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F-HARMONIC MEASURES, QUASIHYPERBOLIC DISTANCE
AND MILLOUX’S PROBLEM

O. MARTIO

1. Introduction

Let B2 be the unit disk in the plane and C a relatively closed subset of B2. If @
is the harmonic measure of C with respect to the open set B\ C, then A. Beurling’s
projection theorem can be used to estimate w from below. This, in turn, leads to
estimates, called Milloux’s problem, for bounded analytic functions f: B2-~C which
are small on the set C.

In this paper we consider these problems for F-harmonic measures @ and
quasiregular mappings which are generalizations of the harmonic measure and ana-
lytic functions, respectively, to higher dimensional euclidean spaces. If C is a rela-
tively closed subset of a domain G in R" without compact components, then in Sec-
tion 2 we obtain lower bounds for w(x) which only depend on the quasihyperbolic
distance of x and C and on the ellipticity constant of F. The estimates are useful
since both the F-harmonic measures and the quasihyperbolic distance are, in a
sense, quasiconformal invariants. Although some of these bounds can be derived
from the estimates due to V. G. Maz’ja [M], we use a new tool: Harnack’s inequality
for monotone super-F-extremals.

In Section 3 we obtain a lower bound for  in the unit ball B" of R" provided
that the set C meets each sphere dB"(¢), 0=t<1. This estimate is based on a variation
of the Carleman method introduced in [GLM 3]. The method gives essentially the
same lower bound as derived in Section 2 where C has no compact components in B”.
These rather elementary methods produce in B", n=2, lower bounds for w which
are, except for certain numerical constants, as good as lower bounds derived from
Beurling’s projection theorem in B2 for the ordinary harmonic measure. Section 4
deals with Milloux’s problem for quasiregular mappings. Milloux’s problem is
closely related to Hadamard’s three circle theorem and its local version, based on
Maz’ja’s estimates, proved by S. Rickman [R], see also [V].

Throughout this paper B"(x,r) denotes the open n-ball of R" with center
x and radius r=0. We also use the abbreviations B"(r)=B"(0,r) and B"=B"(1).
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2. F-harmonic measure and quasihyperbolic distance

2.1. F-harmonic measure. Let F: R"XR"—R be a variational kernel satisfying
the usual assumptions of measurability, convexity, differentiability and homogeneity
in the conformally invariant case F(x, h)=|h|", see [GLM 1, p. 48]. In particular,
there are constants O<o=f<-< such that for a.e. x€R"

(2.2) alhl" = F(x, h) = B|h]"

for all h€R". Let G be an open set in R" and let C be a set in G such that CnG
is closed in G. We let w=w(C, G\C; F) denote the F-harmonic measure C with
respect to the open set G\ C. This means that for xéG\C

w(x) = inf {u(x): uc¥}

where % is the upper class for w, i.e. each u€% is a non-negative super-F-extremal
in G\C and for each ycd(G\C)

lim u(x) = xc(»)

Xy
where y is the characteristic function of C. For the definition and properties of w
see [GLM 2] and [GLM 3, 2.7]. Here we are mainly interested in the case where
C is a closed subset of a domain G.

For the next lemma we recall that a continuous function in an open set G is

monotone if for all domains D with compact closure in G

osc (u, D) = osc (u, 0D)
where osc (v; A)=sup, u—inf, u.

2.3. Lemma. Suppose that u is a continuous, monotone and non-negative super-
F-extremal in G. Then

249 sup u(x) = e @™ inf u(x)
x€B(r/2) x€B(r/2)

whenever the ball B(r)=B"(x,, r) lies in G. The constant c depends only on n.

Proof. The proof is similar to [GLM 1, Theorem 4.15], however, the details
are different. Fix a ball B(r)=B"(x,,r) in G. We may assume that B(r)cG.
We may also assume that u=>0 in B(r) since if u(x)=0 at some point x€B(r),
then it easily follows from the F-comparison principle and from the continuity of
u that ¥=0 in a neighborhood of B(r) and hence the inequality (2.4) would be
trivial.

