ug*u) Xn:P*oorX',. D

tf lf, is'separable and a stationary sequence (X,) has the spectral density F(')
w.r.t. the Lebesgue measure, then, as we will see, it is easy to describe the spectral

densilies of all (I,,,), xC.&(X). Combining this fact with Theorem3.8(§ we

obtain the following characterization for the determinism of the sequence (X,).

3.10. Theorem. Let lf be a separable Hilbert space and ls| 1:(X,) be a
stationary L(af , ff)-aalued sequence with the spectral density F(t). The sequence
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(X,) is deterministic if and only if for each weakly measurable function P(t): (-n, n)*
L(//) with the properties

(i) P(r) is an orthogonal projection operator dt a.e.,

(ii) dim (rg1x7=1 dt a.e.,

(iii) P(r) 3t'cF(t)/f dt a.e.,

the function FoQ):1/ F(t) P(t) l/F(t) is the spectal density of a deterministic

sequence.

Proof. Consrder the stationary sequence Y,€L(/f,, L'(,tr)) defined by the

formula
(f'x)( ') : s-in' / f () *, xCtr.

Since (-f,,) and (f,) have the same spectral density, they are simultaneously deter-

ministic or non-deterministic. From Theorem 3.9 (A) it follows that the sequence (I,)
is deterministic if and only if for every f("d/(Y):{S(Lz(ff): C@€F(t)* dt a.e.\

(see Lemma 2.4(ii)) the stationary sequence Yy,o:Pa1,1Y,, n(2, is deterministic.

We shall prove that a function G(l) is the spectral density of the sequence Ir:
(rr,,) for some f(.//(r) if and only if G(t):1/F1t1P(t)/F(t)dt a.e. for some

L(tr)-vafued weakly measurable function P satisfying the conditions (i)-(iii).
Let f(l/(Y) and let P(l):Ptg61t t(.(-n,zl. Then for every c(.ilV)

(P*v>dG) : P(t)c,(t)dt a'e'

Thus (fy,,x)(.):e-io'P(){F6x, x(ff, so the spectral density of (Iy,,) is

equal to V rAP«ly PQ) dt. a.e.

Conversely, let G(t):ttf<OpO1lfu,where P(/) isa weakly measurable func-

tion satisfying the conditions (i), (ii) and (iii). As we will see in Lemma 4.2, thete
exists a function f!'z@f) such that P(t):f(t)6f[) dt a.e. Moreover, by (iii),

f<"//(Y). By an analysis similar to the one given in the preceding paragraph we

conclude that the spectral density of (Ir,J is equal to G(l). tr

4. Stationary sequences with multiplicity one

Theorem3.lO reduces the problem of determinism of an L(lf,,ff)'valued
stationary sequence to that of a family of L(tr, tr)-valued stationary sequences

having spectral densities whose ranges are at most of dimension one. By Theorem 3.3

and Corollary 3.7 each such sequence is either deterministic or regular. In this
section we discuss spectral conditions under which a stationary sequence with multi-
plicity one is regular.

The following assumption remains in force throughout this section.
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4.1. Assumption. Lel us assume:
(i) lt is a separable Hilbert space,
(ii) f'(r) is a spectral density of a non-zero stationary I (/f , ff)-vabted sequence

X:(X,),
(iii) dim (r1t\x)=t dt a.e.

Recall that for any !, zCff,, yStz denotes the one-dimensional linear operator
in lf, defrned by the formula

(y&r)x : (x, z)y.

4.2. Lemma. Under Assumption4.l there exists a function f: (-n,nf*/f,
such that (x,f)eLl(C) for all x(Jf, and

F(t) : f(t)@f(t) dt a.e.
Moreoaer:

(a) f/(r)lz:lF(t)l dt a.e.,
(b) f€.Lz(//) if and onty if lr(.)l€21(C),
(c) if F(t):f1t)8f?):h(t)@h(t) dt a.e.and (x,f(-)) ana(y,h(.)) are tneas-

urable for all x,!(ff, then there exists ameasurable complex-aaluedfunction q(t)
such that lq?\:l at a.e. and f(t):q(t)h(t) dt a.e.

