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1. Introduction

Let Bz be the unit disk in the plane and C a relatively closed subset of 82. If ro
is the harmonic measure of C with respect to the open set Bz\C, then A. Beurling's
projection theorem can be used to estimate co from below. This, in turn, leads to
estimates, called Milloux's problem, for bounded analytic functions I Bz*C which
are small on the set C.

In this paper we consider these problems for F-harmonic measures or and
quasiregular mappings which are generalizations of the harmonic measure and ana-
lytic functions, respectively, to higher dimensional euclidean spaces. If C is a rela-
tively closed subset of a domain G in R' without compact components, then in Sec-

tion 2 we obtain lower bounds for or(x) which only depend on the quasihyperbolic
distance of x and C and on the elliplicity constant of F. The estimates are useful
since both the F-harmonic measures and the quasihyperbolic distance are, in a
sense, quasiconformal invariants. Although some of these bounds can be derived
from the estimates due to Y. G. Maz'ja [M], we use a new tool: I{arnack's inequality
for monotone super-F-extremals.

In Section 3 we obtain a lower bound for or in the unit ball Bn of R' provided
thatthesetCmeetseachsphere 08"(t),0<t=l.Thisestimateisbasedonavariation
of the Carleman method introduced in [GLM 3]. The method gives essentially the
same lower bound as derived in Section 2where Chas no compact components in B'.
These rather elementary methods produce in 8", n>2, lower bounds for ro which
are, except for certain numerical constants, as good as lower bounds derived from
Beurling's projection theorem in ,B2 for the ordinary harmonic measure. Section 4
deals with Milloux's problem for quasiregular mappings. Milloux's problem is
closely related to Hadamard's three circle theorem and its local version, based on
Maz'ja's estimates, proved by S. Rickman [R], see also [V].

Throughout this paper B"(x, r) denotes the open r-ball of R' with center
x and radius r>0. We also use the abbreviations Bo(r):B'(0, r) and B':B'(l).
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2. F-harmonic measure and quasihyperbolic distance

2.1. F-harmonic measure. Let F: R'XR'*R be a variational kernel satisfying
the usual assumptions of measurability, convexity, differentiabitity and homogeneity
in the conformally invariant case F(x, h)=lhl', see [GLM l, p. 48]. In particular,
there are constants O=a<f=e such that for a.e. x(R'

alhl'= F(x,h)=§lhY(2.2)

for all h€tl:. Let G be an open set in P and let C be a set in G such tbat CnG
is closed in G. We let co:a(C, G\C; F) denote the F-harmonic measure C with
respect to the open set G\C. This means that for x(G\C

ar(x) : inf {u(x): u(%\

wherc olt is the upper class for or, i.e. each u(oll is a non-negative super-F-extremal
in G\C and for each y€å(G\C)

H u(rl = x,c(.J')

where 7" is the characteristic function of C. For the definition and properties of ar

see [GLM 2l and [GLM 3, 2.7). Here we are mainly interested in the case where
C is a closed subset of a domain G.

For the next lemma we recall that a continuous function in an opur set G is
monotone if for all domains D with compact closure in G

osc(a,D) : osc(u,0D)

where osc (u; A\:svp^u-inf nu.

2.3. Lemma. Suppose that u is a continuous, monotone and non-negatiae super-

F-extremal in G. Then

-ål',1,, 
u(x) 4 ec(fta)rln -#år, u(x)(2.4)

wheneaer the ball 8(r):6'1ro , r) lies in G. The constant c depends only on n.

Proof. The proof is similar to [GLM l, Theorem 4.15], however, the details
are different. Fix a ball B(r):8"(xr,r) in G. We may assume that B(r)cG.
We may also assume that z>0 in B(r) since if u(x):g at some point x(E(r),
then it easily follows from the F-comparison principle and from the continuity of
u that u:0 in a neighborhood of B(r) and hence the inequality (2.4) would be
trivial.

Next let o:logu in B(r).It follows from [LM, Lemma2.l2lthat for each

Q<q<r

(2.5) I ,rorlvul' 
dm € cr$lo) (1og (r/s))'-'
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where the constant c, depends only on z. To complete the proof for (2.4), note
that since u is monotone, o is also monotone and [GLM l, Lemma 2.fl yields for
o:rl{I

a(o, B(rl2))'tog(2slr) = Iioa(o, nQ))"lt itt

: Ii,ra@,08(t))"lt at =,t [ "*rlyril 
itm =- Acr@la)(rog(r/e))'-,

where (2.5) has been used in the last step and I depends only on n. This implies

los ä# - Q)(u, B(rlz)) = lAcr(§la)|'r'(log /T)-'

and we obtain (2.4) with
c : (Acr)un (tog/T)-r.