Next let »=Ilogu in B(r). It follows from [LM, Lemma 2.12] that for each
O<go=<r

2.5 J 4 V01" dm = ey (Bo)(log (r/@))*~"
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where the constant ¢; depends only on n. To complete the proof for (2.4), note
that since u is monotone, v is also monotone and [GLM 1, Lemma 2.7] yields for

Q=r/]/—2-

o(v, B(r/2))"log (2¢/r) = fr/z o(v, B/t dt

e n - n _ —-n
=[ @0, 0B tdt = 4 [ s V21" dm = Acy(Bla) (log (/o))
where (2.5) has been used in the last step and 4 depends only on n. This implies

log 5;1;1;;4 = w(v, B(r/2)) = [Acy (B/o)]V" (log V2) 2

and we obtain (2.4) with

¢ = (Ae)"(log y2) .

The Harnack’s inequality of Lemma 2.3 can be used for F-harmonic measures
in the following situation.

2.6. Lemma. Suppose that C is a relatively closed subset of G without compact
components. Let w*(x)=w(C, G\C; F)(x) for x¢G\C and o*(x)=1 for xcC.
Then w* is continuous in G and (2.4) holds for w* in each ball B"(x,, r)cG.

Proof. The continuity of w* in G follows from [GLM 3, Remark 2.14]. Next
the F-comparison principle implies that «* is a super-F-extremal in G and since
0<w*=1 and since each point x€G where w*(x)=1 belongs to a continuum
reaching to dG, w* is monotone in G. Thus the inequality (2.4) for w* follows from
Lemma 2.3.

2.7. Quasihyperbolic distance. Suppose that G is a proper subdomain of R"
The quasihyperbolic metric k¢ in G is defined as

(2.8) ke (51, xp) = inf [ , dist (x, 9G) ™ ds

where the infimum is taken over the family of all rectifiable curves y in G joining
x, to x,. For the properties of kg see [GP]. If Cis a subset of G, then for x€G

ko (x, C) = inf kg (x, y)

denotes the quasihyperbolic distance of x and C. If C=0, we set kg;(x, C)= .

2.9. Theorem. Suppose that G is a proper subdomain of R" and C is a rela-
tively closed subset of G without compact components. Then for each x€G\C

(2.10) o(x) = bexp (—aks(x, C))

where o=w(C, G\C; F) and a=c(B/x)!!". The constant c¢=>0 depends only on
n and b=0 depends only on n and off.
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Proof. Fix x¢G\C and set d=kg(x, C). If 6=, then there is nothing to
prove. Suppose O0<d<< and let 0<e<§/2. Pick y€C and a rectifiable curve y
in G joining x to y with

(2.11) 5 =ke(x,C) > [ , dist (z,06) ™ ds—e.

Next choose points zj, ...,z;4; on y and radii ry, ..., r; inductively as follows.
Set z,=y and ry=dist (zy, 0G)/2. Assume that z, ..., z; have been chosen and
let y; denote the part of y from z; to x. If y,CB"(z;, r;), then set j=i and z;,,=x.
If y;d¢ B(z;, r;), then let z;,, be the last point where y;, meets dB"(z;, r}) and put
r;1=dist (z;,,, 0G)/2. Since y is a compact subset of G, the process ends after a
finite number of steps.

Fix i=1, ...,j—1. Let y; be the part of y from z; to z;,,. Pick z’€dG such that
2r; = dist (z;, 0G) = |z;—Z'|.
Then for z€y,nB"(z;, r)
dist(z,0G) = |z—Z'| = |z—z|+|z;—2'| = r;+2r; = 31,

and thus
. = . »
[, distzoods= [ dist(z90) " ds
= r,-/3ri = 1/3.
Hence
[ dist(z,06)ds = 3|2} [  dist(z,0G) " ds = (j—1)/3
Y i
and by (2.11)
§>(j=1)/3—¢ = (j—1)/3-5/2.
This yields

ke(x,C) =6 = (j—1)/6.
Next let w* be defined as in Lemma 2.6. We apply (2.4) to w* in each B;=
B*(z;, r), i=1, ...,j. Note that B"(z;, 2r)cG and hence