Proof. First note that lf'(.)l is measurable. Let 7:{t: F(t)#O) and let

fiQT:p1rr"r,i:|,2,..., where {et: j:1,2,...} it an orthonormal basis in tr.
set g(r):fi(r) if fi(t)*o,...,g(t):f"(t), if f"(t)#o and f,(t):0 for all
j:1,2,...,n-I, r€N. Let f(t):g1t)lls@lxllw1l if t1l and /(l):9 other-
wise. Then/(r) is measurable. Also for every x€,//

(x, f(t))f(t): lr(r)l (-,ffi) ffi : VQ)IPFG)*x : F(t)x, dt z.?.,

since F(l) is a one-dimensional operator for t(Å. Now we proceed with the proof
of (a), (b), (c).

(a) lr(,)l:sup {l(F(r)x, x)l: lxl=1}:sup {l(x,/(t))[': lxl=l]:l/(r);z dt a.e.
(b) This follows from (a).

(c) Suppose that F(t):f(t)@f(t):h(t)@h(t) dt a.e.

Then sp {å(r)}:sp {f(t)}:F(t)sf and lh(t)l:lf(t)l:t1F6l il a.e. Since

dimF(t\ff=7 dt a.e., there exists a scalar function 4(l) such tbat q(t)h(t):
f(t). tr

Lemma 4.2 allows the construction of the following model for a stationary
sequence whose spectral density satisfies Assumption4.l. The proof is immediate.

4.3. Lemm a. Let f be a measurable af,-tsalued function such that F(t):f(t)6
f(t) dt a.e. and let Y:(Y,) be the stationary L(lf,, L2(C))<:alued, sequence defined
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by the formula
(Y"x)(') : 

"-'"'(x, f(.)), x€.tr.

Then F is the spectral density of (Y").

4.4. Definition. Let F(.) satisfy Assumption 4.1. F(.) is said tobefactor-
able if there exists a measurable a?-valued function a(.) such that(x,a(.»€Zi(C)
for every x(tf , and

F(t): a(t)ga(t) dt ä.e.,

where .L| (C) denotes the subspace of 12 (C) consisting of all functions with vanishing
negative Fourier coeffi.cients.

The following charadeÅzation can be derived from the general theory of fac-
torization (see [5], Theorem 10.3). For completeness we include the proof outtned
below.

4.5. Proposition. Under Assumption 4.1 a sequence (X,) is regular if and only
if F(.) is factorable.

Proof. Let Y:(Y,) be the stationary sequence defined in Lemma 4.3. The
sequence (f,) is regular if and only if .l/o(Y):fi{r'"'(*,fl.)): xcaf,, n=O} is
not a doubly invariant subspace of I'(C) for the multiplicationby ei'. An applica-
tion of the Beurling theorem (e.g. [5], p. 8) completes the proof. n

For a finite dimensional Hilbert space lf, the characterization of regular sta-
tionary sequences with multiplicity one can be found in [8], Theorem 8.2. Unfor-
tunately, this theorem may fail in the infinite dimensional case. The following prop-
osition provides an infinite dimensional version of the result.

4.6. Theorem. Let let: i:1,2,...1 be an orthonormal basis in lf, and let

fi*U):(F(t)ei,ek), k,i:|,2,.... Then, under Assumption4.l, the sequence (X,)
is regular if and only if there exists an integer k such that:

(i) /1" lnfooQ) dt= - *,
(ii) there exists d function E(LT(C), lE(l)l:t dt a.e., such that for euery

.i:1,2, ... the functions

tiu):#*u,
are the boundary aalues of some functions fii(N*.

