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WEAKLY QUASISYMMETRIC EMBEDDINGS
OF R ID{TO C

M. JEAN McKEMIE and JEFFREY D. VAALER*

1. Introduction

In this note we classify all continuous functions /: R*C which satisfy

(1.1) lf(x+y)-f(x)l : lf@-y)-f(x)l
for all x and y in R.

Theorem l. If f: R*C rs continuous and satisfies (1.1) then exactly one of the

following holds:
(i) /(x):3 for some complex constant B and all x in R,
(ii\ f(x):/v*B for some complex constants A*0, B, and all x inB,
(iii)/(x):le(0x)+B for some complex constants Å*0, B, a real constant

0*0 and all x in R. (We write e(t):e2"1t.1

A useful class of mappings which satisfy (1.1) is the class of weakly l-quasi-
symmetric embeddings of R into C. The notion of a weakly quasisymmetric embed-

ding was introduced by Tukia and Våiisälä [TV]. In general if (gt, dr) and (1tr, dr)

are metric spaces, an embedding f: ff *9, is weakly }/-quasisymmetric if ä=1
is a constant such that

d, {f (x), f (,y)} 
= E d, {f(x), f(z)l

whenever
dr(x, y) = dr(x, z).

While an injective mapping /: R*C which satisfies (l.l) need not be weakly
l-quasisymmetric, it is clear that any weakly l-quasisymmetric embedding must
satisfy (1.1). Furthermore, if /: R*C is a weakly l-quasisymmetric embedding
then/is unbounded [TV, (2.1) and (2.16)]. It will be convenient to combine these

remarks with Theorem 1.
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Corollary 2. If f: R*C rs aweakly l-quasisymmetric embedding thenf(x):
Åx*B for some complex constants A*0, B, and all x in R.

The statement of Corollary 2 is used in [M] to establish the existence of uni-
formly quasiconformal groups acting on R', n>3, which have small dilatation.
We remark that weakly l-quasisymmetric embeddings of R into Ro, n=3, need
not be affine. This can be seen by considering an embedding

f(x) : (x, cos x, sin x)
whose image is a helix.

2. Mapping Z into C

Throughout this section we assume that f: Z*C satisfies the identity

Q.D 1f@+t)-f(n)l: lf(n-t)-f(n)l
for all integers I and n. This is equivalent to the requirement that for each fixed
integer />1 the function
(2.2) n * lf(n*t)-f(n)l
is periodic with period /. In particular,

n * lf(n*t)_f(n)l
is constant. If l/(1)-/(0)l:0 then/is constant on Z, a case we no longer need to
consider. Therefore we assume that l/(1)-/(0)l;a0 and then we may also assume
that l/(l)-/(0)l:1.

For each integer n we define

6(n) : f(n*r)*f(n),
P(n): å(n+l)M,

and 
a(n\: fi{p(n)},

e(n) : sgn (s{p(z)}).

Ftom our previous assumptions we have

and lä(z)l : lp@)l: l

Q.3) p(n): a(n)+ie(n){t-a(n)z}rtz

for all n.

Lemma 3. Thefunction n*u(n') hasperiod2.

hoof. By hypothesis the function

n * lf(n*2)_f(n)1,
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has period 2. We also have

lf(n+z\ -f(n)l' : lä (z + l) + ä (n)|'z

: 
1ö @ * l)1'g + 2s {ö (z + 1) ä?)} + lä (n)|'z

:2*2a(n),

which proves the lemma.

Using Lemma3 and the obvious fact that *l=a(n)=l for all z, we consider

three separate cases.

Case 1: a(0)å=a(l;a-1,
Case2: a(0)2=1 and a(l)2=1,
Case 3: a(0)2=l and a(l)2:l or a(0)a:1 and a(1)2=1.

In Case 1 we have p(n):a(n) and therefore p has period 2. It remains to
show that p is also periodic in the other cases.

Lemma 4. InCase2thefunctions n*e(n) and n*tt(n) bothha;eperiod6.

Proof. By hypothesis the function

n * lf(n*3\-f(n)1,

has period 3. Now, we have

I f(n + 3) -f(n)12 : lö (n *2) + ö (n + l) + ä (z)|'z

: lä(r+2)ä(n+1)ö(n+ l)ä(n) +ö(n+ 1)ä(n)+11'?

