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ON THE CONTINUATION OF'MEROMORPHIC FUNCTIONS

PENTTT.lÄnvr

l. Let W be an open Riemann surface and let V be an arbitrary end of W,
i.e., a subregion of If wil"h compact relative boundary \y,V. Let MC(V) denote
the class of meromorphic functions on Z which have a limit at every point of the
relative Stoilow ideal boundary Py of Z. Further, let BY(V) denote the class of
constants and of meromorphic functions of bounded valence on Y, atdlet MD* (V)
stand for the class of meromorphic functions with a finite spherical Dirichlet integral
on Z. As in [3] and [4], we are interested in the interrelations of these three classes

on certain Riemann surfaces. In Section 2, we discuss the possibility of obtaining
BY(V)cMC(V) ot Riemann surfac,es whose boundaries are absolutely disconnect-
ed in the sense of Sario [13]. In Section 3, we seek conditions upon B under which
BY(T):149F). lt turns out that AC-removability [4], besides theabsolutediscon-
nectivity, is just what is wanted. In Section 4 we will show that MD*(T):BV(V)c
MC(V) provided thatW belongs to Oaop [12]. This result completes a theorem by
Matsumoto [9].

In the course of this work we shall make some comments on [7], [8] and [l].
All of them contain invalid argumentation at certain points. We have not been

able to restore corresponding results completely.

2. Let W be an open Riemann surface with absolutely disconnected boundary

[13, p. 2401. ln qse W is a plane domain, this means that e\IZ 1e : Cu1-]) te-
longs to il", [, p. 105]. An immediate consequence is that all univalent functions
onW can be extended to homeomorphisms of the Riemann sphere. More generally,

one may expect that all meromorphic functions of bounded valence on W possess

a limit at every point of fr, the Stoilow boundary of W, even if W is nonplanar.
Actually, Lemma 2 in l1l, p. l7\ asserts that this is the case for surfaces of finite
genus. Unfortunately, the author overlooked serious problems related to the path
lifting. We have not managed to restore her assertion. However, we will give a posi-
tive result in a special case which covers the canonical mappings treated in IlU.

Proposition l. I-et W be an open Riemann surface, and let V be an end of
l4 such that pn is absolutely disconnected. Suppose f is a meromorphic function
ofbounded aalence on Y such that no Cl(f ; p), the cluster set of f at p€py, sep-
arates the (extended) planc. Then f ad.mits a continuous extmsion to Fv.
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Proof. Ftx po€Fv. We will show that Cl(f ;po\ reduces to a singleton. Since

/ has bounded valence, Cl(f ; §v):l)rEpncl(f ;p) is nowhere dense in e ; this
is readily seen by a simple category argument (see e.g. [3, p. 312]). Hence we may

assume, performing an auxiliary linear fractional mapping, that f is bounded in Z.
Denote by .l' the family of rectifiable dividing cycles in Y which separate po

from ilnV, and let zl(i-) denote the extremal length of .l'. Since Bn is absolutely dis-
connected, .t(I):6 [5, Theorem 5]. Suppose, for the moment, that Cl(f ;po) is

a proper continuum. Denote by d the diameter of Cl(/ i p). It follows from Lemma

Zin14,p.4llthatl(f(c)), the Euclidean length of f(c\, exceeds dfor every c(1.
The boundedness of f (V)then implies tbat l(f (f))=0. But this state of affairs

contradicts the well-known relation

^(f 
(D) = M.(r),

where lV:max fitr(z):Zr<ot=,n(p;f)l zeCl and n(p;/) denotes the multip-
licity of f at p. Thus Cl(/;po) is a singleton as was asserted. u

Remark 1. It follows from [4, Theorem 1] that Cl(f ; B) is totally discon-

nected. It seems, however, that it need not be of class Ns, (see [13, p. 289]).

Remark 2. LetW,V and frbe as above, and suppose that f defines a proper

meromorphic mapping of Z onto f (Y), i.e., the valence function v, is finite and

constant in f (V). Then / admits a continuous extension to fir, and Cl(f ; Br)
is of class Nsr. This result is due to Jurchescu [6, Theorem 1].

