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ON THE CONTINUATION OF MEROMORPHIC FUNCTIONS

PENTTI JARVI

1. Let W be an open Riemann surface and let ¥ be an arbitrary end of W,
i.e., a subregion of W with compact relative boundary 9y V. Let MC (V) denote
the class of meromorphic functions on ¥ which have a limit at every point of the
relative Stoilow ideal boundary B, of V. Further, let BV (V') denote the class of
constants and of meromorphic functions of bounded valence on V, and let MD*(V)
stand for the class of meromorphic functions with a finite spherical Dirichlet integral
on V. As in [3] and [4], we are interested in the interrelations of these three classes
on certain Riemann surfaces. In Section 2, we discuss the possibility of obtaining
BV (V)cMC (V) on Riemann surfaces whose boundaries are absolutely disconnect-
ed in the sense of Sario [13]. In Section 3, we seek conditions upon f under which
BV (V)=MC (V). It turns out that AC-removability [4], besides the absolute discon-
nectivity, is just what is wanted. In Section 4 we will show that MD*(V)=BV (V)
MC (V) provided that W belongs to O ., [12]. This result completes a theorem by
Matsumoto [9].

In the course of this work we shall make some comments on [7], [8] and [11].
All of them contain invalid argumentation at certain points. We have not been
able to restore corresponding results completely.

2. Let W be an open Riemann surface with absolutely disconnected boundary
[13, p. 240]. In case W is a plane domain, this means that C\W (C= Cu{c}) be-
longs to Ngg [1, p. 105]. An immediate consequence is that all univalent functions
on W can be extended to homeomorphisms of the Riemann sphere. More generally,
one may expect that all meromorphic functions of bounded valence on W possess
a limit at every point of f, the Stoilow boundary of W, even if W is nonplanar.
Actually, Lemma 2 in [11, p. 177] asserts that this is the case for surfaces of finite
genus. Unfortunately, the author overlooked serious problems related to the path
lifting. We have not managed to restore her assertion. However, we will give a posi-
tive result in a special case which covers the canonical mappings treated in [11].

Proposition 1. Let W be an open Riemann surface, and let V be an end of
W such that By, is absolutely disconnected. Suppose f is a meromorphic function
of bounded valence on V' such that no CI(f ; p), the cluster set of f at p€fy, sep-
arates the (extended) plane. Then f admits a continuous extension to PBy.
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Proof. Fix p,€By. We will show that CI(f ; p,) reduces to a singleton. Since
f has bounded valence, CI(f; By)=U,¢;, CI(f;p) is nowhere dense in C; this
is readily seen by a simple category argument (see e.g. [3, p. 312]). Hence we may
assume, performing an auxiliary linear fractional mapping, that f is bounded in V.

Denote by I' the family of rectifiable dividing cycles in ¥ which separate p,
from dy ¥V, and let A(I') denote the extremal length of I'. Since S is absolutely dis-
connected, A(I')=0 [5, Theorem 5]. Suppose, for the moment, that CI(f; p,) is
a proper continuum. Denote by d the diameter of CI( f'; p,). It follows from Lemma
2 in [4, p. 44] that I( f(c)), the Euclidean length of f(c), exceeds d for every ccrl.
The boundedness of f (V) then implies that A(f(I'))>0. But this state of affairs
contradicts the well-known relation

A(f (D) = NAD),

where N=max {v;(2)=3)-. 7(p;f)| z€C} and n(p;f) denotes the multip-
licity of f at p. Thus CI(f'; p,) is a singleton as was asserted. [J

Remark 1. It follows from [4, Theorem 1] that CI(f; By) is totally discon-
nected. It seems, however, that it need not be of class Ngp (see [13, p. 289)).

Remark 2. Let W, V and B, be as above, and suppose that f defines a proper
meromorphic mapping of ¥ onto f(V), i.e., the valence function v, is finite and
constant in f(¥). Then f admits a continuous extension to fy, and CI(f; fy)
is of class Ngp. This result is due to Jurchescu [6, Theorem 1].