: 
| 1 +p(n) * p(n) p(n + l)1,

: g + 2s {p( n\ + p(n + t) + p(n) p(n + l)l
: 3 * 2 {a (n) * a (n * l) + a(n) a (n * l)

- e (n) e (n * lX I - d (,?)'z)l rz (l - a (n * l)')v').

By Lemma 3 the function

a(n) + a(n + 1) + a (z) a (z + t)

is constant and, in C-ase2,

(t *a7n1r1rtz(1 - d (n + l)s)v,

is a nonzero constant. Hence we fnd that

z * e(z)a(z* 1)

has period 3. It follows that

{e(n)e(n+ l)} {e (z+ l)e(n +2)}{e (n+2)e(n*3)} : e(n)e(z+3)
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is a constant function of z. Of course this constant is +l or -1, so

t : (e(n)e(n +3))s

: e(n) e(n + 3)e (z * 3)e (z + 6)

: e(n)e(n*6).

This shows that n*e(n) has period 6. Finally, (2.3) and Lemma 3 imply that
n*p(n) has period 6.

Lemma 5. In Case3 the functions n*e(n) and n*p(n) both hatse period 8.

Proof. We assume that a(0)2=l and a(t)z:1. Then e(z):g for odd
integers n, so

eQm*l): a(2n*1+8)

is trivial. Thus we must show that

eQm): eQm*8)

for all integers re.

By hypothesis the function

(2.4) ry * lf(2m*g-f(2m)1,
has period 2. As in the proof of Lemma 4, we expand the right-hand side of Q.a)
into terms involving a and p. We flnd that

VQm + $ -fQm)|, = 4 + 2 {aQm) + aQm * t) + aQm + 2)}

+ 28 {p (2m) pQm + t) + p (2m + t) p Qm + 2\)

of course 
+2xfuQm)pQm*t)pQm+2)|.

m*a(2m) and m*a(2m*7)
are constant. Since we are in Case 3,

m * fi0tQm)pQm+l)\: a(2m)aQm+l)
and

m * I {pQm + l) pQm *2)} : aQm + l) uQrn *2)
are also constant. It follows that

m * fi {pQm) p(2m + t) 7t(2m + 2)}

must have period 2. Bfi in Case 3,

n{pQ*)pQm+t)pQm+2)l
:a(2m)aQm+t)aQm*2)-eQm)eQm*2)aQm*l)(l-aQm),).

From our previous remarks and the fact that

. m * (I_d,em\)
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is a nonzero constant, we conclude that

m * e(2m)eQm+z)

has period 2. Thus for every integet m,

':'t#'r't:::]'ff:::)'t:i:l,o
: e(Zm)e(2m*8),

and so 2m*e(2m) has period 8. The corresponding result for p follows from (2.3)

and Lemma 3.

Next we suppose that f: Z*C satisfies (2.2), l"f(1)-/(0)l:1, and that the

corresponding function p has period p, wbere p>1.

Theorem 6. Let q be an integer. Then the function

n * f(q*pn)

satisfies exactly one of the following conditions:

(i) f(q+pn):B for some complex con§tant B and all n€Z'
(ii) f(q+pn):AnlB for complex constants A+0, B' and all n(Z'
(iii) f(q+pn):Ae(0n)+B for complex constants A*0,8, a real constant 0

with 0<0=1, and all n(2.

Proof. Sine p has period p it follows that

t: Ili=iu@+i)

is a constant function of m andof course lyl =t. Therefore

ö(*+ p) : {Ui:l p@+i))d(*)

: yö(m)

and, replacing mbY ffi-P,

Thus we have

for all integers m and n.

If n>l we have

ö(* - p) - y-lä (m).

ö(m+pn): ynö(m)
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It f(q+»-f(q):O then n*f(q*pn) clearly satisfies condition (i). If

then fk+d-f@)*o and ?:l
f(q + pn) : f(q) + {flq + p) -fb)l n

and an identical formula holds for n =0. Thus/satisfies condition (ii). If

flq+p)-f(q)*O and y*l
we may write 7:s19;,0=0<1, and

a.» f(q+pn): f(q)+{f(q+p)-f(q)}{ ^g)al
This formula also extends easily to n =0. of course (2.5) shows that f satisfies
condition (iii).