Proof. If (&) is regular, then by Proposition 4.5 F(t):a7119o1r7, where
(*,o(.)ez|(c). Let k be such that ("r,o(.))+0. Then (er,a(t))*o dt a.e.

and lnf(ee, a('))l:lnfro()l2is in z1(c) (151, p. 2l).By Theorem 4 in [5], (eo, a(t)):
EU)/l$) dt a.e., where E<L|G) and 4 is an outer function in f'8*(C). Thus for
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every jr:1,2, ...

{1Q):ffiEu\:tffihE$):b#
is the boundary value of a function from N* ([4], Theorem 2.9).

Conversely, suppose that F(t):f(t)8f?) and that Ectl(C)l<n(t)l:l dt a.e.

is such that for every j#k

{ iG) 
: ffi EQ) : *# EQ) : llgfi i?,\ at d'a',

where ft€N*. Since fw"(Lt(C) and !L*lnfooQ)dt=--, there exists a meas-

urable function q(t),lq(t)l:1 dt a.e. such that q(t)(eo,f(.)) is an outer func-

tion in L,*(C) ([5], p. 21). Let a(t):-q(t1q!)/(r). Then a(.) is a measurable

lf,-valted function and for all i:1,2, ...

(e,, a(t)) :[mEg1llqg11,r, fU))) : tuiG)LqQ)(eo, fU))7,

where the first factor f; is in N* and the second factot q(')("0,f(')) is in L'+(C).

Thus, (er., a(r)) is the boundary value of some function from N* (see [4] p. 26).

Since (e;, a(.))€Z'z(C), from [4], Theorem 2.11, we have (ei, a('))ez'z*(C) for
all i-1,2,.... Since F(r):a(t)6a(t), by Proposition4.5 (x,) is regular' n

4.7. Corollary ([8J Theorem 8.2). Suppose that dimff-n=*. Under

Assumption 4.1, the sequence (X,) is regular if and only if there exists k, l<k<n,
such that

(i) /i" lnfoo$) dt= - *,
(ii) the ratios öir,(.):f*(.)lfoo(.) are the boundary ualues of functions of

the class Nufor some ö>O and j:1,2,.",fl, where Nudenotes the class of ratios

of functions from H6.

Proof. lf (X,) is regular, then it follows from Proposition 4.5 that there exist

a function a(.) and an integer k, l<k<n, such that 0+(e1,,a('))etz*(C) and

such that (e,,a(l)@*a@:fi*Q) dt a.e. Thus äro(r):(e1,a(t))f{eo,a(t)) is

in ÄIr.
Conversely, suppose that k is such that (i) and (ii) hold. Since every function

from äö can be written in the form B(z)S(z)H(z), where B is a Blaschke product,

,S is a singular inner function and f/ is an outer function (see [4], Theorem 2.8),

we have

öiou)-lsffiffiffi
q (t) : 

l11 fii,:, B**(rr") S**(rr"),
If we take
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for every 7 the function {r1Q):fi*Q)EG)lfkkQ) is the boundary value of a function
in N* ([4], p.26). Thus we conclude from Theorem4.6that the sequence (X,) is

regular. D

The following Lemma is used in Proposition 4.11 and Theorem4.l3. Its proof
is given for a more general situation than stated here.

4.8. Lemma. Suppose that F(.) isfactorable. If r(.) is anonnegatiuefunc'
tion such that

(i) l"--lnr(r) dt>-*,
(ii) r(.)(r(.)x,x)erl(c) for alt xC*,

then r(t)F(t) is factorable.

