WANDERING DOMAINS FOR MAPS OF THE PUNCTURED PLANE

I. N. BAKER

1. Introduction and results

The iteration theory of Fatou [8, 9] and Julia [12] applies to analytic maps $f: D \rightarrow D$ where the domain D belongs to $\hat{\mathbf{C}}$, and introduces the sets $N(f) = \{z; z \in D, (f^n) \text{ is a normal family in some neighbourhood of } z\}$ and $J(f) = D \setminus N(f)$. To avoid trivial cases it is supposed that f is not a Moebius transformation. The theory studies the way in which J(f) divides the components of N(f). To obtain interesting results it is necessary to assume that the complement of D consists of at most two points, since otherwise J(f) is empty. We may assume that the complement of D is \emptyset , $\{\infty\}$, or $\{0, \infty\}$ and with this normalisation there are essentially the following cases

- I. $D = \hat{C}$, f rational,
- II. $D = \mathbf{C}$, f entire,
- III. $D = \mathbf{C}^* = \{z; 0 < |z| < \infty\}.$

In the third case there are four types of function f, depending on the behaviour of f at the isolated (potentially) singular points $0, \infty$,

- (a) $f=kz^n, k\neq 0, n\in\mathbb{Z}, n\neq 0, \pm 1$
 - (N. B. we are excluding Moebius transformations),
- (b) $f(z)=z^n \exp(g(z))$, g non-constant entire, $n \in \mathbb{N}$,
- (c) $f(z)=z^{-n}\exp(g(z))$, g non-constant entire, $n \in \mathbb{N}$,
- (d) $f(z)=z^m \exp \{g(z)+h(1/z)\}, g, h \text{ non-constant entire functions, } m \in \mathbb{Z}.$

Here we have made the normalisation that if f has exactly one essential singularity it is ∞ . Note that (a), (b) may be regarded as belonging to cases I, II, and that for any $k \ge 2$, and f of type (c) we have f^k of type (d).

The cases I, II have been discussed by Fatou [8, 9], Julia [12] and many other authors, case III by Rådström [14] and Bhattacharyya [6].

In all cases the set J(f) is closed, non-empty and even perfect in D, with the invariance property $f(J(f))=f^{-1}(J(f))=J(f)$, (sometimes called "complete invariance") and the further one that $J(f^p)=J(f)$ for $p \in \mathbb{N}$. N(f) may be empty, as is the case for $f(z)=\exp z$.

If the components of N(f) are denoted by N_j , then for each N_j there is an N_k such that $f(N_j) \subset N_k$. N_1 is a wandering component if $f^m(N_1) \cap f^n(N_1) \neq \emptyset$, $m, n \in \mathbb{N}$, implies that m=n. Sullivan [15] has shown that in case I there are no wandering components, while Baker [3, 4, 5], Eremenko and Lyubich [7], Herman [11] and Sullivan [15] have shown that wandering components may occur in case II. These wandering components may be either simply- or multiply-connected. In particular we have the following results.

Theorem A. [4] If f is transcendental entire and U is a multiply-connected component of N(f), then U is a wandering component. Further, $f^n \to \infty$ in $U(n \to \infty)$ and, for large n, $f^n(U)$ contains a closed curve γ_n , whose distance from 0 is arbitrarily large and whose winding number about 0 is non-zero. Moreover, every component of N(f) is bounded.

Theorem B. [5] For any ϱ such that $0 \leq \varrho \leq \infty$ there is an entire function f of order ϱ , which has multiply-connected wandering components of N(f). In the case $\varrho=0$ the connectivity of the wandering component may be infinite.

If U is one of the wandering components described in Theorem B, it is clear that all $f^n(U)$, $(n > n_0)$, are multiply-connected and that each is bounded away from 0 and ∞ .

It is natural to ask whether wandering components can occur for functions of class III. It turns out that the situation described in Theorems A and B cannot occur but that simply-connected wandering domains are possible.

Theorem 1. If f is a (non-Moebius) analytic map of \mathbb{C}^* to itself, then the components of N(f) are simply or doubly-connected. There is at most one doubly-connected component, except in the simple case III(a).

In case II, Theorem A states that any multiply-connected component of N(f) is bounded. See also [2]. By contrast we have

Theorem 2. For $0 < \alpha < 1/2$ and $f(z) = \exp \{\alpha(z-z^{-1})\}$, N(f) consists of a single multiply-connected component with 0 and ∞ on its boundary.

