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WEAKLY QUASISYMMETRIC EMBEDDINGS
OF R INTO C

M. JEAN McKEMIE and JEFFREY D. VAALER*

1. Introduction

In this note we classify all continuous functions f: R—C which satisfy

(1.1) 1+ ) —f )] = | fGx—p)—f ()
for all x and y in R.

Theorem 1. If f: R—C is continuous and satisfies (1.1) then exactly one of the
Jfollowing holds:
(i) f(x)=B for some complex constant B and all x in R,
(i) f(x)=Ax+B for some complex constants A0, B, and all x in R,
(iii) f(x)=Ae(0x)+B for some complex constants A#0, B, a real constant
020 and all x in R. (We write e(t)=e,)

A useful class of mappings which satisfy (1.1) is the class of weakly 1-quasi-
symmetric embeddings of R into C. The notion of a weakly quasisymmetric embed-
ding was introduced by Tukia and Viiséld [TV]. In general if (%), d,) and (%3, d,)
are metric spaces, an embedding f: %, —%, is weakly H-quasisymmetric if H=1
is a constant such that

d2 {f(x)3f(y)} = Hd2{f(x)9f(z)}

di(x,y) = d,(x, 2).

While an injective mapping f: R—~C which satisfies (1.1) need not be weakly
1-quasisymmetric, it is clear that any weakly 1-quasisymmetric embedding must
satisfy (1.1). Furthermore, if f: R—~C is a weakly 1-quasisymmetric embedding
then f is unbounded [TV, (2.1) and (2.16)]. It will be convenient to combine these
remarks with Theorem 1.
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Corollary 2. If f: R—C is a weakly 1-quasisymmetric embedding then f(x)=
Ax+B for some complex constants A0, B, and all x in R.

The statement of Corollary 2 is used in [M] to establish the existence of uni-
formly quasiconformal groups acting on R”, n=3, which have small dilatation.
We remark that weakly 1-quasisymmetric embeddings of R into R”, n=3, need
not be affine. This can be seen by considering an embedding

f(x) = (x, cos x, sin x)
whose image is a helix.

2. Mapping Z into C

Throughout this section we assume that f: Z—C satisfies the identity
(CRY) Lf(n+D—f(m)] = | fln—1)—f(n)|

for all integers / and n. This is equivalent to the requirement that for each fixed
integer /=1 the function

2.2 n—|f(n+)—f(n)
is periodic with period /. In particular,
n—|f(n+1)—f(n)|

is constant. If | f(1)—f(0)|=0 then fis constant on Z, a case we no longer need to
consider. Therefore we assume that |f(1)—f(0)|0 and then we may also assume

that | f(1)—£(0)|=1.

For each integer n we define
o(n) = f(n+1)—f(n),
p(n) = 5(n+1)5(n),
a(n) = R{u®)},
&(n) = sgn (3{u(n)}).

From our previous assumptions we have

and

6| = u(m)| =1
and
(2.3) u(n) = a(n)+ie(n) {1 —a(n)?}?
for all n.

Lemma 3. The function n—a(n) has period 2.
Proof. By hypothesis the function
n—|f(n+2)—f(n)*
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has period 2. We also have
|f(n+2)—f(M)]* = [6(n+1)+6@)*
= |6(n+ DE+2R{6(n+ 1))} +15 (M)
= 2+2a(n),
which proves the lemma.

Using Lemma 3 and the obvious fact that —1=a(n)=1 for all n, we consider
three separate cases.

Case 1: a(0)2=a(1)%=1,

Case 2: a(0)?<1 and a(l)*<1,

Case 3: 2(0)2<1 and a(1)?=1 or «(0)>’=1 and «(l)?*<l.

In Case 1 we have p(n)=a(n) and therefore pu has period 2. It remains to
show that p is also periodic in the other cases.