The Harnack's inequality of Lemma 2.3 can be used for F-harmonic measures
in the following situation.

2.6. Lemma. Suppose that C is a relatiaely closed subset of G without compact
components. Let a*(x):ar(C G\C; F)(x) for x€G\C and a*(x):l for x€C.
Then a* is continuous in G and Q.4) holds for co* in each ball B"(xo, r)cG.

Proof. The continuity of ar* in G follows from [GLM3, Remark2.l4]. Next
the F-comparison principle implies that «r* is a super-F-extremal in G and since
0=ar*=1 and since each point x€G where al*(x):1 belongs to a continuum
reaching to 0G, ar* is monotone in G. Thus the inequality (2.4) for ar* follows from
Lemma2.3.

2.7. Quasihyperbolic distance. Suppose that G is a proper subdomain of .P.
The quasihyperbolic metric ko in G is defined as

r53

ko(xr, xz): i?f /, Oir, (x, }G)-L ds

where the infimum is taken over the family of all rectifiable curves y in G joining
xrto x2. For the properties of ko see [GP]. If C is a subset of G, then for x€G

ks(x, c) : it|ko(;, y)

denotes the quasihyperbolic distance of x and C.lf C:0, we set k6(x,C):*.
2.9. Theorem. Suppose that G is a proper subdomain of N and C is a rela-

tiaely closed subset of G without compact components. Then for each x(G\C

ar(x) = b exp (-ako(x, C))

(2.8)

(2.10)

where a:a(C G\C; F) and a:c(Fla)'|". The constant c>O depends only on
n and b>0 depends only on n and ulB.
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Proof. Fix x(G\C and set 6:ke(x, C). If §--, then there is nothing to
prove. Suppose 0=ä=- and let 0<e<ö12. Pick !(C and a rectifiable curve y
inGjoiningxtoywith
(2.11) ö : k6(x, C) = I dist (2, 0A-' ds-e.

Next choose points z1r...szj+L on y and radii t1;...sr, inductively as follows.
Set zr:y and rr:6i51 (zt,0G)12. Assume lhat \,...,2, have been chosen and
let 7; denote the part of y from zito x. lf yrcB"(zr, r,), then set .i:i and zr*r:x.
lf yiS.B(zr, r), then let zial be the last point where y, meets 08"(z;, r;) and put
r,*r:dist (24r,0@12. Since y is a compact subset of G, the proce§s ends after a
finite number of steps.

Fix i:1, ...,j-1. Lety,bethepartof y from zrto zr*r.Pickz'ClG such that

2r, : 6i"1 7ri, 0G) : lzi- z'1.

Then for z(yrnBn(zr, rr)

dist (2, 0G) = lz- z'l = lz - z1l*lzi- z'l € ri*2r, : !v.
and thus

I aist (2. DG\-r ds = f dist (2. lG\-L ds
J t, yinBn(zrr)

> rif3r;: ll3'
Hence

,[, dist1r, 0G)-' ds = Z!:i I,ditt1r, 0c7-' ot = U- 1)/3

and by (2.11)
ä = U- t)13 -e = U- t)13 -ö12.

This yields
kn@,c)-f>(j-D16.

Next let ar* be defined as in Lemma 2.6. We apply Q.$ to ar* in each Br:
B"(zr, rr), i:|, ..., j. Note that Bn(zr,2r)cG and hence

I : o*(y) : a* (zr) = ,[ ilf a* = )' sup «r* = 72 inf a*
Dr Br' Bz

where 
Br

) - exP(c(Bl$tn)

and c depends only on n. This implies the required inequality (2.10) with

a : 6 log ). : 6c (fi I u)Lt', b : I I ), : exp (- c (§ I a)Lt").

2.12. Remark. The use of the Harnack inequality to estimate harmonic func-
tions or F-extremals is well-known, see e.g. IGLM 2l and ff 21.

The next lemma, needed in Section 3, shows that Theorem2.9 an be used in
some qlses to estimate ar although C is not a subset of G.
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2.13. Lemma. Let
Then fo, each x€G

(2.14) ar (x)

G be the annulus B'\E'(or), 0= ro<1, and C*äBn(rr).