Corollary. Let W be an open Riemann surface of finite genus, let V' be an
end of W with Py absolutely disconnected. Suppose [ is a meromorphic function
of bounded valence on V such that each CI(f;p), p€By, is a line segment. Then
f admits a continuous extension to P,. Accordingly, the conclusion holds for the
parallel slit mappings discussed, e.g., in [10] and [11].

As usual, let O, denote the class of Riemann surfaces which do not carry
nonconstant analytic functions with a finite Dirichlet integral (A4D-functions).
Further, let O, ,, 1=n<<s, denote the class of Riemann surfaces tolerating no
AD-function f with max {v;(z)|z€C}=n. These classes were introduced in [7,
p. 381]. The authors’ object was to establish the relation

6] (ﬂ:;l OAD,n)\OAD # 0.

Unfortunately, their argument to this end is incorrect. A source of error is the iden-
tification of AD-functions with related homeomorphisms onto the Riemannian
image. We will indicate how (1) can be obtained provided the assertion of Mori,
cited at the outset of this section, holds true at least for planar surfaces (cf. [7, p. 381]).
Let E be a compact set in C which belongs to Nszg\Np [1, p. 105]. Then W= C\E
does not belong to O,p,. Further, let f be an AD-function of bounded valence on
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W. Then m(f(W)), the two-dimensional measure of f(W), is finite. This implies
that C\, f (W) does not belong to Ngp, [1, p. 105]. But Nsp=Nsp [1, p. 116]. There-
fore we can find an injective bounded analytic function ¢ in f(W). Then g=gof
is both bounded and of bounded valence in W. By our provision, g admits a con-
tinuous extension g* to wupB=C. Since g* is bounded in C, we infer from [3,
Lemma 3] (cf. also [4, Theorem 1]) that v,(z)= = for “most” zeg(W), ie., Vi(2)=o0
for “most” z€f(W). This contradiction completes the argument.

3. Suppose that B, the ideal boundary of W, is admissible, i.e., for each pef
there is an end VCW with p€p, such that MC(V) is non-trivial [4, p. 34]. Then
the AC-removability of f [4, p. 40] can be characterized by the condition MC (2=
BV (V) for each end VW [4, Theorems 1 and 2]. Thus, one may ask what more
is needed to insure MC(V)=BYV (V) for each end VCW. Theorem 9 in [3, p. 311]
suggests that the absolute disconnectivity of f would do the job. This is the case
as shown by

Theorem 1. Let W be an open Riemann surface with admissible ideal boundary
B. Suppose B is absolutely disconnected and AC-removable. Then MC P)=BV V)=
MD*(V) for each end VCW. Conversely, if MC V)=BV (V) for each end VW,
then B is absolutely disconnected and AC-removable.

Proof. Suppose B is absolutely disconnected and AC-removable. As noted
before, this implies MC (V)cBV (V) for each end V' CW. To establish the reverse
inclusion, let ¥ be an end of W and let fe€BV (V). Fix p,€fy and choose a subend
V'’ of V such that p,€B, and MC(V’) contains a nonconstant function f,. Re-
ducing ¥’ and performing a preliminary linear fractional mapping, we may assume
that £, is bounded in ¥”. Let f; stand for the extension of f; to fy.. Since fy. is
AC-removable, f*(By.) is of class N£ [4, p. 38]. We are going to show that f5 (By)ENp
also.

Since fif(By+) is totally disconnected, we may arrange JEByInfo@wV)=0.
For zeC\fo@w V"), let i(z; fo(dwV’)) denote the index of z with respect to
fo@w V") [4, p. 34]. By [4, Lemma 1], v, (2)<i(z; fo@w V")) for each zEff (By).
Set n=max {i(z; /Oy V")|z€C} and E;={z&f;(By)|v, ()=i}. Of course,
E,_y=f(By.). Assume that E, is not of class Np. Since E, belongs to N¢, it also
fails to be of class Nsz. Therefore, we can find a nonweak boundary point, say z;,
of the planar surface C\E, [13, p. 152 and p. 239]. Pick out a point p in ( f5*)~*(z0)
and denote by n, the local degree of f;* at p (see [4, p. 35]). Next choose a Jordan
domain DcC such that dDNf*(By)=90 and n,=the constant valence of f|U
in D\E,_,, where U denotes the component of f;~*(D) with p€By (cf. [3, p. 306)).