Lemma 4. In Case 2 the functions n--&(n) and n—u(n) both have period 6.
Proof. By hypothesis the function
n—|f(n+3)—f()?
has period 3. Now, we have
| f(n+3) =] =10(n+2)+o(n+1)+6(m)?
= 16(n+2)6(n+ Do (n+1)5(n) +5(n+1)5(m) + 1]
= |1+ p()+p@p(n+ 1P
=3+2R{u(n)+pu(r+1)+p@p(n+1)}
=3+2{a(m+a(mr+1)+ama(n+1)
—e(n)e(n+1)(1—a(n)?)2(1 —a(n+1)2)42}.
By Lemma 3 the function
a(n)+a(n+D+a(n)o(n+1)
is constant and, in Case 2,
(1—a(np)2(1 —a(n+1)2)12
is a nonzero constant. Hence we find that
n—e(n)e(n+1)
has period 3. It follows that

{e(Me(n+ D} e(n+De(n+2)}He(n+2)e(n+3)} = e(n)e(n+3)
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is a constant function of n. Of course this constantis +1 or —1, so
1 = (e(m)e(n+3)
= g(n)e(n+3)e(n+3)e(n+6)
= g(n)e(n+6).
This shows that n—&(n) has period 6. Finally, (2.3) and Lemma 3 imply that
n—u(n) has period 6.
Lemma 5. In Case 3 the functions n—~e(n) and n—u(n) both have period 8.

Proof. We assume that «(0)><1 and a(1)®?=1. Then &(n)=0 for odd
integers n, so
e@m+1) =e(m+1+38)

is trivial. Thus we must show that
e(2m) = ¢(2m+38)

for all integers m.
By hypothesis the function

2.4 m — | f2m+4)—f2m)?

has period 2. As in the proof of Lemma 4, we expand the right-hand side of (2.4)
into terms involving « and u. We find that

| fCm+4)—f2m)]* = 4+2{am)+a(2m+1)+a(2m +2)}
+2R {uCm)uCm+1)+p2m+DHu@m+2)}

+2R {u@m)u@m+1)pR2m+2)).
Of course ‘ '
m—-a(m) and m - a(m+1)

are constant. Since we are in Case 3,

m - R{uCm)puCm+1)} = a@m)a(2m+1)
d
" m -~ R{pCm+1DuCm+2)} = aCm+1)a(2m+2)

are also constant. It follows that
m - R{uCm)u@m+1)p2m+2)}
must have period 2. But in Case 3,
R{uCm)u2m+1)u2m+2)}
= a@m)am+1a(2m+2)—e(2m)e(2m+2)a(2m+1)(1 —a(2m)?).
From our previous remarks and the fact that

m — (1—a(2m)?)
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is a nonzero constant, we conclude that
m - e(2m)e(Cm+2)
has period 2. Thus for every integer m,
1 = ({e@m)e(@m+2)}{e2m+2)e(2m+ 4)}R
= {e(@m)e@m+4)}{e2m+4)e(2m+8)}
= e(2m)e(2m+38),

and so 2m—¢(2m) has period 8. The corresponding result for p follows from (2.3)

and Lemma 3.
Next we suppose that f: Z-C satisfies (2.2), | f()—f(0)]=1, and that the
corresponding function u has period p, where p=1.

Theorem 6. Let q be an integer. Then the function
n —~ f(q+pn)

satisfies exactly one of the following conditions:
() f(g+pn)=B for some complex constant B and all neZ,
(ii) f(g+pn)=An+B for complex constants A0, B, and all neZ,
(iii) f(g+pn)=Ae(0n)+B for complex constants A#0, B, a real constant 0
with 0<0<1, and all n€Z.

Proof. Since p has period p it follows that
y = I n(m+))
is a constant function of m and of course |y|=1. Therefore
8(m+p) = {[T722 n(m-+1)}(m)
= 6 (m)

d(m—p) =y~16(m).

and, replacing m by m—p,
Thus we have
d(m+pn) = y"6(m)
for all integers m and n.
If n=1 we have

flg+pn)—flg) = 37 6(a+))
= oo Siog 0(g+pk+D)
=2 215 1*ola+D

= {fg+p) @} iV
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If f(g+p)—f(g)=0 then n—f(g+pn) clearly satisfies condition (i). If
fg+p)—f(@) %0 and y=1
fg+pn) = fl@+{f(a+p)—f(@}n

and an identical formula holds for n=0. Thus f satisfies condition (ii). If

then

fg+p)—fl@) #0 and y=1

we may write y=e(f), 0<0<1, and

.3 fa+om) = 1@+ (e +n) TR

This formula also extends easily to n=0. Of course (2.5) shows that f satisfies
condition (iii).