Corollary. Let W be an open Riemann surface of finite genus, let V be an

end of W with By absolutely disconnected. Suppose f is a meromorphic function
of boundedaalence on Y such that each Cl(f ;p), pCfv, is alhrc segmmt. Then

f admits a continuous extension to fiv. Accordingly, the conclusion holds for the

parallel slit mappings discussed, e.9., inU0) andU11.

As usual, let On denote the class of Riemann surfaces which do not carry
nonconstant analytic functions with a finite Dirichlet integral (lD-functions).
Further, let Ona,o, l=n=-, denote the class of Riemann surfaces tolerating no

AD-fundion / with max lvy@)lz€C\=n. These classes were introduced in [7,
p. 381]. The authors' object was to establish the relation

(rl: toto,,\or, * g.(1)

Unfortunately, their argument to this end is incorrect. A source of error is the iden-

tification of AD-fandions with related homeomorphisms onto the Riemannian
image. We will indicate how (l) can be obtained prouided the assertion of Mori,
cited at the outset of this section, holds true at least for planar surfaces (cf. [7, p. 381]).

Let.Bbeacompactsetin e whichbelongsto Nsr\N, [1,p. 105].Then Z:e\E
does not belong to Ooo. Further, let / be at AD-fwrdion of bounded valence on
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w. Then *(f (w)), the two-dimensional measure of f (w), is finite. This implies

that Ör. f (W) doesnot belong to Ns, [1, p. 105]. But N"r:19r, [], p. llfl. There-

fore we can find an injective bounded analytic function q in f (W). Then g:Eof
is both bounded and of boundedvalence nW.By our provision, g admits a con-

tinuous extension g* to Wvfr:e. Sitce g* is bounded in e, we infer from [3,

Lemma 3l (cf. also [4, Theorem 1]) that vo(z): - for "most" z€g(W), i.e., v1(z): *
for "most" zef (W). This contradiction completes the argument.

3. Suppose that fi, the ideal boundary of w,is admissible, i.e., for each p(fr
there is an end VcW wth p(Fv such that MC(y) is non-triviall4, p.341. Then

the AC-removability of B 14, p. 401 can be characterizedby the condition Mc(v)c
BVF) for each end vc.w [4, Theorems 1 and 2]. Thus, one may ask what more

is needed to insure MC(V):?y(Z) for each end YcW' Theorem 9 in [3, p' 311]

suggests that the absolute disconnectivity of B would do the job. This is the case

as shown by

Theorem l. Let W be an open Riemann surface with admissible ideal boundary

§. Suppose fi is absolutely disconnected and AC-remornble. Then MC(V):BY(V):
MD"V) for eachend I/c14. Conuersely,if MC(T):BV(V) for each end VcW,
then B is absolutely disconnected and AC-remouable.

Proof. Suppose B is absolutely disconnected and AC-temovable. As noted

before, this implies MC(V)cBY(7) for each end VcW. To establish the reverse

inclusion, letVbean end of W arrdlet f€BY(V). Fix Po(fv and choose a subend

v, of v such that pn(Fv, and MC(v') contains a nonconstant function "6. Re-

ducing V' and performing a preliminary linear fractional mapping, we may assume

that fo is bounded in V' . Let ff stand for the extension of fi to frr, . Since BY is

lC-removabl e, fd $i is of class N [ 14, p. 38]. We are going to show that ff (fr v') e W o

also.
Since f(pr,) is totally disconnected, we may arrange fi$r')nfo@nY'):0'

For z(\fi(\wV'), let i(z;fo@"V')) denote the index of z with respect to

.fo(\nV') 14,p.34!.By[4,Lemma1\, vro(z)=i(z;fs(|nY')) fo, each z(ft(fv')'
set n:max {i(z; fs(0nY'))lz<.cl and 