_ [b(ro(l - lxl))', if ro s ll2,

where a:a(C,G; F) and a, b are the constants of Theorem2.g depending only
on n and alB.

Proof. Fix x€G. Without loss of generality we may assume x:ten where e,
is the n-th unit vector of R'. Let ä denote the upper half space of ^P and write G':
HnB" and C':HnB"(r). Then C'is a relatively closed subset of G'. If ro' is
the F-harmonic measure of C' with respect to G', then Carleman's principle [GLM 3,
Lemma2.S] implies a'<o) in G'\C' and it remains to find the lower bounds
in (2.14) for crr'.

By Theorem 2.9

(2.15) c»'(x) =- be-ak(x\

where k(x): ks,(x, C'). Let y be the line segment from roen to x. Then

(2.16) k(x) = I rdistlr,0G'1-r 
Ot: Ii,min(l -s, s)-rds

and the last integral has the following values:

(i) -los (4ro(1 -0) for ro s 112

(ii) los(ft-rr)l(l-0) for tf2=ru

(iii) log (tld for ro < t =
Since for 0=/,<112, t=(4(l-r))-, and hence the upper bound of (i) for k(x)
can be used in the case (iii) as well. Thus (2.15) and (2.16) yield the required esti-
mate (2.14).

2.17. Remarks. (a) LetB'-1be the open unit ball of R'-r and let G:8,-1XR
be a circular infinite cylinder in R'. Set C-B'-1X{0} and fix x:(0,...,0, t)€G
where ,>0. Then ftn(x, C)=t and hence Theorem2.g implies

a(x\ =- b exP(-at)'

On the other hand, it was shown in [HM, Theorem 3.35] that

a(x) = M exp(-art)

where M<- is an absolute constant and ar>O depends only on n and alp.
Hence Theorem 2.9 is essentially the best possible.

(b) It is not possible to choose b:l in Theorem2.9. For ordinary plane
harmonic measure this follows from Theorem2.24 below.

<t,

- t, and

l12.
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2.18. Theorem. Let G, C and ctt be as in TheoremZ.9. Thenlor x(G\C
(2.19') ar(x) = l-cko(x,C)ö

where the constants c>0 and ä€(0, 1) depend only on n and alf.

Proof. First extend al to rrl*: G*R as in Lemma2.6. Then ar*€C(d1n
locwr"(@ is a monotone super-F-extremal in G. Next we can use the proof of
Lemma 4.2 in [GLM l] to obtain

(2.20) I o*,o,rlVar*l' 
dm < c1(f1la) osc (ar*, B'(xo, a))'(ln (oli)'-"

where 0=r=p and B"(xr,dcc. Here c, depends only on n. lnfact, the proof
given in [GLM l] can directly be used'for sub-F-extremals via the important
extremality property IGLM 1, Theorem 5.17, (ii)] of regular sub-F-extremals. Since

a function u is a super-F-extremal if and only if -u is a sub-F-extremal, the proof
also gives (2.20).

Next the proof of Theorem 4.7 in [GLM 1] together with the inequality (2.20)

and the monotonicity of ar* yields

(2.21) osc (ar*, B(xo,r)) = e(rldö

where e is Neper's number and ö:cz(alf)t/'=0. Here c, depends only on n and
0</<g with Bn(xo, a)cc.

To prove (2.19) we may assume that C*9. Fix x€G\C and suppose first that

k(x) : ko(x, C) =. |le.
Pick y(C such that

ko(x,y) < min (2k(x),lle).
By [GP, Lemma 2.1]

t
ko(x,y)= loe[r*#O),

and since loe[+t)=tl2 for 0=1og (l+t1=-11r, we obtain

2k(x) > ku(x, y)= = ,J';/l= = .2dist(y,0G) '

Set q-dist(y,0Q and r:lx-yl. Then Q.2l)yields

a*(y)*a*(x) = osc(ar*, B(y,r)) = e(rlp)ö = e4ök(x)ö

and since @*()):1 and ar*(x):ar(x), we obtain the desired estimate (2.19) s/ith
c:e46.

lf k(x)=lle. then

1-e4ök(x)6 = l-e46e-ö < t-e46e-L =o
and hence we again obtain (2.19) with the same c and ä as above.
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2.22, Remark. The above proof yields

ar(x) = l-e(lx-ylldist(y, åG))'

for each x€G\C *d yeC.