1 =0*Q) =0*(z) =2 igf o*=Alsupo* = A2 ilralf w*
1 B, 2
=.=M igfco* = Vo*(x) = A% 1 o(x)

J

where
A = exp (c(B/a)*!™)
and ¢ depends only on 7. This implies the required inequality (2.10) with
a =6log A = 6c(B/a)", b =1/A = exp(—c(B/o)™).
2.12. Remark. The use of the Harnack inequality to estimate harmonic func-
tions or F-extremals is well-known, see e.g. [GLM 2] and [V 2].

The next lemma, needed in Section 3, shows that Theorem 2.9 can be used in
some cases to estimate w although C is not a subset of G.
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2.13. Lemma. Let G be the annulus B™\B"(ry), O<ro<1, and C=0B"(ry).
Then for each x€G

(2.14) 00 = { b(re(1—[x])?, if 1= 102,

b((1=ry) 21 —=[xD)e, if ry=1/2,
where w=w(C,G; F) and a, b are the constants of Theorem 2.9 depending only

onnand off.

Proof. Fix xcG. Without loss of generality we may assume x=te, where e,
is the n-th unit vector of R*. Let H denote the upper half space of R" and write G’ =
HnB" and C’=HnNB"(ry). Then C’ is a relatively closed subset of G”. If @ is
the F-harmonic measure of C” with respect to G’, then Carleman’s principle [GLM 3,
Lemma 2.8] implies w'=w in G'\C’ and it remains to find the lower bounds
in (2.14) for w’.

By Theorem 2.9

(2.15) @’ (x) = be—%™®
where k(x)=kg (x, C’). Let y be the line segment from rye, to x. Then
(2.16) k() = [ , dist(z,06) 7 ds = / min(l—s, s)~1ds
and the last integral has the following values:
(i) —log(4r,(1—=1)) for ro=1/2<1,
() log((1—-re)/(1—1) for 12=r,<t and
(iii) log(2/ry) for ro<t=1)2.

Since for 0<r=1/2, t=(4(1—1))"* and hence the upper bound of (i) for k(x)
can be used in the case (iii) as well. Thus (2.15) and (2.16) yield the required esti-
mate (2.14).

2.17. Remarks. (a) Let B" ! be the open unit ball of R"*andlet G=B""'XR
be a circular infinite cylinder in R". Set C=B""'X{0} and fix x=(0, ..., 0, )€G
where 7=0. Then kg(x, C)=¢ and hence Theorem 2.9 implies

w(x) = b exp (—ai).
On the other hand, it was shown in [HM, Theorem 3.35] that
w(xX) = Mexp(—ayb)

where M<-oo is an absolute constant and a,>0 depends only on »n and «/p.
Hence Theorem 2.9 is essentially the best possible.

(b) It is not possible to choose b=1 in Theorem 2.9. For ordinary plane
harmonic measure this follows from Theorem 2.24 below.
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2.18. Theorem. Let G, C and w be as in Theorem 2.9. Then for xcG\C
(2.19) o(x) = 1—ckg(x, C)°
where the constants ¢=>0 and 6€(0,1) depend only on n and o/B.

Proof. First extend o to ®*: G~R as in Lemma 2.6. Then o*€C(G)n
loc Wi(G) is a monotone super-F-extremal in G. Next we can use the proof of
Lemma 4.2 in [GLM 1] to obtain

(2.20) fB"(xo,r) [Vo*|* dm = ¢, (B/a) osc (w*, B"(xy, 0))" (In (o/r))*~"

where O<r<p and B"(x,, 0)=G. Here ¢; depends only on n. In fact, the proof
given in [GLM 1] can directly be used for sub-F-extremals via the important
extremality property [GLM 1, Theorem 5.17, (ii)] of regular sub-F-extremals. Since
a function u is a super-F-extremal if and only if —u is a sub-F-extremal, the proof
also gives (2.20).