- E,: kefi(Py,\lvr"(z)=i\. of course,

Eo-t:ld(frv,). Assume that Eois not of class Nr. Since äo belongs to N[, it also

fails to be of class ,l[sr. Therefore, \ile can find a nonweak boundary point, say zo,

of the planar surface efft [13, p. 152 and p. 2391. Pick out a pornt p in ("ff )-' ('J
and denote by ns the local degree of fd Xp (see [4, p. 35]). Next choose a Jordan

domain DcC such that LDnJ{(fli:0 and ro:15s constant valence of folU
in D\.E,-r, where U denotes the component of f1(D\ wrth pCfra (cf. [3, p. 306])'

By [5, Theorem 5], we can find a nonnegative Borel function g on D\Ee and

a positive ä such that

Q) //r.r, g2 d'x dY < oo and [ ,oldd = ä
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for each rectifiable Jordan curve ccD\Eo separating zo from åD. Denote by
QQ)ldzl the pullback to U via fi of the conformal metric q(z)ldzl on D\.80. Since
the valence of folU is bounded by ro, we have

< o().{[rQzdxdv
By the weakness of pa, wa can
from 0* U such that

flnd a rectifiable dividing cycle c' in [/ separating po

CJ. Then c' is homologous to &*U'for some
p. 841. It follows that i(ro; fo@)):rro. CIearIy
curve ccD\E', which separates z0 from 0D.

[5, 
-fheorem 5], [13, Theorem IV 2

subend U' of U with pa€fia, [3,
f (c') contains a rectifiable Jordan
Of course,

[ "eldi = I rn eldzl : toAVd - a.

This contradiction to (2) proves Eoe lfr.
Next suppose that, for some i, E, is of class .l[, and fix zo€Ei+r\4. Choose

a neighbourhood D of zo such that åD is a Jordan curve with åD n(n,_rvyo10nV)):0
and f;,(D) contains j (j=i+l) relatively compact mutually disjoint Jordan
regions vkin7'such that each z€D has exactly i* I pre-images (with due account
of multiplicities) in Uir=rYo. Then frlZ'\Uir=rYr assumes no value in .E,*rnD.
Thus we have the state of affairs treated above. Hence a reproduction of the preced-
ing arguments yields Er*roD(Nr. Further, [12, Theorem yI I L] in conjunction
withtheLindelöf coveringtheoremgives .8,*r€l[r. Itfollows that E,_r:J{(pr,'1
is of class JV, as was asserted.

Let G denote the component of C\.Å(A,rIl') which contains fi@å, Let
n stand for the constant value of vyo(z) in c\,ffffn,). Then f satisfies in
f'(ct"ff (Br,)) an identity

.f'+ Zi-r(aiof)f-i : s,

where dr, ...,an are meromorphic functions on G\"ff(fr,). Making use of the
relation f€BY(V') and arguing as in [2, pp. 14 and 18], it can be shown that, for
every i, a, admits a meromorphic extension over fd$r,)nc. Thus we may regard
each ai as defined everywhere in G. Denote by d the Riemann surface of the relation

(3) P(r, w) : wn + Z;:t or@)w"-i - 0, z(.G,

(note that 6 is a finite union of connected Riemann surfaces). By an argument in-
volving 6 and the center and value mappings associated with (3), it can be shown
(cf. again the proof of [2, Theorem l]) that Cl (f ;Uil"(fd$",)nc)) belongs to
Nr. In particular, AU;pr) reduces to a singleton, i.e., / admits a continuous
extension topo. Thus BY(V)cMC(V).
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The relation BV (EcMD*(7) being trivial, it remains to show that MD* @c
BY(n foreach end YcW. Solet f(MD*(D benonconstant. Sincetheproblem
is of a local nature, we may assume that \nY is piecewise analytic afi MC(E
contains a bounded nonconstant function fo. By virtue of f€MD*(m, we may

also assume that f omits in V a compact set BcC with m(E\>O. Then, by an

important theorem of Nguyen Xuan Uy [I4, Theorem 4.1], we can find a nonconstant

analytic function g such that both g and g'are bounded in e1.4. We will show that
h:gof(AD(7). To this end, choose R>0 such that EcD(0, R): {zcCllzl=Rl.
Set Fr:/-1(D(0, R)), fr:/-1(e\D(0, R)) and choose &/>0 such tbat lg'(z)l=M
for ze Ö\.8 obviously

{l r, dh n x dfr : II r, lr' (f(p))l' af n x d.f= (1 + Rz)z Mz { [ r, 11-#rt 
df n xdf

= (1+ R')'M'![,,#df n xdJ **.