Theorem 3. There is a function f of class III for which N(f) has a doublyconnected component in which f is analytically-conjugate to a rotation $z \rightarrow e^{i\alpha\pi}z$, α irrational.

This is the case of a Herman ring, which cannot occur for functions of class II.

Theorem 4. There is a function of class III(b) which has a wandering component.

We remark that if U is a wandering component for f of class III, then $f^n(U)$ is simply-connected for $n \ge n_0$. This will simplify attempts to prove that particular classes of such functions do in fact possess no wandering components, using the methods of [15], [4] or [7]. Some classes are already known from [4] and [7], e.g. exp (p(z)), where p is a polynomial.

2. Preliminary lemmas

Suppose throughout that f is one of the functions of class III(a), (b), (c) or (d).

Lemma 2.1. [6] Let G be a component of N(f) such that some sequence f^{n_k} , where n_k is a strictly-increasing sequence of natural numbers, has a non-constant limit function φ in G. Then for some n_k we have $f^{n_k}(G)$ and $\varphi(G)$ contained in a component G_1 of N(f), which is mapped univalently onto itself by some iterate f^p . Further the identity is a limit function of some sequence f^{m_k} in G_1 .

Lemma 2.2. [6] If $\alpha \in J(f)$ and Δ is a neighbourhood of α and K is any compact subset of \mathbb{C}^* , then there is a natural number n_0 such that for $n > n_0$ we have $f^n(\Delta) \supset K$.

Lemma 2.3. [6] The fixed points of iterates of f are dense in J(f).

The following results were proved in the appropriate form for functions of class II in [1]. The proofs need almost no modification for class III.

Lemma 2.4. Suppose that n_k is an increasing sequence of natural numbers such that certain branches $z=G_{n_k}(w)$ of the inverse functions of $w=f^{n_k}(z)$ are all defined and regular in the domain G. Then (G_{n_k}) is a normal family in G.

Lemma 2.5. Let the set of singularities other than $0, \infty$ of f^{-1} be S, and let E be the set of points of the form $f^n(s)$, $s \in S$, $n \ge 0$. Then a point belongs to E precisely if it is a singularity other than $0, \infty$ of some inverse function f^{-n} of an iterate of f.

We may recollect that the singularities of f^{-1} are either algebraic branch points or are asymptotic values approached by f(z) as $z \to 0$ or ∞ along a suitable path.

Lemma 2.6. Let *E* be the set defined in Lemma 2.5 and let *E*["] denote the derived set of *E*, together with any points which are of the form $f^n(s)$, $s \in S$, for an infinity of values of *n*. Then any constant limit of a sequence f^{n_k} in a component of N(f) belongs to $L=E\cup E''\cup \{0,\infty\}=\overline{E}\cup \{0,\infty\}$.

Lemma 2.7. If the set L defined in Lemma 2.6 has an empty interior and a connected complement, then no sequence (f^{n_k}) has a non-constant limit function in any component of N(f).

3. Proof of Theorem 1

Lemma 3.1. Suppose that f is of class III and that G is a component of N(f). Then if γ is a simple closed curve in G, either (i) γ separates $0, \infty$ or (ii) the complement of γ has a compact component which belongs to G.

Proof. If (i) does not hold let Δ denote the compact component of $C^* \setminus \gamma$ and suppose that $\Delta \cap J(f) \neq \emptyset$. For an arbitrarily small positive ε , $f^n(\Delta), n > n_0(\varepsilon)$, covers C^* except for an ε -neighbourhood of 0 and ∞ . Since $\partial(f^n(\Delta)) \subset f^n(\partial \Delta) = f^n(\gamma)$ it follows that $f^n(\gamma)$ meets the ε -neighbourhood of both 0 and ∞ for $n > n_0(\varepsilon)$. Thus if we pick out a subsequence f^{n_k} which is locally uniformly convergent to, say, φ in G, the function φ is non-constant and (cf. Lemma 2.1) $\varphi(\gamma)$ is a compact subset of some component of $N(f) \subset C^*$. This contradicts the fact that $d(f^n(\gamma), \infty) \to 0$ as $n \to \infty$.

Corollary. G has at most two boundary components, so that the first part of Theorem 1 is proved.

Lemma 3.2. Suppose that γ_1, γ_2 are disjoint Jordan curves in N(f), f of class III, which separate $0, \infty$. Then the region Δ bounded by γ_1, γ_2 contains no points of J(f) except in the case when f has the form III (a).