Proof. Suppose that F(.) is a spectral density, not necessarily ofrank one,

which can be written in the form F(t):1111"n(r), where l(.) is L(*)-valued
function such that A(.)x€Lz*(af,) for all x in lt.Let 1(/):6aa (r(l), l), rz(t):
min (r(r), t). Since

fi; 1,,f,»r(0) = r(/i = r,(t)F(t),

it follows from Douglas's theorem ([21, Theorem l) that there exists a function
lr(r) with values in L(//) such that Ar(.)x(L2*(tr) for all x€af, and such that
rr(t)F(t):,4r(t)"Ar(t) dr a.e. Since rz(') and ln rr(') are in Zt(C), rz(t):

E @ E O with E € ri (c). Thus r (t) F (t) : v,(r) (r' (r) F (t)) : (q (t) A (t))* (E Q) Ä Q)),
and EQ)A(I) has the desired property. !

4.9. Definition ([51, p. 65 and 9l). A closed subspace valued function

-l{,, -&,c.2f , t((-n, zr], is said to be conjugate analytic if there exists a sequence of
functions Si(Lz-(lf\ such that il,:$ {si!), i:7,2, ...} dt a.e.

4.10. Remark. If dim.d/,=l dt a.e., then .,/{,, t((-n, zl, is conjugate ana-

lytic if and only if there exists a function a(.)(L'z-(tr) such that la(')l:l dt a.e.

and ,/{r:{p {a(t)} dt a.e. or, equivalently, if the orthogonal projection Pn, onto
,/{,, t€.(-n,zl, is factorable ([5], p. 65).

The next proposition provides a set of sufficient conditions for the factorability
of f(l). These conditions involve the conjugate analyticity of the range of F(r) and

the behavior of the norm of F(l).

4.11. Proposition. Under Assumption4.l the following three conditions are

equh;alent:
(l) f(r) lf, is conjugate analytic and lL*h lf(r)l dt>-*,
(2) F(t) # is conjugate analytic and there exists x(lf, such that

h (r(.).r, x)e lr(c),
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(3) F(t)// is conjugate analytic and ln l^F(.)l€21(C).
Moreouer, each one of these conditions implies that

(4) F(t) is factorable.

Proof. (l)+(4). This implication is a special case of a more general result
(see [2], Theorem 2). We note that the proof could equally be based on Lemma 4.8.

In fact, if (l) is satisfied, then F(t)llF(t)l:Pr,)x is factorable, so F(t):
lP(t)lF(t)llF(t)l by Lemma 4.8.

(1)+(2). Suppose that F(l) satisfies (l). Then it follows from (l).+(4) that
F(r) is factorable in the form F(t):a(t)6a(t), where (x,a(.))€Z'+(C) for all
x(a€. Let x be such that (x, a(.))*0 dt a.e.Then

m (r(.)r, r) :2tnl(x, a(.))lez'tc).

(2)"=r(3). We note that P(l): F{t)llP(t)l is the orthogonal projection onto
F(t)/f . Since F(t) lf, is conjugate analytic, P(t) is factorable (see Remark4.l0).
Let r(t):lP(r)1. Then I ln r(t) dt= [ (ln (F(r)x, x) -2lnlxl) dt=- -. Thus by
Lemma 4.8, F(t):y111p1r1 is factorable. Thus h (f'(.)x, x):11r(.)+
h (r(.)x, x)ezt(C1, which implies that ln r(.)(Il(C).

(3)=+(1). Obvious. n
4.12. Remark. Under Assumption 4.1, if F(r) is factorable, then obviously

there exists x€af such that ln(f(.)*,x)eZ,1C;. Thus the conditions (l), (2),
(3), (4) in Proposition4.ll would be equivalent if the factorability of F(r) implied
the conjugate analyticity of its range. If lf(.)l€Z'(C) and F(r) is factorable,
then it follows from Lemma4.2 that F(t):s1716a(r) with a(.)(L2_(/f,), so

f'(/) has a conjugate analytic range. Thus if lf'(.)l€21(C), then conditions (1),

(2), (3), (4) in Proposition 4.11 are equivalent.
Below we prove that, under the Assumption 4.1, the factorability of F(t) implies

the range of F(r) to be conjugate analytic if and only if h lf(.)l(21(C).