Let <p denote the mapping z+lfz, zeÖ\,o(O,n). Then gle\D(0,R):g1o9
with g, analytic in DO-IE). Suppose lgi@)l=M, for z€D@jl$. Then

[ [ r,dh n x dfr : [ [ r,lsi(EUfu)))l' akr".f) n x d(qof)

= M? [ { ,, d(Ec,f) n x d(Eo f)

f {,, (1+ IEU'@»I')'
ct(E"f) n x ct(Eof)

: rr [,*(])')' ff,,@,rLffi dra xdJ -*.
The assertion follows.

Let G denote a component of C\fi(åwy\ \tith Gnf§ (B)*0, and let n denote

the constant value of vlu@) in G\,ffffr. Then å satisfiesin f'(cf,ffffr)) a"
identity

h"*Z',=r(aiofs)h-i:0

with a, analytic in \ff(Bn). As shown before, we have fi(|i<Nr. Because

ft is both bounded and Dirichlet bounded, each aiadmits an analytic extension over

It@)nG (cf. again [2, pp. 14-15 and p. 23]). As before, these extensions permit

ustoconcludethat Cl(tr;( lfl-'(fr(fr)nG)) belongstoNr.Itfollowsthat Cl(h;fi"\
is totally disconnected. Hence by [4, Lemma2l, hhas boundedvalence. Consequently,

the same is true of f, i.e., f<Bl/V). This completes the first part of the proof'
Next supposetbat MCCV):BYCV) for each end VcW. It is immediate by

[4, Theorems I and2]that B is lC-removable. Fix an arbitrary po(fi. lt remains

to prove tbat pois weak. So choose an end VcW such that PoQfrv and MC(T)

€Mt[,*(+)']'
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contains a nonconstant bounded function fr. Since fi(fir) is of class Ni[4,p. 4O],

lve may assume that l{(frr)nfo(0wV):0. In order to prove that ff(Br) is of
class Nsr, we argue as in the first part of the proof.

Let G denote the component of \,6(ä,rZ) which contains ff(po), and let
n denore the constant value of v6(z) in c\,ff(fr). set 4: {z€/d (py)nclvr"(z)=i},
i:0,...,n-1. Suppose for the moment that Eo fails to be of class Nsr. Then.Eo
contains a nonweak boundary point, say zo, of e\.fo. Pick out a point p(${)-r(zi.
By [13, p. 152], we can find a univalent mapping 9 of elEo into Ö such that Cl(cp; zo)

is a proper continuum. Given any subend Y' of Y tvrth pqBr,, there is an open
neighborhood D of zo such that D\ff (frr)cfo(Y') [4, Lemma l]. We conclude
that Cl(Eofr;p) is also a proper continuum. Hence qofo, although a member of
Bl/(V), doesnot admit a continuous extension top. ThusEo is of class Ng, and,
byvirtue of Eo(N[, even of class Nr.

Now suppose that, for some i, E, is of class N, and fix zo€Ei+r\ Er. The arga-
ment given in the proof of BV(V)c.MC(V) reduces the situation to that discussed
above. It follows that Er*r(Nr. Altogether, Eo_r=f{(fr)nG is of class Nsr.
Let U denote the component offl(G) with po€fu. We infer from [13, Theorem
X 4 F] or [6, Theorem 1] that fy is absolutely disconnected. In particular, po is
weak. The proof is complete. tr

Remark. Recall that the union of two sets of class N* need not belong to
Ns, [13, p.289]. This fact explains the role of the class N, in the last part of the proof.

The argument used in the proof of the relation MD*(V)cBZ(Z) obviousty
yields the following removability result, which seems to be new.

