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REMARKS ON THE AHLFORS CLASS N IN AN ANNULUS

W. CIESLAK and J. ZAJAC

Introduction

In [1] Ahlfors investigated the class N of complex-valued L> functions v in
the unit disc for which the antilinear part of variation of normalized quasiconformal
mappings vanishes, where the mappings are generated by complex dilatation of the
form tv, ¢ being a real parameter. He gave two important characterizations of this
class and its explicit form with the help of an analytic function in the unit disc.
This class N has also been investigated by Reich and Strebel [4] in connection with
Teichmiiller mappings. Very deep investigation of the class N has been conducted
by Reich [3]. He has also considered the class N in an annulus with “inward ex-
tension™.

In this paper we shall consider the class N in an annulus without any other restric-
tions. The results presented here are a continuation of the theory published in [3],
[4] and [6].

As it has been shown by many authors (cf. [2]), the class N plays a very impor-
tant role in some investigations of extremal problems within the class of quasi-
conformal mappings in the unit disc and in an annulus as well with the help of para-
metrical methods.

1. The class N,

Let  be a complex-valued measurable function in an annulus 4,= {z:r=|z|=1},
0=r<1, satisfying the condition
lulee = inf sup [u@)| <1,
z€ANE
where the infimum is taken over all sets of the plane measure zero. It is well known

that there exists exactly one number R, 0=R<1, and one Q-quasiconformal
mapping f of the annulus 4, onto 4 satisfying the Beltrami equation

M fe=uf. with f()=1,
where @=(1+]lull)/(1~lxl)-
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Suppose now that p=tv, where |v||,<e, and 0=t<1/||v|.. Denote expli-
citly the dependence of f on v: f(z, )=f[V](z, t), r=|z|=1. Let

@ 1BIG) = Tim 7 DG ) -2).

This expression is well defined and depends linearly on v (cf. [1]). From f[v],=tvf[v],
it follows that

3 il = v.

It is well known that (3) is satisfied only if

v (z)

@ M© =-= f [, 7= dxdy—FQ©
with holomorphic F.
Thus we have (cf. [2])
2k 2k
©) 010 = o [f, Zio [P (-

_@(Hrﬂ‘cz 1+r2"z]]dd
2 \I—rFz 1 7

We see that f is a linear continuous operator which maps every v€L>(4,)
on a function f[v]. As it is shown in [2], the relations | f[v](z, t)|=1 for |z|=
and | f[vl(z, t)|=R[vI(?) for |z|=r yield

0 f =1,
© Re (DI} = {0 o o

ro for |z|]=r,

where o= hrn,_,o {R[v](¢)—r}. Analogically we can verify that

. 0 for |z] =1,
0 Re @G ={, 00 or 1o
where ¢ —hmt_,0 {R[iv](r)—r}. For more details see [2].
We recall [2] that
® ), 242D aray
by which

©) = ff, [22-20)ixay.



Remarks on the Ahlfors class N in an annulus 187

Following Ahlfors [1] let us decompose the variation f[v] defined by (2) as follows:

(10) J01 = 5 D1+ i)+ (D1~ 1D,

where the first part is antilinear and the second one is linear with respect to the
complex multipliers. By the definition of f[v] we can see that {f[v]+if[iv]},=0,
ie.,

an o[ = fD1+if ]
is always a holomorphic function. The antilinearity is expressed by ®[iv]=—i®[v].

We denote by N, the subspace of L= (4,) which is formed by all v with @[v]=0.
It is a complex linear subspace of L (4,). Now we can state

Theorem 1. An element v of L”(4,) belongs to N, if and only if one of the
following assumptions holds:

0 for I =1,
(12) IO=1L 11 YD iy, jor 1=,
1y O =Sff, Zm [ A Ly
(14) [f, v@s@dsdy = o[, D axay lel:rzg*(z)dz

for all g holomorphic in int 4, with [ [, |g(z)| dxdy<e-.

Proof. The proof of (12) is presented with details in [6] and [2], the condition
(13) is an immediate consequence of (5) and the definition of the class N,. To get
the condition (14) suppose that g is holomorphic in int 4, with finite ! norm in 4,.
Then, by (12) and the generalized form of Green’s formulae we get (14), where
g*(re®)=lim,.,, g(ce®), and g*(é)=lim, , g(0e®®) which exists at almost all
points of 34, (cf. [5], p. 334) while [[, 18(z)| dxdy<-<-.