2.23. Cor ollary. Let G, C and a be as in Theorem 2.9. Thenfor each x€G\c

co(x) = max (1 - ck6(x, C)u, b exp (- ak6@, C)))

where the positiae constant§ a, b, c and ö deperd only on n and al§.

For the ordinary plane harmonic measure A. Beurling's projection theorem

grves a more precise result than Q.l9).

2.V1. Theorem. Let G be a plane domain and C a relatiaely closed subset of
G without compact components. If a is the ordinary harmonic measure of C with

respect /o G\C, then for x€G\C

Q.25) ar(x) = l-Lko(x,c)'t'-

The exponent ll2 is best Possible.

Proof. As in the proof of Theorem2.l8 let x€G\C. Let e>0 and choose

y(C such that
ko(x,Y') =' k6(x, C)+e.

Assume first that k6@, y)'tle' Then, see the proof for Theorem 2'18'

kn(x, y)= roe (r.#o) = +#o
Let r:lx-yl and g:6ist (y, äG). For the rest of the proof we may assume y:0,
x:rer and g:1. Let ra'be the ordinary harmonic measure of CaBz with respect

to B2\C. By Beurling's projection theorem [B], crl'(x)>ar*(x) where ar* is the

harmonic measure of C*:(-er,0l with respect to B2\C*. On the other hand,

it is well known that for each 0<r< I

Q.26) a*(te) - l-larctanfi.

By Carleman's principle, o(x)=ar'(x) and hence the above inequalities yield

co(x) = ot'(x) =ar*(x) - 1-!atctanfr = L-*1,

=, - + ko(x, y\rt, = t -* &o@, c) + e)ttz.

Letting e*0 we obtain the desired result in the case ks(x,C)<lle-
If &c(x, C)=lle, then 8/(zr G)=1 and the estimate Q.25) is trivial.
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Letting a:a* where ar* is as above we see from (2.26) that the constant 172

cannot be replaced by any constant ö>112.

2.27. Remark. Let G, C and ar be as in Theorem2.24.lt follows from the
above proof that

Å
ar(x) = t - | (lx -tlidist(y, lGl,1trz

and 4ln and ll2 cannot be replaced by any smaller and bigger constant, respec-
tively.

3. Estimates in a ball

The following theorem is a counterpart of an estimate due to T. Carleman [q
and A. Beurling [B] for F-harmonic measures. The proof is based on the proof of
Phragmen-Lindelöf's principle in [GLM 3].

3.1. Theore m. Suppose that C is a closed subset of the unit ball B" with the
property that the spheres LB'(t) meet C for all 0=r<1. Let a be the F-harmonic
measure of C with respect ro B'\C. Thenfor each x€B\C

(3.2) a(x) z cr(l -lxl)'
where cr>O depends only on n and alP and a is the constant of Theorem2.9.

Proof. Let a'be the F-harmonic measure of 08" with respect to A\C. Then
[GLM 3, Lemma 3.18] yields for each x€B'\C

(3.3) a'(x) = 4exp [-' @l fr),t' I,'o9 - 4lxt'

where e:c(alfr)u'<l and c>0 depends only on n. This was proved in [GLM 3]
under the additional assumption that B'\C is a regular domain but since each
component of B\C can be approximated from inside by regular domains and
since the corresponding F-harmonic measures bound ol' from above and satisfy
(3.3), the inequality (3.3) for ar'follows. Unfortunately, (3.3) does not immediately
give (3.2) because the right side of (3.3) can be >1. To overcome this difficulty
we first pick re€(0, 1/21 such that 4ri:112, i.e.,

(3.4) rr: (l/8)1/".

Then rs depends only on n and ulB. Now (3.3) yields

(3.5) a'(x)

for all xe.Bo(ro)\C.

<1
2
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Next let z belong to the upper class for co, see 2.1 . Then I - n is a sub-F-extremal

in B'\C and

for all y€|(B'\C).

l-a' = 0)

in B\C and hence, by (3.5), a(x)>ll2 for all x(B"(rs)\C. To complete the

proof let o* be the F-harmonic measure of åB'(rs) with respect to the annulus

G:B\B'(rJ. By Lemma 2.13

ar*(r) > b(ro(t -lxl))'
where a and b are the constants of Theorem 2.9. Finally, since 2ot>a* in
f\E'(ro)uC), we obtain the desired inequality (3.2) from (3.6) with cr:br\l2
and the constant a is the constant of Theorem 2.9. Note that in B'(rs)\C this

inequality is trivial since ar>l/Z and

b(ro(l-lxl))o = brä= bl2 = ll2
there.