Theorem 2. Let G be a plane domain and let EcG be a compact set of class
ND. Then eoery meromorphic function with a finite spherical Dirichlet integral in
G\E can be extended to a meromorphic function in G. In particular, eoery mero-
morphic function with a finite spherical Dirichlet integral r;n e\.4' is the restriction
ro e1f of arationalfunction.

As mentioned before, MC(V)cBV(V) for every end VcW whenever the ideal
boundary of W is AC-removable. This statement can be generalized as follows.

Proposition2. Let W and W' be Riemann surfaces with ideal boundaries

fi and B', respectiuely. Suppose that euery point of B is AC-remouable wheneoer
it is admissible. Let f be a nonconstant analytic mapptng of W into W' which
a.dmits a continuous extension f*: WvB*W'vfr'. Then f has bomded ualence,

Proof. Let f, denote the set {pqlf.@)€W'\. Clearly p, is a relatively open
subset of p. For each p€frr, choose an end VocW such that p(frv, and
f*(4vfir,)cW'. By assumption and[4, Theorem 2], f*(fry,) is a totally discon-
nected subset of W'. Thanks to Lindelöf we can selecl from the covering

{Yov§r,lp€lrl of B, a countable subcovering {Y,v\n"lneN}. Thus f*(§r):
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l)|rf*(§r^) is a closed and totally disconnected subset of W'. It follows that v1,

the valence iunction of / is finite and constant, say nt,in W'\f*(Fr). By the lower

semicontinuity of v1, vs(q)=m for every q<W'. !
Now suppose that W'is parabolic. Then every admissible boundary point of

W is AC-removable [4, p. 401. Hence we have immediately the following

Corollary. Let W and W' be parabolic Riemann surfaces with ideal bound'

aries P and B', respectioely. Let f be a nonconstant analytic mapptng of W into

l4' which admits a continuous extmsion f*: tl/v|*[4/'v§'. Then f has bounded

oalence.

Remark. This result is contained in [8, Theorem l]. However, the proof there

relies on the incorrect claim that the Stoilow boundary is a countable set.

4. Next suppose that W belongs to Oaop\2, p. 171 and Y is an end of W.

Then, by a result of Matsumoto and Kurodafl2, p. 3721, every function f€MD* (V)

has the localaable Iversen property U2, p.365]. By Stoilow's principle on Inversen's

property ll2, p. 3701, Cl(f ;Br) is either total, i.e., Cl(f ; fin):e, ot Cl(f ; fio)
is totally disconnected. It was shown by Matsumoto [9, Theorem 3], ll2, p. 3731

that for leAD(V), only the latter alternative can o@ur, i.e., every function in
AD(m admits a continuous extension to frv. Actually, this is the case with all MD*'
functions as shown by

Theorem 3. Let W be an open Riemann surface of class Oaoe. ThenBVCV):
MD*(V)cMC(V) for each end VcW.

Proof. Let VcW be an end, and suppose that f€MD*(-Z) is nonconstant.

To prove that feB't/CY), it dearly suffices to show that for each p?frv there is a
subend l/'of Y suchthat p(pr and flV' ]nas boundedvalence. So fix p€fy and

choose a subend V' of I/ such that pQBy, and / omits in V' a compact set ,EcC
wrth m(E)>0. As in the proof of Theorem 1, we can find a nonconstant analytic

function g in e1.E such that fu:go(f IZ')€AD(V'). By the result of Matsumoto

cited previously, Cl(ä; §r') is totally disconnected. This implies ([4, Lemma 1] or

ll2, p.370)) that ft has bounded valence. Thus flV' has bounded valence, too.

