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WAI{DERING DOMAINS FOR MAPS OF
PLAN[E

I. N. BAKER

TIIE PUI\CTURED

1. Introduction and results

The iteration theory of Fatou [8, 9] and Julia [12] applies to analytic maps

f : D-D where the domain D belongs to Ö, and introduces the sets lf(,f):
{z; zQD, (,f') is a normal family in some neighbourhood of z} and J(/):D\N(/).
To avoid trivial cases it is supposed that f is not a Moebius transformation. The
theory studies the way in which J(/) divides the components of N(f).To obtain
interesting results it is necessary to assumethatthecomplement of Dconsists ofat
most two points, since otherwise"r(/) is empty. We may assume that the complement
of D is 0, l*\, or {0, -} and with this normalisation there are essentially the follow-
ing cases

I. D: e, f rutional,

II. D=C, f entire,

IIL D: C* = {z;O < lzl <-}.
In the third case there are four types of function I depending on the behaviour
of f at the isolated (potentially) singular points 0, -,
(a) .f:k*, k*0, n("2, n*0, Xl

(N. B. we are excluding Moebius transformations),
(b) f (z\:2" 

"*p 
(sk)), g non-constant entire, n€N,

(c) .f (z): z-" exp (g(z)) I' non-constant entire, n ( N,
(d) f (z):* exp {g(z)+h(llr)}, s, å non-constant entire finctions, m(2.

Here we have made the normalisation that if / has exactly one essential singu-

larity it is -. Note that (a), (b) may be regarded as belonging to cases I, II, and that
for any k>-2, and f of type (c) we have fk of type (d).

The cases I, II have been discussed by Fatou [8, 9], Julia [2] and many other
authors, case III by Rådström [4] and Bhattacharyya [6].

In all cases the set /(/) is closed, non-empty and even perfect in D, with the
invariance property f(J(f)):f-'(J(f)):J(f\, (sometimes called "complete
invariance") and the further one that l(fn):l(f ) for p€N. lV(/) may be empty,

as is the case for f (z):exp z,
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If the components of /Y(/) are denoted by N;, then for each N, there is an No

suchthat /(lvr)clv,.. jV, is a wandering component it f (Nr)nf (N)+9, m,n(N,
implies that m:n. Sullivan [5] has shown that in case I there are no wandering
components, while Baker [3, 4, 5], Eremenko and Lyubich [7], Herman [11] and
Sullivan [15] have shown that wandering components may occur in case II. These

wandering components may be either simply- or multiply-connected. In particular
we have the following results.

Theorem A. 14] If f is transcendmtal entire and. U is a multiply-connected

componmt of N("f), then U is awandering component. Further, f'** in U (nt *)
and, for large n, f (U) contains a closed curte 'fnt whose distance from 0 is arbit-
rarily large andwhose winding number about 0 is non-zero. Moreooer, eoery component

of N(f) is bounded.

Theorem B.l5l For any Q ruch that 0=q= * there is an entire function
f of order p, whichhas rrultiply-connectedwandering components of N(f). In the

case q:Q the contuctioity of the wandering component may be infmite.

If U is one of the wandering components described in Theorem B, it is clear

that all f (U), (n=no\, are multiply-connected and that each is bounded away from
0 and *.

It is natural to ask whether wandering components can occur for functions of
class III. It turns out that the situation described in Theorems A and B cannot occur
but that simply-connected wandering domains are possible.

Theorem l. If f is a (non-Moebius) analytic map of C* to itself, then the

components of N(f) are simply or doubly-connected. There is at most one doubllt'
connected component, except in the simple case III(a).

In case II, Theorem A states that any multiply-connected component of 1V(/)
is bounded. See also l21.BV contrast we have

Theorem 2. For 0<d=ll2 and f (z):exp {a(z-z-1)1, N(f) consists of a
single multiply-connected component with 0 and - on its boundary.

Theorem3. Thereisafunction f of classlllforwhich N(f) hasadoubly-
connected component in which f is analytically-conjugate to a rotdtion z*eionz,
q, irrational.

This is the case of a Herman ring, which cannot occur for functions of class II.

Th e o re m 4. There is a function of clas s I I I ( b ) which has a w andering component.

We remark that if U is a wandering component for / of class III, then f" (U)
is simply-connected for n=no. This will simplify attempts to prove that particular
classes of such functions do in fact possess no wandering components, using the
methods of [15], pl or [7]. Some classes are already known from [4] and [7], e.g.

exp (p(z)), wherep is a polynomial.
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2. Preliminary lemmas

Suppose throughout that f is one of the functions of class III(a), (b), (c) or (d).

Lemma 2.L. t61 Let G be a component of N(f) such that some sequence

fh, where ny is a strictly-increasing sequence of natural numbers, has a non'constant

limitfunction q in G. Thenfor some nk wehaoe f'"(G) and E(G) contained,in

a component Gt of N(f), which is mappedunioalently onto itself by some iterate

fe. Further the identity is a limit function of some sequence fo in G1.

Lemma 2.2. 16l If ael(f') and Å is a neighbourhood of a and K is any

compact subset of C*, then there is a natural number no such that for n>ns we

haue f"(Å)=K.