3.7. Remarks. (a) It follows from Beurling's projection theorem, cf. the proof

for Theorem 2.24, lhat for the ordinary plane harmonic measure ar in the situation

of Theorem 3.1

(3.8)

where the last inequality follows by elementary calculus. Simple examples based on

non-tpschitzian quasiconformal mappings and the invariance property IGLM 2'

Theorem 5.41 of F-harmonic measures show that in the general situation of Theo-

rem 3.1 it is not possible to choose a:l in (3.2), however, see Theorem 3.13 below.

(b) T. Carleman [C] proved the estimate (3.2) for the ordinary harmonic meas-

ure ar under the assumption that C does not have compact components. He made

use of the fact that in the plane the open set B\C then consists of simply con-

nected domains. This allows the use of special conformal techniques, see [A, p. 42].

The corresponding result can be derived directly from Theorem2.9 for general

F-harmonic measures: If C is a closed subset of B" without compact components and

if OQC, then in B\C
(3.9) co(x) = b(l-lxl)"

where o is the F-harmonic measure of C with respect ra B\C and a and b are the

constants of Theorem 2.9.

To prove (3.9) fix x(B\C. We may assume x:te,,O<r<1. First note that

(3.10) fu"(x, C) = -log(l -lxl).

m (1 - u(x)) = xar,(y)

The F-comparison principle, cf. [GLM 3, Lemmaz.3l, yields

co(x) >1- !ur"tan y'W = +(1 -lxl)
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For this observe that since 0€C,

(3.11) kp"(x, C) = kB"(x, 0)

and if 7 is the line segment [0, x], then

(3.12) ke"(x, O) = ! ,dist(2, 0n 1-t ds : -log (1 - lxl).

Next let y: [0, l]*Bu be any rectifiable curve (parametnzed by arc length) joining
x to 0 and let 0 be the projection of Rn onto x,-axis. Then lg,l=1 and yt:loT
is rectiflable and joins x to 0 in ,B,. Moreover, for 0=s=l

dist(r(s), 0B\ = dist(yr(s), å8")
and hence

[ ,ditt7r,0a1-r ot : Iily,(s)l dist (y(s),08\-r ds

= fiffiffi ds= I,dist(a oa1-t4,

> -log(1-lxl).
Thus ftr"(x,0)=-log(l-lxD and, by (3.12), k",(O,x):-log(l-lxl) and the
inequality (3.10) follows from (3.11).

The inequality (3.9) now follows from (2.10) and (3.10).

If Fis the z-Dirichlet kernel, i.e., F(x,h):lhl', then it is possible to derive
a lower bound for ar as good as given by Beurling's projection theorem, see (3.g).

3.13. Theorem. Let C be as in Theorem3.l and F(x,h):lhl. If a is the
F-harmonic measure of C with respect ro B\C then for a// x€B\C
(3.14) ar(x) = cr(l-lxl)
where cr>O depends only on n.

Proof. As in the proof for Theorem3.l we flrst show that

(3.15) ar(x) =f
for x6B'(ro)\C where rs((O,ll2l depends only on n because dlfi:l for this
special F. Next let l:B'\.8,(r)uC) and for x(.,{. define

a(x) : loelxll Q log r).
Then o is an F-extremal in A and at each point y(OA

1'S ,(*l = |i3 
z(r)

where z is any function in the upper class for ar. Thus a>o in A andby elementary
calculus

u(x) = (lxl-t)lQlogro)
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in.,4andtheinequality(3.14)follouninlwith cr:-(2log16)-1>0.Ifx€B'(ro)\C,
then (3.14) follows from (3.15) because ro=ll2 and hence

c2(l -lxl) = 
(2log2)-t(t-lxD = $log2)-r = f,.

The proof is complete.

3.16. Remark. The author conjectures that if F(x,h):lhl" and if Cc-B'
is such that CaB" is closed in B', then

ar(x) = a'(lxler)

where o is the F-harmonic measure of C in B'\C and a' is the F-harmonic meas-

ure of
C'- {-tel: »B'(t)aC * 0, 0 = t = l}

in B\C', i.e. Beurling's projection theorem is true for this special F-harmonic
measure. Note that Beurling's projection theorem is not needed for the estimate
(3.14).