Next the proof of Theorem 4.7 in [GLM 1] together with the inequality (2.20)
and the monotonicity of w* yields

(2.21) osc (o*, B"(xy, 1)) = e(r/0)’

where e is Neper’s number and §=c,(¢/f)'"=0. Here c, dep;nds only on n and
O<r<g with B"(x,, 0)CG.
To prove (2.19) we may assume that C=0. Fix x¢G\C and suppose first that

k(x) = kg(x, C) < 1/e.
Pick y€C such that
kg (x, y) = min (2k(x), 1/e).
By [GP, Lemma 2.1]
lx—yl ]
dist (y, 6G) )’

and since log (1+¢)=t/2 for O=log (1+¢)=1/e, we obtain

ko, ) = log (14

2k(x) = kg(x, ») E—Zd——ilsft_(__);leT)'

Set o=dist (y,0G) and r=|x—y|. Then (2.21) yields
o*(y)—o*(x) = osc(w*, B"(y, 1)) = e(r/o)’ = e4’k(x)?

and since w*(y)=1 and w*(x)=w(x), we obtain the desired estimate (2.19) with
c=ed’,
If k(x)=1/e, then

l—edk(x)’ = 1—ed’e=1—ed’e 1 =0

and hence we again obtain (2.19) with the same ¢ and § as above.
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2.22. Remark. The above proof yields
o(x) = 1—e(lx—yl/dist (¥, 0G))°
for each x¢G\C and y€C.
2.23. Corollary. Let G, C and w be as in Theorem 2.9. Then for each xcG\C
o(x) = max (1 —ckg(x, C)’, b exp (—akg(x, C)))
where the positive constants a, b, ¢ and & depend only on n and o/B.

For the ordinary plane harmonic measure A. Beurling’s projection theorem
gives a more precise result than (2.19).

2.24. Theorem. Let G be a plane domain and C a relatively closed subset of
G without compact components. If w is the ordinary harmonic measure of C with
respect to G\C, then for xeG\C

2.25) o) = l—%kG(x, oy,

The exponent 1/2 is best possible.

Proof. As in the proof of Theorem 2.18 let x€G\C. Let ¢>0 and choose

y€C such that
kg(x,y) < kg(x, C)+e.

Assume first that kg(x, y)<1/e. Then, see the proof for Theorem 2.18,

_ x—yl ) 1=yl
kg(x, y) = log [1+ dist (3, 9G) =7 st »,06) "

Let r=|x—y| and g=dist (y, dG). For the rest of the proof we may assume y=0,
x=re;, and ¢=1. Let o’ be the ordinary harmonic measure of CnB? with respect
to BX\C. By Beurling’s projection theorem [B], @'(x)=w*(x) where w* is the
harmonic measure of C*=(—e;, 0] with respect to B*\C*. On the other hand,
it is well known that for each O<t<1

4 -
(2.26) o*(te) = 1— —arctan Ve

By Carleman’s principle, o(x)=w’(x) and hence the above inequalities yield

o(x) = o’(x) = 0*(x) = 1—-—;’;—arctan}/? = 1—%}/?

= 1—4—7tl/——2—kc(x, Y2 = 1—% (kg(x, C)+e)'2.

Letting s~0 we obtain the desired result in the case kg(x, C)<1/e.
If kg(x,C)=1/e, then 8/(nVe)>1 and the estimate (2.25) is trivial.
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Letting w=w* where w* is as above we see from (2.26) that the constant 1,2
cannot be replaced by any constant 6=>1/2.

2.27. Remark. Let G, C and w be as in Theorem 2.24. It follows from the
above proof that

okx) =1 —%(Ix— yl/dist (y, dG))M*

and 4/m and 1/2 cannot be replaced by any smaller and bigger constant, respec-
tively.

3. Estimates in a ball

The following theorem is a counterpart of an estimate due to T. Carleman [C]
and A. Beurling [B] for F-harmonic measures. The proof is based on the proof of
Phragmen—Lindel6f’s principle in [GLM 3].