By [5, Theorem 5], we can find a nonnegative Borel function ¢ on D\E, and
a positive 6 such that

2 ffD\Eog"’dxdy <o and fcgldzlzé
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for each rectifiable Jordan curve c¢cDN\E, separating z, from dD. Denote by
0(2)|dz| the pullback to U via f, of the conformal metric ¢(z)|dz] on D\E,. Since
the valence of f|U is bounded by n,, we have

ffuézdxdy < oo,

By the weakness of p,, we can find a rectifiable dividing cycle ¢’ in U separating p,
from dy U such that

[ eldzl <6

[S, Theorem 5], [13, Theorem IV 2 C]. Then ¢’ is homologous to dy U’ for some
subend U’ of U with po€ By [13, p. 84]. It follows that i(zy; fo(c’))=n,. Clearly
f(¢') contains a rectifiable Jordan curve ¢cD\E, which separates z, from dD.
Of course,

Joeldzd= [ eldzl= [ ¢lde| <.

This contradiction to (2) proves Ey¢Np,.

Next suppose that, for some i, E; is of class N, and fix z,€E;, \E;. Choose
aneighbourhood D of z, such that dD is a Jordan curve with dDN(E, _;Ufy Oy V)= 0
and f;%(D) contains j (j=i+1) relatively compact mutually disjoint Jordan
regions V in ¥V’ such that each z€ D has exactly i+ 1 pre-images (with due account
of multiplicities) in JJ_, ¥,. Then flV\Ui_, V: assumes no value in E; ,nD.
Thus we have the state of affairs treated above. Hence a reproduction of the preced-
ing arguments yields E; ,nDEN,. Further, [12, Theorem VI 1 L] in conjunction
with the Lindel6f covering theorem gives E;,,€Ny,. It follows that E,_,=f(B,)
is of class N, as was asserted.

Let G denote the component of C\ f;(dw¥’) which contains f;(p,). Let
n stand for the constant value of Vs (2) in G\Jy(By:). Then f satisfies in

JoH(GN\SF (By) an identity
"+ 2 @of) 17 =0,

where ay, ..., a, are meromorphic functions on G\ f;f(By.). Making use of the
relation f€BV (V') and arguing as in [2, pp. 14 and 18], it can be shown that, for
every i, a; admits a meromorphic extension over f;*(8,.)nG. Thus we may regard
each g; as defined everywhere in G. Denote by G the Riemann surface of the relation

()] P(z,w)=w'+37  a(2)w"~i =0, z€G,

(note that G is a finite union of connected Riemann surfaces). By an argument in-
volving G and the center and value mappings associated with (3), it can be shown
(cf. again the proof of [2, Theorem 1]) that C1(f; (£)~%( 75 (By)nG)) belongs to
Np. In particular, CI(f'; py) reduces to a singleton, i.e., f admits a continuous
extension to p,. Thus BV (V)c MC (V).
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The relation BV (V)c MD*(V) being trivial, it remains to show that MD*(V)c
BV (V) for each end VCW. Solet fe MD*(V) be nonconstant. Since the problem
is of a local nature, we may assume that dy V is piecewise analytic and MC (V)
contains a bounded nonconstant function f,. By virtue of feMD*(V), we may
also assume that f omits in ¥ a compact set ECC with m(E)=0. Then, by an
important theorem of Nguyen Xuan Uy [14, Theorem 4.1], we can find a nonconstant
analytic function g such that both g and g’ are bounded in C\E. We will show that
h=gofc AD(V). To this end, choose R=0 such that EcD(0, R)= {zECI|z|<R}.
Set F;=f-1(D(0, R)), Fy=f"*(C\.D(0, R)) and choose M=0 such that |g’(z)|=M
for ze C\ E. Obviously

4 2 2\2 A 12 1
[[, dhnxdi=[[ |&(fD)dfnwdf=+RPM:[[, g df n»df

= (1+R»M? df A *df <oe.