We note that the conclusion of Theorem 6 continues to hold as stated if we
drop the assumption that l/(l)-./(0)l:1 and set p:24. Also, we have only used
the fact that (2.2) has period I for l:1,2,3 and 4.

3. ProofofTheorem 1

Let f: R*C be continuous and satisfy (1.1). Clearly we may assume that
/is not constant on R. For each a>0 the function n*f(Q4)-lan) maps Zinto
c and satisfies (2.1). By Theorem 6 and the remarks following that theorem, the
function n*f(an) must be one of the three types described in Theorem 6. It wilt
be convenient to formalize these observations as follows. For each a>0 we define
fn: Z*C by f"(n):f(un). Then for each a>0 the function f satisfies exactly
one of tle conditions:

(i) f"(n):B(a) for some complex number B(a) and all n(.2,
(ii') f"(n):/(u)n*B(a) for some complex numbers A(a)*O, B(a), and all

n(2,
(iii) f"(n):A(a)e(0(a)n)+B(a) for some complex numbers Å(a)+0, B(a),

some real number 0(a) with 0<0(a)<1, and all n(2.
Since/is not constant there are distinct real numbers x, and x2 such that I(n)#

/(x). Then by the continuity of/there exists 4>0 such that f(yr)*f(y) when-
ever fx1-yrl<4 and lxr*yrl-n. Next we fix a choice ofa in the interval O<a<.f,q.
It follows that

1,,-.[+]l=,

i,.-.[+Jl=,,

and
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where [(] is the integer part of the real number (. Therefore

,([+]) * r.(l')),
which shows that for our choice of a the functionf must have the form (ii) or (iii).

Let B:)-^a where m>-l is an integer. Since O=fr=*rl we see that fu
must also have the form (ii) or (iii). In fact, we claim thatf"andfe are either both
of the form (ii) or both of ttre form (iii). To see this we note that

(3.1) f,(n):foQ^n),
for all n€2. lf f" has the form (ii) then fn is unbounded, hencefi is unbounded
and therefore/p must also have the form (ii'). Conversely,if fp has the form (ii)
thenfp is unbounded on the subsequence l2*n: n€Z|. Thusf is unbounded and
has the form (ii).

Now supposethatf,andfp both have the form (iiJ. Then we may write (3.1) as

A (a) n + B (a) : A (2-^ a)2^ n * B Q- ^ a)

for all n€2. Setting n:O and n:l it follows that

and 
B(u\: B(2-*a)

A(a) - AQ-^a)2 '
Since A(u)*0 and Å(2-^d,)*O we find that

or 
fP@): A(a)2--n*B(a)

(3.2) f(a2-^n): A(a)2-*n+B(a)

for all n(2. Let

(3.3) I - {2-^n: mQ.Z, n€Z and m > ll,
so that I is dense in R. We have

(3.4) f(ax): A(a)x+B(a)

for all x in I by (3.2) and therefore Q.4) holds for all x in R. This shows tbat f
has the form (ii) in the sratement of Theorem 1.

Finally, we suppose that f, and fo both have the form (iii). Then

(3.s) A(a)e(0(a)n)+B(a) : A(2-^a)e(eQ-^ayz^n)+BQ-^d,)

tbr all nQZ. Of course 0<0(a)=1 and therefore 0(2'^a)2' is not an integer.
By computing the mean value

lim I[-t >!=rf"(")
N+e -"1
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we see that
B(a): B(2-*a)'

Then we set n:0 in (3.5) and find that

A(a): AQ--a)'

Let g: R*C be the continuous function

(3.6) g(x) : A(u)-L{f(ax)-B(a)},

and for each integer m>l let

9*: {2,-nn: n€Z}.

Tben 91E9re ..., each (g^, +) is a subgroup of (R, *),9:Ui-r9*, and
(9, +) is a dense subgroup. Since

s Q- ^ n) : A (q)-' {fp (n) - B (u)}

: e(oQ-^a)n),

we conclude that g restricted to I is a homomorphism into the circle group

T:{(e C: l(l:1}. Sincegis continuous on Rit follows that g: R*T is a homo-
morphism, that is, g is a group character. Hence

(3.7) g(x) : e(9ax)

for some real 0#0 and all real x. Now (3.6) shows that/has the form (iii) in the
statement of the Theorem. (That g must have the shape (3.7) is proved, for example,

in [R, p. l2].)
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