We conclude that feBV(V). That / also belongs to MC(V) now follows readily

from Stoilow's principle on Iversen's property. Indeed, provided Cl(f ; Bn\ is total,
a standard argument involving the Baire category (see, e.g., [3, Lemma 3]) gives

f{ByV\ Hence Cl(f ;f7) is totally disconnected, whence f€.MC(V). D

Remark. It is readily verified that Cl(f ;|i:f*(fiy) is of class .l[r: just

decompose f*(fir) by means of the valence function v1 as in the proof of Theorem I
and apply [12, Theorem Yl 2 C].It seems that for f<Bl/(V) this result has also

been obtained by Qiu Shuxi (see [15, pp. 152-30. The relation f*(§r)et't, can be

usedtoshowthat BV(T)=1,,7p*(Z) constitutesafield(seetheproofs of [2,Theorem
7l and [3, Theorem 5]).



184 PENrrr JÄnvr

Let Ut denote the class of open Riemann surfaces whose ideal boundary con-
tains a point of positive harmonic measure U2, p.385]. Further,let oyp* denote
the class of Riemann surfaces which do not carry nonconstant meromorphic func-
tions with a finite spherical Dirichlet integral. of course, o*o*co^o. By [13, Theo-
rem X 4 C] we immediately obtain the following corollary, which sharpens another
result by Matsumoto [9, Theorem 41, U2, Theorem VI 5 B].

Corollary. Suppose W€[Js^Otoo and let K be an arbitrary compact set
in W with connected complement. Then W\K€O*,*.

References

[1] AErons, L,, and A. BBunr.ntc: Conformal invariants and function-theoretic null-sets, -
Acta Math. 83, 1950, lDl-129.

[2] Jiix.vr, P.: Removability theorems for meromorphicfunctions. - Ann. Acad. Sci. Fenn. Ser.
A I Math. Dissertationes 12, 1977,1-33,

[3] JÄnvr, P.: Meromorphic functions on certain Riemann surfaces with smalt boundary. - Ann.
Acad. Sci. Fenn. Ser. A I Math. 5, 1980, 301-315.

[4] JÄnu, P,: On meromorphic functions continuous on the Stoiilow boundary. - Ann, Acad. Sci.
Fenn. Ser. A I Math. 9, L984,33--48.

[5] JuncuFscu, M.: Modulus of a boundary component. - Pacific J. Math. 8, 195g, 7gl-gog,
[6] Juncrnscu, M.: A maximal Riemann surface. - Nagoya Math. J. 20,1962,91-93.
[fl KusuNoxr, Y., and M. TaNrcucnr: Remarks on Fuchsian groups associated with open Riemann

surfaces. - Riemann surfaces and related topics: Proceedings ofthe 1978 Stony Brook
conference, edited by I. Kra and B. Maskit. Annals of Mathematics Sudies 97. prin-
ceton University Press, Princeton, New Jersey, 1981,377190,

[8] LxNr, I.: Quasirational mappings on parabolic Riemann surfaces. - Ann. Acad. Sci. Fenn.
Ser. A I Math. 482, 1970, l-16.

[9] M.lrsuuoro, K,: Analytic functions on some Riemann surfaces rI. - Nagoya Math. J. 23,
1963,153-164.

[10] Mzuuoto, H. : Theory of Abelian differentials and relative extremal length with applications
to extremal slit mappings. - Japan. J. Math. 37, 1968, 1-5g.

[11] Monr, M.: Canonical conformal mappings of open Riemann surfaces. - J. Math. Kyoto Univ.
3, 1964,169-192.

U2] S,q'RIo, L., and M. Ner.lr: Classification theory of Riemann surfaces. - Die Grundlehren der
mathematischen wissenschaften 164, springer-verlag, Berlin-Heidelberg-New
York, 1970.

[13] Smto, L., and K. Orra,w,c,: Capacity functions. - Die Grundlehren der mathematischen Wis-
senschaften 149, Springer-Verlag, Berlin-Heidelberg-New york, 1969.

[14] Uv, N' X.: Removable sets of analytic functions satisfying a Lipschitz condition. - Ark. Mat.
l7,lg7g,tg-17.

[15] ZuaNc, M.-Y.: Riemann surfaces. - Analytic functions of one complex variable. Contemp.
Math.48. American Mathematical Society, providence, R. I., 1995.

University of Helsinki
Department of Mathematics
SF-00100 Helsinki 10

Finland

Received 29 April1986