4. Milloux's problem for quasiregul"t -uppiog,

Suppose that f: G*N is a K-quasiregular mapping, see [MRV], and that

I fl=|, Let C be a relatively closed subset of G. Then there is a kernel F depending

on/such that -logl/(x)l is a super-F-extremal and plu=K2. For these results

see [GLM 1-2]. Let ar be the F-harmonic measure of C with respect to G\C; set

ar(x):1 for x€C.

4.1. Lemma. If lf(x)l=m in C, then

(4.2) lf(x)l < m'G)

for all x€G.

Proof. Cf. [GLM 2, Theorem 5.8]. Since a(x): -log l/(x)l is a super-F-
extremal in G and since for all y€å(\C)

H r(rl = -!oem)xc(y),

a= -(log m)o in G\C. Hence (4.2) holds in G\C and trivially in C.

4.3. Theorem. Suppose that f is a K-quasiregular mapptng of a proper sub-

domain G of N into B" and that lfl=m=l in the relatiaely closed subset C*0
of G without compact components. Then

lf(x)l = ms@t

where g: G*(0, ll is the function

g(x): max(l -ckr(x,c)', b exp(-aku(x, c)))

and the positiae constants a, b, c and 6 depend only on n and K.
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Proof. The proof follows from Corollary 2.23, Lemma4.l and from the fact
that Bla=Kz.

As above Theorem 3.1 and Lemma 4.1 yield

4.4. Theorem. Let f be a K-quasiregular mapping of Bn into Bn such that

lfl=m=l in the relath:ely closed subset C of B" meeting each sphere 0B'(t), 0=r= 1.

Then for all x€Bo
l,f(x)l = mc(t-lxl)a

where the positiae constants a and c depend only on n and K.

References

tA] Aur,rons, L. V,: Conformal invariants. Topics in geometric function theory. - McGraw-
Hill Book Company, New York, 1973.

tBI Brunr.rNc, A.: Etudes sur un problöme de majoration. - Thöse, Uppsala, 1933.

tC] CAnuuAN, T.: Sur les fonctions inverses des fonctions entiöres d'ordre fini. - Ark. Mat.
Astr. Fys. 15: 10, 1921.

IGP] GrumNc, F. W., and B. Par,re: Quasiconformally homogeneous domains. - J. Analyse
Math. 30, 1976, 172-199.

IGLM 1] GuNr-uN», S., P. LrNoevrsr, and O. M,lntto: Conformally invariant variational inte-
grals. - Trans. Amer. Math. Soc.277,1983,43--:73.

IGLM 2l GnaNr-uNo, S., P. LrNnqvrst, and O. Mnnrro: F-harmonic measure in space. - Ann.
Acad. Sci. Fenn. A I Math. 7,1982,233-147.

IGLM 3l GRANLuND, S., P. LrNoqvsr, and O. Mnnrro: Phragm6n-Lindetöf's and Lindelöf's theo-
rems. . Ark. Mat.23, 1985, 103-128.

tHMl HEntoNEN, J., and O. M.qRuo: Estimates for Fharmonic measures and Oksendat's
theorem for quasiconformal mappings. - To appear.

[LM] LrNDevIsr, P., and O. Manrro: Regularity and polar sets for supersolutious of certain
degenerate elliptic equations. - To appear.

[MRV] MAnuo, O., S. RrcrulN, and J. VftsÄLÄ: Defioitions for quasiregular mappings. - Ann.
Acad. Sci. Fenn. A I Math. 448. 1969, l-40.

tM] MAz'rA, V. G. : The continuity at a boundary point of the solutions of quasilinear elliptic
equations. - Vestnik Leningrad. Univ. 25: 13,1970,42*55 (Russian).

tRI RTcKMAN, S.: On the number of omitted values of entire quasiregular mappings. - J.
Analyse Math. 37, 1980, 100-117.

w 1] VuonrxeN, M.: Capacity densities and angular limits of quasiregular mappings. - Trans.
Amer. Math. Soc. 263, 1981,343-354.

w 2] VuoRrNEN, M.: On the Harnack constant and the boundary behavior of Harnack func-
tions. - Ann. Acad. Sci. Fenn. A I Math. 7,1982,259-277.

University of Jyväskylä
Department of Mathematics
SF-40100 Jyväskylä
Finland

Received 28 May 1986