1
I, ax 7

Let ¢ denote the mapping z—1/z, zEé\D(O, R). Then g]é\D(O, R)=g,00
with g; analytic in D(0, 1/R). Suppose |g1(2)|=M, for z€D(0, 1/R). Then

fsz dh A xdh = fsz gl (@(f )P d(pof) A *d(@of)
= Mi [[, d@of) A xd(pof)

R 1 2)2 1 —_—
= M1 [1+('§) ] fsz (1+|(P(f(p))‘2)2 d(¢of)A *d((DOf)

PR Y N -
= M; [1+(f)) fsz (1+|f(p)|2)2 afa %kdf<oo

The assertion follows.

Let G denote a component of C\ f, (0 V) with Gnfyf (B))#0, and let n denote
the constant value of v, (2) in G\ fy (By). Then h satisfiesin f;7(G\f5'(By)) an
identity

W+ 3, @of)h~=0

with a@; analytic in G\ ff (By). As shown before, we have fif(fy)€N,. Because
h is both bounded and Dirichlet bounded, each a; admits an analytic extension over
fF(By)NG (cf. again [2, pp. 14—15 and p. 23]). As before, these extensions permit
us to conclude that Cl(h;( ;) ~1(f;¥ (By)nG)) belongs to Ny,. It follows that Cl(%; )
is totally disconnected. Hence by [4, Lemma 2], / has bounded valence. Consequently,
the same is true of f; i.e., f€BV (V). This completes the first part of the proof.

Next suppose that MC(V)=BV (V) for each end VCW. It is immediate by
[4, Theorems 1 and 2] that 8 is AC-removable. Fix an arbitrary p,€f. It remains
to prove that p, is weak. So choose an end VW such that p,€p, and MC(V)
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contains a nonconstant bounded function f;. Since f¥(B,) is of class N/ [4, p. 40],
we may assume that fF(By)nfy(@wV)=0. In order to prove that f;(By) is of
class Ngp, we argue as in the first part of the proof.

Let G denote the component of C\ f;(dy V) which contains f;f(p,), and let
n denote the constant value of Ve, (2) in G\ fy" (By). Set E;={z¢ff Bv)nGlv, (2)=i},
i=0, ...,n—1. Suppose for the moment that E0 fails to be of class Nggz. Then E,
contains a nonweak boundary point, say z,, of C\Eo. Pick out a point p€( f;¥)~1(z,).
By [13, p. 152], we can find a univalent mapping ¢ of C\ E, into € such that Cl (0; z5)
is a proper continuum. Given any subend ¥V’ of V with p€p,., there is an open
neighborhood D of z, such that DN\ f;f(B,)<fo(V’) [4, Lemma 1]. We conclude
that Cl(pofy; p) is also a proper continuum. Hence ¢of,, although a member of
BV (V), does not admit a continuous extension to p. Thus E, is of class Ny and,
by virtue of Ey€ N/, even of class N,,.

Now suppose that, for some i, E; is of class N, and fix z,€E; ,\E;. The argu-
ment given in the proof of BV (V)c MC (V) reduces the situation to that discussed
above. It follows that E; EN,. Altogether, E,_;=f*(B,)nG is of class Ngz.
Let U denote the component of f;~*(G) with p,€f,. We infer from [13, Theorem
X 4 F] or [6, Theorem 1] that B, is absolutely disconnected. In particular, p, is
weak. The proof is complete. [

Remark. Recall that the union of two sets of class Nsp need not belong to
Ny [13, p. 289]. This fact explains the role of the class N, in the last part of the proof.

The argument used in the proof of the relation MD*(V)cBV (V) obviously
yields the following removability result, which seems to be new.

Theorem 2. Let G be a plane domain and let ECG be a compact set of class
Ny. Then every meromorphic function with a finite spherical Dirichlet integral in
G\E can be extended to a meromorphic function in G. In particular, every mero-
morphic function with a finite spherical Dirichlet integral in C\E is the restriction
to C\E of a rational function.

As mentioned before, MC(V)C BV (V) for every end V W whenever the ideal
boundary of W is AC-removable. This statement can be generalized as follows.

Proposition 2. Let W and W’ be Riemann surfaces with ideal boundaries
B and ', respectively. Suppose that every point of B is AC-removable whenever
it is admissible. Let f be a nonconstant analytic mapping of W into W’ which
admits a continuous extension f*: Wuf—~W’'uf’. Then f has bounded valence.