4.13. Theorem. Let Åssumption4.l be satisfied. Suppose that F(t) is factor-
able. Then F(t) has a conjugate analytic range if and only if I\"ln lF(r)l dt-*.

Proof. Suppose that the range of F(l) is conjugate analytic. Since F(l) is fac-
torable, there exists x(ff such that ln (f(.)r, x)e Zt1C1. From Proposition 4.11

we obtain In lr(.)J€21(C).
Conversely, suppose that lL*tnlF(t)ldt-- and let r(t):17;p1111. Since

F(r) is factorable, it follows from Lemma 4.8 that the orthogonal projection onto
the range of F(t), P(t\:p11111F(t)l:v111p1r7 is factorable, which in view of
Remark 4.10 completes the proof. tl

4.14. Corol lary. Under Assumption 4.1, if IL*t,lF(t)l dt< *, then the con-

ditiors (1), (2), (3), (4) in Proposition4.ll are egufualent.
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Theorem 4.13 points to the existence of a factorable spectral density F(l) whose
range is not conjugate analytic. This would negate the claim "factorability implies
conjugate analyticity" contained in [5], p. 120. Below is an example to this effect.

4.15. Example. Consider the function g(x):exp {(t4t-x';)}, -l<x-l,.
Since 1/(1 -x'):Zi:rxzo and erpy:}[*oy"fn!, the functiong(x)has thepower
series representation

g(r) : Zi_oanxzn, -l < x = I,
where ao:s, h:Zi:o@+k-1)Ukl(k-l)ln'!, n:l,2,... . Let

q,(t) :l { -!o 
J" 
,"r, t((-n, n),

and let ro:ao-la,l, where [a,] denotes the greatest integer less than or equal to a,,
n:0, 1,2, ... . Define the sequen@ to,*r, ... of analytic polynomials as follows:

*o(t) : oo,

{r(t): Et(t), ...,Vu;Q1: Et(t), tu,t+r(t): {iErQ\
(et*t(t), [aJ+...*[ax]*k*l <* j <- [ar]+...*lar,+i*k

V ilt) : ltt r*rErt», j :[ar]+...f[ae*jf k* l,
for k>2.

Then:
(l) the Fourier coefficients of ry'1 vanish outside of [0,2k1, k:0,L,2, ... ,
(2) for every k:7,2, ... , !!*lr!o{t)|, dt=2n, and

(3) Zl:olto(t)|, : ao* 27:,,1*00)1,

- 
" 

* 

'r 
:] 

i:rffilär :,1r.,: : l:;' 
ae'sin r'2k

(t)ei{r'+'1", k-0, 1,2,... , /€(- fr, fr). Then it follows from (l), (2),

k - O, l, 2, . . .) is a sequence of polynomials in /,i (C) such that :

lryof)|z dt = C - Zne, for every k - 0, I, ...

Let ryxU):t\r,
(3) that {rto,

(i) ["_.

(ii) I:_q*Q)@ dt - 0, for every k # i, k,i:0, 1,2,... ,

(iii) Z]:olqol)l': exp{#,-} ="" dt a.e.

Let f(t) be the lz-valued function defined on (-n, n) by the formula

f(t) : (noQ)t in?), ,tr?), ...)
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and let F(t):f(t)ef(t), tE(-n,z). Then f(l) is a nonnegative bounded linear

operator in 12 dt a.e. with the operator norm lF(r)l:erp {(t/(t-sin'zr))}' More-

over, for each x:(dr)(/z we have

l"__(r1t1x,x)dt: [l_lZ;:raoqo?)l'dt = c )i:ol«rl': clxlz =.*.

Thus F(l) is the spectral density of a stationary sequence with multiplicity l. Since

for every a:(ae)Q|z, (*,f(t)):27:oarqo(t)QL2*(C), .F(r) is factorable. However,

I __rrl F(t)l dt : I __-# dt : * *.

Thus it follows from Theorem 4.13 that the range of F(t) is not conjugate analytic.
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