Lemma 2.3. 161 The fixed points of iterates of f are dense in J (f).

the following results were proved in the appropriate form for functions of
class II in [1]. The proofs need almost no modification for class III.

Lemma 2,4. Suppose that ne is an increasing sequence oJ'natural numbers

such that certain branches z:G,u(w) of the iruerse functions of w:f"(z) are all
defined and regular in the domain G. Then (G,-) ,'§ a normal family in G.

Lemma 2.5. Let the set of singularities other than 0, * of f-' be S, and let

E be the set of points of the form .f'(s), s € §, n>0. Then a point belongs to E pre'
cisely if it is a singularity other than 0, * of some inuerse function f-" of an iterate of f.

We may recollect that the singularities of 7-t are either algebraic branch

points or are asymptotic values approached by f (r) as z*0 or - along a suitable

path.

Lemma 2.6. Let E be the set defined in Lemma 2.5 and let E" denote the

derioed set of E, together with any points which are of the form f (s\, s(5, for an

infinity of oalues of n. Then any constdnt limit of a sequence fu in a component of
N(f\ betongs to L:EvE"u{0, -;-6u{0, -1.

Lemma 2.7. If the set L defuted in Lemma 2.6 has an empty interior and a

connected complement, then no sequence 17"") has a non-constant limit function in

any component of N(f).
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3. Proof of Theorem 1

Lemma 3.1. Suppose that f is of class III and that G is a component of N(f).
Then if y is a simple closed curue in G, either (i) y separates 0t * ot (ii) the comple-

ment of y has a compact component which belongs to G.

Proof. lf (i) does not hold let / denote the compact component of C*\y and
suppose that Anl (f)*0. yor an arbitrarily small positive e, fn (/), n>no(e), @vers
C* except for an e-neighbourhood of 0 and *. Since 0(f'(Å))cf'(0Å):f (y) it
follows that f (y) meets the e-neighbourhood of both 0 and - fot n>no(e). Thus
if we pick out a subsequence f" which is locally uniformly convergent to, say, E
in G, the function g is non-constant and (cf. Lemma 2.1) E(i is a compact subset

of some component of /V(/)cC*. This contradicts the fact that d(f (y), -)*0
aS ,t+6.

Corollary. G has at most tlvo boundary components, so that the first part
ofTheorem I is proved.

Lemma 3.2. Suppose that yr, yz are disjoint fordan curues in N(f), f of
class III, which separate 0, *. Then the region Å bounded by yr, y, contains no points
of J(f) except in the case when f has theform III (a).

Proof. Stppose that Åal(f)#0. Then for arbitrary positive e, f'(Ä) covers
C* except for an e-neighbourhood of 0 and - for nono(e). Now if some fu has
a non-constant limit function g in the component Q of N(f) which contains y1,

it follows from Lemma 2.1 that for large n, f"(yr) is close to the compact
set yivf(y)v...ufe-1(yi)cC*, yi:E(yr) wherepisthe (smallest) positive integer
suchthat f maps to itself the component of N(/) which contains E(Gr).By the
coveringproperty of f(/) itfollowsthatforlargen, f'(yr\ containspointsnear
both 0 and -, so that f has no constant limit functions in the component G, of
N(/) which contains 7r. But then fo(y2\ must also approximate a certain compact
subset of C*, as is the case for f (il. This again contradicts the covering property
of f(/), as n+@.

Thus for any sufficiently large /, we have either l/'l=€ orl )1; lfnl-e-' on y,
or lfnl>s,-t oo ?r and lfil<e on y1.

Thus the set f(y) or f (yr) contains a simple closed curve y(e) in lzl>lle,
which separates 0, -. Further, on y (e) we have either | / | 

< e or lllf l<.e. Applying
thisfor e:Un*0 andnotingthatforrcmuchlargerthannthecurvesy(llm),y(lln)
are disjoint, we see that either f or llf is bounded in a neighbourhood of - and
hence f is analytic or has a pole at -. A similar argument applies at 0. Thus / has

the form given by III(a).
Combining Lemma 3.2 with the corollary to Lemma 3.1 completes the proof

ofTheorem 1.
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4. Proof of Theorem 2

The function given by

f ('): exP{a(z-z-L)1,

where a is a constant such tbat 0<2a<1, is of type III(d). The unit circumference

7 is mapped so that z:e'* glves f (r):"t*, where E:2a sin 9, so that lql=2al9l,
and f (z):srs", where l9,l=(2c)'9*0. Thus y belongs to the domain of attraction
of the attractive fixed point 1 for which f (l):1, f'(l):)q.

The only singularities of 7-t are 2 algebraic branch points, over e'ni and e-zni

respectivd, and transcendental singularities over 0, *. Denote by G that component

of lV(/) which contains 1, and hence an annulus A: l-ö=lzl<1+ä for some

ä>0. Now we can reach all branches of /-t(1) by continuation from the value

1-t1t): I along paths in A, By the invariance properties of N(/) it follows that

all branches of /-t(t) belong to G. A similar argument shows that fot any z(G,
all values of f-r(z) belong to G, by considering continuation of 7-t from 1 to e
along a path in G.