We note that the conclusion of Theorem 6 continues to hold as stated if we
drop the assumption that |f(1)—f(0)|=1 and set p=24. Also, we have only used
the fact that (2.2) has period / for /=1,2,3 and 4.

3. Proof of Theorem 1

Let f: R—~C be continuous and satisfy (1.1). Clearly we may assume that
S is not constant on R. For each «=>0 the function n—f| (@4~an) maps Z into
C and satisfies (2.1). By Theorem 6 and the remarks following that theorem, the
function n—f(en) must be one of the three types described in Theorem 6. It will
be convenient to formalize these observations as follows. For each a>0 we define
Jet Z~C by f,(n)=f(an). Then for each a>0 the function f, satisfies exactly
one of the conditions:

(i) f.(n)=B(«) for some complex number B(x) and all n€Z,

(ii") fu(m=A(@)n+B(«) for some complex numbers A (x)#0, B(x), and all

neZz,

@iii") f,(m)=A(@)e(6(x)n)+B(x) for some complex numbers A(x)=0, B(),

some real number () with 0<6(x)<1, and all ne€Z.

Since f'is not constant there are distinct real numbers x; and x, such that f(x;)
S(xz). Then by the continuity of f there exists #7>0 such that f(y,)#f(y,) when-
ever |x;—y|<n and |x,—y,|<n. Next we fix a choice of « in the interval 0<a<—47.
It follows that

X1
w3

xz]
X,—o | =
2 [cx

<N
and

=n,
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where [£] is the integer part of the real number &. Therefore

()~ A1)

which shows that for our choice of « the function f, must have the form (ii") or (iii").

Let f=2""a where m=1 is an integer. Since O<f<%1n we see that s
must also have the form (ii’) or (iii"). In fact, we claim that f, and f; are either both
of the form (ii") or both of the form (iii"). To see this we note that

G-D Ja(n) = f,(2"n),

for all n€Z. If f, has the form (ii’) then f, is unbounded, hence f; is unbounded
and therefore f; must also have the form (ii"). Conversely, if f3 has the form (ii')
then f; is unbounded on the subsequence {2™n: n€Z}. Thus f, is unbounded and
has the form (ii).

Now suppose that f, and f; both have the form (ii"). Then we may write (3.1) as

A(@)n+B(@) = AR ™x)2"n+B(2 ™)
for all n€Z. Setting n=0 and n=1 it follows that

B(x) = B2 ™a)
and
A(x) = AQ™x)2™m,
Since A(®)#0 and A2 ™a)>0 we find that

f3() = 4@2-"n+B()
or

(3.2) (2 ™n) = A(@)2 ™n+B(x)
for all n€Z. Let

3.3) 9 ={2""n: meZ, n€Z and m =1},
so that 2 is dense in R. We have

3.4 flax) = A(@x)x+ B(x)

for all x in 9 by (3.2) and therefore (3.4) holds for all x in R. This shows that f
has the form (ii) in the siatement of Theorem 1.
Finally, we suppose that f, and f; both have the form (iii’). Then

(3.5 A@e(0(Wn)+B) = AR ™a)e(0(2~™x)2™n)+ B2~ ")

for all n€Z. Of course 0<60(x)<1 and therefore (2™ ™a)2™ is not an integer.
By computing the mean value

Jim N7 3T £ ()
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we see that
B(x) = B(2~™a).

Then we set n=0 in (3.5) and find that
A(@) = AQ ™).
Let g: R—~C be the continuous function
(3.6) g(x) = A~ {f(ex)—B(®)},
and for each integer m=1 let
D ={27™n: nelZ}.

Then 9,£9,<..., each (9,, +) is a subgroup of (R, +), =;,_1 %, and
(2, +) is a dense subgroup. Since

g2="n) = A()~ /() —B()}
=e(6Q2""o)n),
we conclude that g restricted to 2 is a homomorphism into the circle group

T={¢cC: [{|=1}. Since g is continuous on R it follows that g: R—T is a homo-
morphism, that is, g is a group character. Hence

3.7 g(x) = e(Oax)

for some real 00 and all real x. Now (3.6) shows that f has the form (iii) in the
statement of the Theorem. (That g must have the shape (3.7) is proved, for example,
in [R, p. 12].)
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