Proof. Suppose that $\Delta \cap J(f) \neq \emptyset$. Then for arbitrary positive ε , $f^n(\Delta)$ covers \mathbb{C}^* except for an ε -neighbourhood of 0 and ∞ for $n > n_0(\varepsilon)$. Now if some f^{n_k} has a non-constant limit function φ in the component G_1 of N(f) which contains γ_1 , it follows from Lemma 2.1 that for large n, $f^n(\gamma_1)$ is close to the compact set $\gamma'_1 \cup f(\gamma'_1) \cup \ldots \cup f^{p-1}(\gamma'_1) \subset \mathbb{C}^*$, $\gamma'_1 = \varphi(\gamma_1)$ where p is the (smallest) positive integer such that f^p maps to itself the component of N(f) which contains $\varphi(G_1)$. By the covering property of $f^n(\Delta)$ it follows that for large n, $f^n(\gamma_2)$ contains points near both 0 and ∞ , so that f^n has no constant limit functions in the component G_2 of N(f) which contains γ_2 . But then $f^n(\gamma_2)$ must also approximate a certain compact subset of \mathbb{C}^* , as is the case for $f^n(\gamma_1)$. This again contradicts the covering property of $f^n(\Delta)$, as $n \to \infty$.

Thus for any sufficiently large *n* we have either $|f^n| < \varepsilon$ on γ_1 , $|f^n| > \varepsilon^{-1}$ on γ_2 or $|f^n| > \varepsilon^{-1}$ on γ_1 and $|f^n| < \varepsilon$ on γ_1 .

Thus the set $f^n(\gamma_1)$ or $f^n(\gamma_2)$ contains a simple closed curve $\gamma(\varepsilon)$ in $|z| > 1/\varepsilon$, which separates $0, \infty$. Further, on $\gamma(\varepsilon)$ we have either $|f| < \varepsilon$ or $|1/f| < \varepsilon$. Applying this for $\varepsilon = 1/n \to 0$ and noting that for *m* much larger than *n* the curves $\gamma(1/m), \gamma(1/n)$ are disjoint, we see that either *f* or 1/f is bounded in a neighbourhood of ∞ and hence *f* is analytic or has a pole at ∞ . A similar argument applies at 0. Thus *f* has the form given by III(a).

Combining Lemma 3.2 with the corollary to Lemma 3.1 completes the proof of Theorem 1.

4. Proof of Theorem 2

The function given by

$$f(z) = \exp\left\{\alpha(z-z^{-1})\right\},\,$$

where α is a constant such that $0 < 2\alpha < 1$, is of type III(d). The unit circumference γ is mapped so that $z = e^{i\vartheta}$ gives $f(z) = e^{i\varphi}$, where $\varphi = 2\alpha \sin \vartheta$, so that $|\varphi| \le 2\alpha |\vartheta|$, and $f^n(z) = e^{i\vartheta_n}$, where $|\vartheta_n| \le (2\alpha)^n \vartheta \to 0$. Thus γ belongs to the domain of attraction of the attractive fixed point 1 for which f(1) = 1, $f'(1) = 2\alpha$.

The only singularities of f^{-1} are 2 algebraic branch points, over e^{2xi} and e^{-2xi} respectively, and transcendental singularities over $0, \infty$. Denote by G that component of N(f) which contains 1, and hence an annulus $A: 1-\delta < |z| < 1+\delta$ for some $\delta > 0$. Now we can reach all branches of $f^{-1}(1)$ by continuation from the value $f^{-1}(1)=1$ along paths in A. By the invariance properties of N(f) it follows that all branches of $f^{-1}(1)$ belong to G. A similar argument shows that for any $z \in G$, all values of $f^{-1}(z)$ belong to G, by considering continuation of f^{-1} from 1 to z along a path in G.

Thus we have shown that G is completely invariant. G must therefore extend to the essential singularities 0 and ∞ . It remains to show that there are no other components of N(f).

Now in the notation of Lemma 2.6 $\overline{E} = \{f^n(e^{\pm 2\alpha i}), n=0, 1, ..., \} \cup \{1\}$, which is a compact subset of G, and $L = \overline{E} \cup \{0, \infty\}$. If H is a component of N(f) other than G, then the only possible limit functions of any subsequence of f^n in H are 0 and ∞ . Thus $(f^n + f^{-n}) \to \infty$ in H as $n \to \infty$. Since

$$(f^{n})'(\tau) = f^{n}\left\{\prod_{\nu=1}^{n-1}\alpha\left(f^{\nu} + \frac{1}{f^{\nu}}\right)\right\}\alpha(1+z^{-2})$$

we see that if there is a sequence of *n*-values such that $f^n \to \infty$ in *H*, then for such *n*-values we also have $(f^n)' \to \infty$ in *H*.