Proof. Let B, denote the set {pcp|f*(p)eW’}. Clearly B, is a relatively open
subset of B. For each pcf;, choose an end V,cW such that p€ B,,
@, UBV YcW’. By assumption and [4, Theorem 2], f* (/3,, ) is a totally dlscon-
nected subset of W’ Thanks to Lindel6f, we can select from the covering
{Vpuﬂypl pep} of B, a countable subcovering {V,,vﬂ,,n!ne N}. Thus f*(B)=
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Ui S8 y) isa closed and totally disconnected subset of W’. It follows that v,
the valence function of £, is finite and constant, say m, in W\ f*(f,). By the lower
semicontinuity of v;, v;(g)=m for every gcW’. O

Now suppose that W is parabolic. Then every admissible boundary point of
W is AC-removable [4, p. 40]. Hence we have immediately the following

Corollary. Let W and W’ be parabolic Riemann surfaces with ideal bound-
aries B and P, respectively. Let f be a nonconstant analytic mapping of W into
W' which admits a continuous extension f*: Wop~W’'up’. Then f has bounded
valence.

Remark. This result is contained in [8, Theorem 1]. However, the proof there
relies on the incorrect claim that the Stoilow boundary is a countable set.

4. Next suppose that W belongs to O 4, [12, p. 17] and ¥ is an end of W.
Then, by a result of Matsumoto and Kuroda [12, p. 372], every function f¢ MD*(V)
has the localizable Iversen property [12, p. 365]. By Stoilow’s principle on Inversen’s
property [12, p. 370], CI(f; By) is either total, ie., CI(f; B)=C, or CI(f;By)
is totally disconnected. It was shown by Matsumoto [9, Theorem 3], [12, p. 373]
that for f€AD(V), only the latter alternative can occur, i.e., every function in
AD(V) admits a continuous extension to f,. Actually, this is the case with all MD*-
functions as shown by

Theorem 3. Let W be an open Riemann surface of class O yp,. Then BV (V)=
MD*(VYcMC (V) for each end VCW.

Proof. Let VCW be an end, and suppose that f¢MD*(V) is nonconstant.
To prove that f€BV (V), it clearly suffices to show that for each p€py, thereis a
subend V' of V such that p€pB,. and f|V’ has bounded valence. So fix p€f, and
choose a subend ¥’ of ¥ such that p€By. and f omitsin V’ a compact set ECC
with m(E)=0. As in the proof of Theorem 1, we can find a nonconstant analytic
function g in C\E such that h=go(f|V')€AD(¥’). By the result of Matsumoto
cited previously, Cl(h; By.) is totally disconnected. This implies ([4, Lemma 1] or
[12, p. 370]) that & has bounded valence. Thus f|V’ has bounded valence, too.
We conclude that f¢BV (V). That f also belongs to MC(V) now follows readily
from Stoilow’s principle on Iversen’s property. Indeed, provided CI(f'; By) is total,
a standard argument involving the Baire category (see, e.g., [3, Lemma 3]) gives
f¢BV (V). Hence CI(f; By) is totally disconnected, whence feMC(V). O

Remark. It is readily verified that CI(f; By)=f*(By) is of class Np: just
decompose f*(By) by means of the valence function v, as in the proof of Theorem 1
and apply [12, Theorem VI 2 C]. It seems that for f¢BV (V) this result has also
been obtained by Qiu Shuxi (see [15, pp. 152—3]). The relation f*(B,)€N, can be
used to show that BV (V)=MD*(V) constitutes a field (see the proofs of [2, Theorem
7] and [3, Theorem 5]).
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Let Us denote the class of open Riemann surfaces whose ideal boundary con-
tains a point of positive harmonic measure [12, p. 385]. Further, let O,,,. denote
the class of Riemann surfaces which do not carry nonconstant meromorphic func-
tions with a finite spherical Dirichlet integral. Of course, 0. 0,,. By [13, Theo-
rem X 4 C] we immediately obtain the following corollary, which sharpens another
result by Matsumoto [9, Theorem 4], [12, Theorem VI 5 B].

Corollary. Suppose WeUgNO o, and let K be an arbitrary compact set
in W with connected complement. Then WN\K€O,p«.
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