3.1. Theorem. Suppose that C is a closed subset of the unit ball B" with the
property that the spheres 0B"(t) meet C for all 0=t<1. Let w be the F-harmonic
measure of C with respect to B™\C. Then for each x€ B"\C

3.2 o(x) = ¢, (1—|x])?
where ¢;=>0 depends only on n and o/B and a is the constant of Theorem 2.9.

Proof. Let o’ be the F-harmonic measure of dB” with respect to B™\C. Then
[GLM 3, Lemma 3.18] yields for each x¢B"™\C

(33 w9 =4exp(~eCespp 1 L) = app

|l ¢

where eé=c(a/B)"=1 and c¢>0 depends only on n. This was proved in [GLM 3]
under the additional assumption that B™\C is a regular domain but since each
component of B™\C can be approximated from inside by regular domains and
since the corresponding F-harmonic measures bound o’ from above and satisfy
(3.3), the inequality (3.3) for o’ follows. Unfortunately, (3.3) does not immediately
give (3.2) because the right side of (3.3) can be =1. To overcome this difficulty
we first pick r4€(0, 1/2] such that 4ri=1/2, ie.,

(X)) ro = (1/8)-.

Then ry depends only on »n and o/f. Now (3.3) yields
(3:5) W) =1

for all x€B"(ro)\C.
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Next let u belong to the upper class for w, see 2.1. Then 1—u is a sub-F-extremal
in B™\C and
Iim (1 - u(x) = %5 (7)

for all y€d(B™\C). The F-comparison principle, cf. [GLM 3, Lemma 2.3], yields
-0’ =0

in B™\C and hence, by (3.5), w(x)=1/2 for all x€B"(r,))\C. To complete the
proof let o* be the F-harmonic measure of 0B"(r,) with respect to the annulus
G=B"\B"(r,). By Lemma 2.13

3.6) @* (%) = b(ro(1—[x]))"

where a and b are the constants of Theorem 2.9. Finally, since 20=w* in
B™\(B"(r))uC), we obtain the desired inequality (3.2) from (3.6) with ¢, =br§/2
and the constant a is the constant of Theorem 2.9. Note that in B"(ro)\C this
inequality is trivial since w=1/2 and

b(ro(1—|xD)* = brs=b2=1/2
there.

3.7. Remarks. (a) It follows from Beurling’s projection theorem, cf. the proof
for Theorem 2.24, that for the ordinary plane harmonic measure  in the situation
of Theorem 3.1

(3.8) w(x) =1 —% arctan V|x| = %(1 —|x0)

where the last inequality follows by elementary calculus. Simple examples based on
non-lipschitzian quasiconformal mappings and the invariance property [GLM 2,
Theorem 5.4] of F-harmonic measures show that in the general situation of Theo-
rem 3.1 it is not possible to choose a=1 in (3.2), however, see Theorem 3.13 below.

(b) T. Carleman [C] proved the estimate (3.2) for the ordinary harmonic meas-
ure o under the assumption that C does not have compact components. He made
use of the fact that in the plane the open set B®\C then consists of simply con-
nected domains. This allows the use of special conformal techniques, see [A, p. 42].
The corresponding result can be derived directly from Theorem 2.9 for general
F-harmonic measures: If C is a closed subset of B" without compact components and
if 0¢C, thenin B™\C

3.9 o(x) = b(1—|x])°

where o is the F-harmonic measure of C with respect to B'™\C and a and b are the
constants of Theorem 2.9.
To prove (3.9) fix x¢B™\C. We may assume x=te,, O<t<1. First note that

(3.10) kgn(x, C) = —log (1—|x]).
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For this observe that since 0¢€C,

(3.1 1) an (x, C) an (x, 0)
and if y is the line segment [0, x], then
(3.12) kpn(x,0) = [  dist(z, 9B") = ds = ~log (1 —|x|).

Next let y: [0, 1]-B" be any rectifiable curve (parametrized by arc length) joining
x to 0 and let 6 be the projection of R” onto x,-axis. Then [0'|=1 and y,=6oy
is rectifiable and joins x to 0 in B". Moreover, for 0=s=1

dist ((s), 0B") = dist (y,(s), 9B")
and hence

[ dist(z, 0B~ ds = [} 1y (s)| dist (3(s), 9B") ~* ds

= m —1
f o dist (yl(s), 0B") ds f dist (z, 0B") "' ds

= —log (1—|x]).