Thus we have shown that G is completely invariant. G must therefore extend

to the essential singularities 0 and -. It remains to show that there are no other com-

ponents of N(/).
Now in the notation of Lemma 2.6 E:{f @r'"'), n:0,1,...,}r{1}, which

is a compact subset of G, and L:Ev{O, -}. If .Ff is a component of N(/) other

than G, then the only possible limit functions of any subsequence of f in H are 0

and -. Thus (/'+/-')*- inf/as n*-. Since

(/"Y @) : r {n:=!.(, . *)l uQ + z-')

we see that if there is a sequence of n-values such that f ** in ä, then for such

n-values we also bave (f)'** in H.
Pat g,=a(f -f-"). Then for large n in the given §equence we have g',latge

in ä and so, by Bloch's theorem, g,(H) contains a disc / of diameter at least 2n.

Then /'+1(I/):exp (./) contains a circle 7'of the form lzl:66nstant. By Lemma

3.2 y'belongs to G and by the complete invariance of G, H:G against assumption.

Thus if H*G the only remaining possibility is that .fn*0 in H as n**.
Put åo: tl(f), so that

(h\ (,) : - (f)-,[r_l {.(r,.å)}J a(t + z-2).

Then l(å')'l** in 11 and if k,:q1h-'-ho), then l/ril:la(l+( f')z)h:l*-,
so that k^(H) contains a disc Å of diameter at least 2n. As above we then find that

f*,(H):exp(kr(H)) contains a circumference lzl:s6astant, and hence ä:G.
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Remark. The map zr=f (z) is semiconjugated by z:ei', z1:sitr
tr:2a sin t:g(/), say. Our results give independent confirmation of the fact
il(8r) is a single simply-connected region in which {*0, a situation discussed
by R. L. Devaney (unpublished).

5. Proof of Theorem 3

Modify the preceding example by setting

g(z) : ez"io z exp {a(z - z-1)},

where B is a real constant. For 0<.2a<.1 the function g gives an orientation preserv-
ing homeomorphism of the unit circumferenc€ ? to itself. Indeed, putting 

"is-"znixon ? we may represent gl, by x*G(x):x*fi+(alr)sin(2zx) (mod l), which is
monotone increasing and satisfies G(xal):6(x)+1. We recall the definition of
the rotation number g ofg

e: ,lE 
gP (mod t),

which is independent of x. q varies continuously with g and G, in particular with B,
and so § may be chosen in such a way that g is an irrational number which satisfies
a diophantine condition D.C.: - There exist b>0, c>O such that for every plq(Q
we have lo-@ldl=-cq-12+n. Such g are of measure I in [0, 1].

As was proved by Yoccoz [6], extending earlier work of Herman [0], g is
then real analytically conjugate on y to the rotation z*ezoiez. The conjugacy is
then in fact complex analytically valid in a neighbourhood Å of y, and / belongs
to a component of N(Sr) of the type whose existence was asserted in Theorem 3.
There are necessarily points of J(g:) near the essential singularities 0 and - of &
so that the component is certainly multiply- and hence doubly-connected. This
example is very closely related to the example z*z*(al2z) sin (hz)*b for case II,
which was described in a slightly different context by Herman [11].

6. Proof of Theorem 4

Here we use a method of construction of wandering domains first introduced
by A. Eremenko and M. Lyubich [1. It is based on an approximation theorem.

IfFdenotes a closed subset ofC and C,(F) the functions which are continuous
on F and analytic in å, we say that F is a Carleman set (for C) if for any positive
continuous functions e on F and for any g in C,(F) there is an entire / such that

lg(z)-f(z)l=e(z), z(F. By Arakelyan's theorem Ö1r must be connected and
locally connected at *. A. H. Nersesjan [13] showed that if we add the following

to
that
o.8.
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we have a sufrcient condition for F to be Carleman: for each compact K theunion

W(K) of those components of å which meet K is relatively compact (in C).

It will follow that the set F:BuUi=* {A^vL^}, is a Carleman set'

Now denote
L.:{z;R.ez:4m1, m>lO,

Å*: lz; lz-4m-21= ll, m > lA,

B: {z; lz*6|= l},

and let 6, d^be positive numbers so small tt:uit lw-ni-log 6l=ä implies le*+6,t=
tll, and |w-log (4m+2)l=ö,, implies le*-(4m*2)l<U2. Using the approxi-

mation lemma we find an entire function / such that

lf(z)-ni*log6l =ä, z€L,n, m=10,

lf(z)-ni-log6l < ä, z€8,
and

lf(z)-log@m+6)l < ön+tt z€A^.

It follows that g:st, which is a function of class III(b), satisfies g(A^)cA^*r,
so that g,t* in each A,,, m210. on the other hand g maps B into the smaller

disc fz*61=112, so that B contains an attractive fixed point ( such that 9r*6
in B, and BcN(g:).

Finally g maps L*, m=10, into B so that L^cN(g) and further I. belongs

to a component of l{(g) different from the component G^ to which l. belongs.

Thus each G, is a wandering component, mapping to G,nalwder z*g(z).
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