Put $g_n = \alpha(f^n - f^{-n})$. Then for large *n* in the given sequence we have g'_n large in *H* and so, by Bloch's theorem, $g_n(H)$ contains a disc Δ of diameter at least 2π . Then $f^{n+1}(H) \supset \exp(\Delta)$ contains a circle γ' of the form |z| = constant. By Lemma 3.2 γ' belongs to *G* and by the complete invariance of *G*, H = G against assumption.

Thus if $H \neq G$ the only remaining possibility is that $f^n \rightarrow 0$ in H as $n \rightarrow \infty$. Put $h_n = 1/(f^n)$, so that

$$(h^{n})'(z) = -(f^{n})^{-1} \left[\prod_{\nu=1}^{n-1} \left\{ \alpha \left(f^{\nu} + \frac{1}{f^{\nu}} \right) \right\} \right] \alpha (1+z^{-2}).$$

Then $|(h^n)'| \to \infty$ in *H* and if $k_n = \alpha (h_n^{-1} - h_n)$, then $|k'_n| = |\alpha (1 + (f^n)^2) h'_n| \to \infty$, so that $k_n(H)$ contains a disc Δ of diameter at least 2π . As above we then find that $f^{n+1}(H) = \exp(k_n(H))$ contains a circumference |z| = constant, and hence H = G. Remark. The map $z_1=f(z)$ is semiconjugated by $z=e^{it}$, $z_1=e^{it_1}$ to $t_1=2\alpha \sin t=g(t)$, say. Our results give independent confirmation of the fact that N(g) is a single simply-connected region in which $g^n \rightarrow 0$, a situation discussed e.g. by R. L. Devaney (unpublished).

5. Proof of Theorem 3

Modify the preceding example by setting

$$g(z) = e^{2\pi i\beta} z \exp \{\alpha(z-z^{-1})\},\$$

where β is a real constant. For $0 < 2\alpha < 1$ the function g gives an orientation preserving homeomorphism of the unit circumference γ to itself. Indeed, putting $e^{i\vartheta} = e^{2\pi i x}$ on γ we may represent $g|_{\gamma}$ by $x \rightarrow G(x) = x + \beta + (\alpha/\pi) \sin(2\pi x) \pmod{1}$, which is monotone increasing and satisfies G(x+1) = G(x) + 1. We recall the definition of the rotation number ϱ of g

$$\varrho = \lim_{n \to \infty} \frac{G^n(x)}{n} \pmod{1},$$

which is independent of x. ρ varies continuously with g and G, in particular with β , and so β may be chosen in such a way that ρ is an irrational number which satisfies a diophantine condition D.C.: — There exist $b \ge 0$, c > 0 such that for every $p/q \in \mathbf{Q}$ we have $|\rho - (p/q)| \ge cq^{-(2+\beta)}$. Such ρ are of measure 1 in [0, 1].

As was proved by Yoccoz [16], extending earlier work of Herman [10], g is then real analytically conjugate on γ to the rotation $z \rightarrow e^{2\pi i q} z$. The conjugacy is then in fact complex analytically valid in a neighbourhood Δ of γ , and Δ belongs to a component of N(g) of the type whose existence was asserted in Theorem 3. There are necessarily points of J(g) near the essential singularities 0 and ∞ of g, so that the component is certainly multiply- and hence doubly-connected. This example is very closely related to the example $z \rightarrow z + (a/2\pi) \sin (2\pi z) + b$ for case II, which was described in a slightly different context by Herman [11].

6. Proof of Theorem 4

Here we use a method of construction of wandering domains first introduced by A. Eremenko and M. Lyubich [7]. It is based on an approximation theorem.

If F denotes a closed subset of C and $C_a(F)$ the functions which are continuous on F and analytic in \mathring{F} , we say that F is a Carleman set (for C) if for any positive continuous functions ε on F and for any g in $C_a(F)$ there is an entire f such that $|g(z)-f(z)| < \varepsilon(z), z \in F$. By Arakelyan's theorem $\widehat{C} \setminus F$ must be connected and locally connected at ∞ . A. H. Nersesjan [13] showed that if we add the following we have a sufficient condition for F to be Carleman: for each compact K the union W(K) of those components of \mathring{F} which meet K is relatively compact (in C).