Thus kp.(x, 0)=—log (1—|x]) and, by (3.12), k.(0, x)=—log (1—|x]) and the
inequality (3.10) follows from (3.11).
The inequality (3.9) now follows from (2.10) and (3.10).

If F is the n-Dirichlet kernel, i.e., F(x, h)=|h|", then it is possible to derive
a lower bound for w as good as given by Beurling’s projection theorem, see (3.8).

3.13. Theorem. Let C be as in Theorem 3.1 and F(x,h)=|h|". If w is the
F-harmonic measure of C with respect 1o B"™\C, then for all x¢ B"™\C

(3.19) @(x) = c(1—1x))
where ¢,>0 depends only on n.

Proof. As in the proof for Theorem 3.1 we first show that
(3.15) o(x) = —;—

for x€B"(rg)\C where ry€(0, 1/2] depends only on n because «/f=1 for this
special F. Next let 4=B"\(B"(r,)uC) and for xcA define

v(x) = log |x|/ (2 log ry).
Then v is an F-extremal in 4 and at each point y€dA

llm v(x) = lim u(x)
x>y
where u is any function in the upper class for w. Thus w=v» in 4 and by elementary
calculus

v(x) = (x| -1)/(2log re)
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in A and the inequality (3.14) follows in 4 with ¢,= —(2 log r,)~1=0. If x€ B"(r,)\C,
then (3.14) follows from (3.15) because r,=1/2 and hence

e(1—]x]) = (2log2)~1(1—|x|) = (4log2)~* < 1.
The proof is complete.
3.16. Remark. The author conjectures that if F(x, h)=|h|* and if CcB"
is such that CnB" is closed in B", then
o(x) = o (|x|e)
where o is the F-harmonic measure of Cin B"™\C and ’ is the F-harmonic meas-

ure of
C’'={—te: IB"(H)NC#0, 0=t=1)}

in B™\C’, i.e. Beurling’s projection theorem is true for this special F-harmonic
measure. Note that Beurling’s projection theorem is not needed for the estimate
(3.14).

4. Milloux’s problem for quasiregular mappings

Suppose that f: G—~R" is a K-quasiregular mapping, see [MRV], and that
| fI=1. Let C be a relatively closed subset of G. Then there is a kernel F depending
on fsuch that —log|f(x)| is a super-F-extremal and fB/a=K2 For these results
see [GLM 1—2]. Let w be the F-harmonic measure of C with respect to G\ C; set
o(x)=1 for xeC.

4.1. Lemma. If | f(x)|=m in C, then
4.2) Lf()] = m™
Jor all x€G.

Proof. Cf. [GLM 2, Theorem 5.8]. Since »(x)=—log]|f(x)] is a super-F-
extremal in G and since for all y€d(G\C)

lim v(x) = —(logm) xc(»),

x>y

v=—(logm)w in G\C. Hence (4.2) holds in G\C and trivially in C.

4.3. Theorem. Suppose that f is a K-quasiregular mapping of a proper sub-
domain G of R" into B" and that | fl=m<1 in the relatively closed subset C#0
of G without compact components. Then

/()] = mo™
where g: G—(0, 1] is the function
g(x) = max (1—ckg(x, C), b exp(—aks(x, C)))

and the positive constants a, b, ¢ and & depend only on n and K.
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Proof. The proof follows from Corollary 2.23, Lemma 4.1 and from the fact
that p/la=K>2

As above Theorem 3.1 and Lemma 4.1 yield

4.4. Theorem. Let f be a K-quasiregular mapping of B" into B" such that
| fl=m=<1 in the relatively closed subset C of B" meeting each sphere dB"(t), 0=t<1.
Then for all x€B"

1£G9) = met=lxbe

where the positive constants a and ¢ depend only on n and K.
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