Conversely, if (14) is satisfied, then applying it to

1s) §@=2C-2), (€04,

(such functions are admissible) and using Corollary ([5], p. 335) we get (12).
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2. On the function @

From (5) we obtain the explicit representation

2k
(16) OpIQ) = ff Sk = v(z) [Hr z_1+r Z]d dy.

Pz 1—

By this formula we obtain a necessary condition for the holomorphic mapping @[v].
For this purpose we differentiate (16) three times:

m 12 i STt ri
(17) MO =-—[[, V&3 . Ty &b

Since v is bounded (Jv|=M) we obtain

4k

12M r

Changing the order of integration and summation we have for r=[{|=1

(18) 127 IO =

dxdy.

(19) 27Ol = 2L 3= | I.7 2kc ToEar &9
12M o 1 1 dz
= ~ +=_°° r4kfr edo f12I=a a ~r2"CE)2(l~r2"CZ)2 iz

1 r
= IZMZk——oo [(1”7’4k|C|2)2— (1_r4k+2lglz)2]'

Let us rewrite the above inequality in the form

20) @710 = 12M | s+ e+ G 7]

where G({, r) denotes the series in (19) without these two terms. Since G({,r) is
bounded in 4,, then by this and by the well-known Laurent theorem we can state

Theorem 2. The holomorphic function ®[v] defined by (11) remains continuous
on |{|=r and |{|=1.

3. Other properties of the class N,

Suppose that
1) v(ge®) = 37w (@e™, r<eo<1

which is the Fourier series of v. Let g be as in Theorem 1 for which

(22) 8(z) = ::_makz 2k=_m e, z=19ge% r<g=1
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is its Laurent series. Now, by the argument given in the proof of Theorem 1, we
may interpret (14) in terms of the coefficients «,(¢) and a,, n, k=0, 1, £2,....
By this we have

(23) [], v@e@dxdy =2 S a(@)a.d' "} do

o 1 ;
=2n3" a, [ a(0e"do.

For the right side of (14) we have

24) -2-’; If . vz(f) dxdy [ zg()dz

_ 1 v(2) dz L 2,(0)
= _Eﬂ-ffAr e dxd)’fm:rzzg(z - = —-21ta_2fr —20—(1@-

Let
1
A= [ a(@)d*+ de,

then by (23) and (24) the equality (14) can be expressed in the form
(25) S Ay = —a_y A, .

Let H(D) denote the Banach space of all holomorphic functions with finite
Lt-norm in domain D. If D,cD,, then clearly H(D,)>H (D).

In the case of the unit disc it is easy to see that the unit disc can be replaced
by an arbitrary simply connected region D. If D, D, and véN(D,), then V€ N(D,),
where

v(z), z€D,
i@ =

0, 2€EDN\D; .

Making use of (14) we see that the previous implication is also true in the case of
a doubly connected domain.

These results have natural analogues in the case r=0, i.e., for mappings in
the unit disc with an additional invariant point zero.

References

[1] AHLFORS, L. V.: Some remarks on Teichmiiller’s space of Riemann surfaces. - Ann. of Math,
74, 1961, 171—191.

[2] EawryNowicz J., and J. Krzyz, Quasiconformal mappings in the plane: Parametrical
methods. - Lecture Notes in Mathematics 978. Springer-Verlag, Berlin—Heidelberg—
New York—Tokyo. 1983.

{31 REicH, E.: An extremum problem for analytic functions with area norms. - Ann, Acad. Sci.
Fenn. Ser. A T Math. 2, 1976, 429—445.



190 W. CieSLAK and J. Zajac

[4] ReicH, E., and K. STREBEL: On quasiconformal mappings which keep the boundary points
fixed. - Trans. Amer. Math. Soc. 138, 1969, 211—222.

[51 RupIN, W.: Real and complex analysis. - McGraw-Hill Book Company, New York—St. Louis—
San Francisco—Toronto—London—Sydney, 1966.

[6] ZaiAc, J.: The Ahlfors class N and its connection with Teichmiiller quasiconformal mappings
of an annulus. - Ann. Univ. Mariae Curie-Sklodowska Sect. A 32, 1978, 155—162.

University Mariae Curie-Sktodowska
Institute of Mathematics

20-031 Lublin

Poland

Received 29 May 1986

Polish Academy of Sciences
Institute of Mathematics
90-136 L.6dz

Poland