It will follow that the set $F=B\cup \bigcup_{m=10}^{\infty} \{A_m \cup L_m\}$, is a Carleman set.

Now denote

and

$$L_m = \{z; \text{ Re } z = 4m\}, \quad m \ge 10,$$
$$A_m = \{z; |z - 4m - 2| \le 1\}, \quad m \ge 10,$$
$$B = \{z; |z + 6| \le 1\},$$

and let δ , δ'_m be positive numbers so small that $|w - \pi i - \log 6| < \delta$ implies $|e^w + 6| < \delta$ 1/2, and $|w - \log (4m+2)| < \delta_m$ implies $|e^w - (4m+2)| < 1/2$. Using the approximation lemma we find an entire function f such that

> $|f(z) - \pi i - \log 6| < \delta, \qquad z \in L_m, \quad m \ge 10,$ $|f(z) - \pi i - \log 6| < \delta, \qquad z \in B,$ $|f(z) - \log (4m+6)| < \delta_{m+1}, \quad z \in A_m.$

It follows that $g=e^{f}$, which is a function of class III(b), satisfies $g(A_m) \subset A_{m+1}$, so that $g^n \to \infty$ in each A_m , $m \ge 10$. On the other hand g maps B into the smaller disc |z+6| < 1/2, so that B contains an attractive fixed point ξ such that $g^n \rightarrow \xi$ in B, and $B \subset N(g)$.

Finally g maps L_m , $m \ge 10$, into B so that $L_m \subset N(g)$ and further L_m belongs to a component of N(g) different from the component G_m to which A_m belongs. Thus each G_m is a wandering component, mapping to G_{m+1} under $z \rightarrow g(z)$.

References

- [1] BAKER, I. N.: Limit functions and sets of non-normality in iteration theory. Ann. Acad. Sci. Fenn. Ser. A I Math. 467, 1970, 1-11.
- [2] BAKER, I. N.: The domains of normality of an entire function. Ann. Acad. Sci. Fenn. Ser. A I Math. 1, 1975, 277–283.
- [3] BAKER, I. N.: An entire function which has wandering domains. J. Austral. Math. Soc. Ser. A 22, 1976, 173-176.
- [4] BAKER, I. N.: Wandering domains in the iteration of entire functions. Proc. London Math. Soc. (3) 49, 1984, 563-576.
- [5] BAKER, I. N.: Some entire functions with multiply-connected wandering domains. Ergodic Theory and Dynamical Systems 5, 1985, 163-169.
- [6] BHATTACHARYYA, P.: Iteration of analytic functions. Ph. D. thesis, University of London, 1969 (unpublished).
- [7] EREMENKO, A., and M. LYUBICH: Iterations of entire functions. Dokl. Akad. Nauk SSSR 279, 1984, No. 1, 25-27 and preprint, Kharkov, 1984 (Russian).
- [8] FATOU, P.: Sur les équations fonctionelles. Bull. Soc. Math. France 47, 1919, 161-271 and 48, 1920, 33-94, 208-314.
- [9] FATOU, P.: Sur l'itération des fonctions transcendantes entières. Acta Math. 47, 1926, 337-370.

- [10] HERMAN, M. R.: Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. - Inst. Hautes Études Sci. Publ. Math. 49, 1979, 5-233.
- [11] HERMAN, M. R.: Are there critical points on the boundary of singular domains? Comm. Math. Phys. 99, 1985, 593-612.
- [12] JULIA, G.: Mémoire sur la permutabilité des fractions rationelles. Ann. Sci. École Norm. Sup (3) 39, 1922, 131–215.
- [13] MERGELYAN, S. N.: Uniform approximation of functions of a complex variable. Uspehi Mat. Nauk, 7, 1952, 31-122.
- [14] RÅDSTRÖM, H.: On the iteration of analytic functions. Math. Scand. 1, 1953, 85-92.
- [15] SULLIVAN, D.: Quasiconformal homeomorphisms and dynamics I. Ann. of Math. (2) 122, 1985, 401–418.
- [16] YOCCOZ, J. C.: Conjugaison differentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne. - Ann. Sci. École Norm. Sup. (4) 17, 1984, 333-359.

Imperial College Department of Mathematics London SW7 2BZ England

Received 23 June 1986